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A note on the ”saturation” of poisson-exponential
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Abstract
In this paper we study the important ”saturation” characteristic for the Poisson–exponential cumulative distribution
function in the Hausdorff sense. The results have independent significance in the study of issues related to
lifetime analysis, insurance mathematics, biochemical kinetics, population dynamics and debugging theory.
Numerical examples, illustrating our results are presented using programming environment Mathematica.
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1. Introduction

The Poisson–exponential cumulative distribution function (Pcdf) is given by (see for instance [1]):

M(t;λ ;β ) =
eλe−β t − eλ

1− eλ
(1.1)

where β > 0; λ > 0.
For other extensions and estimations, see [2] – [3]. Some applications of the (Pcdf) to rainfall and aircraft data with zero

occurrence can be found in [3].

In this note we study the saturation of the Poisson–exponential cumulative distribution family of functions (1) to asymptote
t = 1 in the Hausdorff sense.

Definition 1.1. [4] The Hausdorff distance (the H–distance) ρ( f ,g) between two interval functions f ,g on Ω ⊆ R, is the
distance between their completed graphs F( f ) and F(g) considered as closed subsets of Ω×R. More precisely,

ρ( f ,g) = max{ sup
A∈F( f )

inf
B∈F(g)

||A−B||, sup
B∈F(g)

inf
A∈F( f )

||A−B||},

wherein ||.|| is any norm in R2, e. g. the maximum norm ||(t,x)|| = max{|t|, |x|}; hence the distance between the points
A = (tA,xA), B = (tB,xB) in R2 is ||A−B||= max(|tA− tB|, |xA− xB|).
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We propose a software modules (intellectual properties) within the programming environment CAS Mathematica for the
analysis.

2. Main Results

Without loosing of generality we will look at the following (Pcdf):

M∗(t) =
eλe−β t − eλ

1− eλ
, (2.1)

with

t0 =−
1
β

ln

(
1
λ

ln

(
1+ eλ

2

))
; M∗(t0) =

1
2
. (2.2)

To evaluate the important saturation characteristic d of the (Pcdf) to asymptote t = 1 in the Hausdorff sense we will use the
following representation:

M∗(t0 +d) = 1−d. (2.3)

The following theorem gives upper and lower bounds for d

Theorem 1. Let

p =−1
2
,

q = 1− β

1− eλ

1+ eλ

2
ln

(
1+ eλ

2

)
.

For the Hausdorff distance d the following inequalities hold for:

2.1q > e1.05 ≈ 1.36079

dl =
1

2.1q
< d <

ln(2.1q)
2.1q

= dr. (2.4)

Proof. Let us examine the function:

F(d) = M∗(t0 +d)−1+d. (2.5)

From F ′(d)> 0 we conclude that function F is increasing.
Consider the function

G(d) = p+qd. (2.6)

From Taylor expansion we obtain G(d)−F(d) = O(d2).
Hence G(d) approximates F(d) with d→ 0 as O(d2) (see Fig. 1).
In addition G′(d)> 0.
Further, for 2.1q > e1.05 we have G(dl)< 0 and G(dr)> 0.

This completes the proof of the theorem.

The model ((2)–(3)) for β = 5, λ = 0.8, t0 = 0.10302 is visualized on Fig. 2. From the nonlinear equation (4) and
inequalities (5) we have: d = 0.177469, dl = 0.114887, dr = 0.248593.
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Figure 2.1. The functions F(d) and G(d).

Figure 2.2. The model ((2)–(3)) for β = 5, λ = 0.8, t0 = 0.10302; H–distance d = 0.176469, dl = 0.114887, dr = 0.248593.

Figure 2.3. The model ((2)–(3)) for β = 15, λ = 0.1, t0 = 0.0445643; H–distance d = 0.10359, dl = 0.0547734,
dr = 0.159092.
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Figure 2.4. An example of the usage of dynamical and graphical representation for the family M(t). For example λ = 0.22,
β = 6.4. The plots are prepared using CAS Mathematica.

The model ((2)–(3)) for β = 15, λ = 0.1, t0 = 0.0445643 is visualized on Fig. 3. From the nonlinear equation (4) and
inequalities (5) we have: d = 0.10359, dl = 0.0547734, dr = 0.159092.

From the above examples, it can be seen that the proven bottom estimate (see Theorem 1) for the value of the Hausdorff
distance is reliable when assessing the important characteristic - ”saturation”.

This characteristic (as we have already shown in our previous publications) has its equal participation together with the
other two characteristics - ”confidence intervals” and ”confidence bounds” in the area of the Software Reliability Theory.
Constructions of ”confidence curves” and ”confidence bounds” as basics elements from Software Reliability Theory are not
easy to be calculated in comparison to estimations pointed in the theorem proven here.

Some software reliability models, can be found in [5]–[6].

Remark. Ramos, Percontini, Cordeiro and Silva [7] studied the following Burr XII–Negative–Binomial Distribution with
applications to lifetime data:

M1(t) =
(1−β )−s−

(
1−β

(
1+
( t

a

)c)−k
)−s

(1−β )−s−1
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where a,k,s,c > 0 and β ∈ (0,1).

The reader can get accurate bounds for the saturation feature using the technique described in this article.

For some approximation and modeling aspects see [8]–[21].

We hope that the results will be useful for specialists in this scientific area.
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