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Abstract
It is well known that the numerical solution of evolutionary systems and problems based on topological design
requires a high computational power. In the last years, many parallel algorithms have been developed in order
to improve its performance. Among them, genetic algorithms (GAs) are one of the most popular metaheuristic
algorithms inspired by Darwin’s evolution theory. From the High Performance Computing (HPC) point of view, the
CUDA environment is probably the parallel computing platform and programming model that more heyday has
had in recent years, mainly due to the low acquisition cost of graphics processing units (GPUs) compared to a
cluster with similar functional characteristics. Consequently, the number of GPU-CUDAs present in the top 500
fastest supercomputers in the world is constantly growing. In this paper, a numerical algorithm developed in the
NVIDIA CUDA platform capable of solving classical optimization functions usually employed as benchmarks is
presented. The obtained results demonstrate that GPUs are a valuable tool for acceleration of GAs and may
enable its use in much complex problems. Also, a sensitivity analysis is carried out in order to show the relative
weight of each GA operator in the whole computational cost of the algorithm.
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1. Introduction
It is well known that Genetic Algorithms (GAs) are robust and efficient domain-independent searching techniques for global
optimization problems inspired by the Darwinian evolution theory. Most classical GAs include three different operators:
selection, mutation and crossover. In each iteration, individuals are evaluated using the objective (or fitness) function and a
stopping criteria is also required in order to end the iterative process [5]. However, despite GA is very useful for many practical
optimization problems, the execution time can become a limiting factor for some huge problems [4, 6, 9].

There are many possibilities to accelerate a GA code [1]. One of the most widespread strategies proposed in order to
reduce the computational cost are the MPI-based parallelization techniques. In this case, a cluster computer is required [19, 20].
Probably, the main problem in the near future will be the platforms heterogeneity of data and applications. However, since the
CPU maximum frequency seems to be reached [8], many-core parallel techniques appear to be an interesting option.

During the last decade, Graphic Processing Unit (GPU) has been used for computing acceleration due to the intrinsic
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vector-oriented design of the chip set. This gave race to a new programming paradigm: the General Purpose Computing on
Graphics Processing Units (GPGPU) [11, 16, 12]. In general, the GPGPU acronym is used for all techniques able to develop
algorithms extending computer graphics applications but running on a GPU. This paradigm is widely used for a very large range
of applications, in computational fluid dynamics (CFD) problems [24], environmental applications [2], advection transport [7],
numerical analysis [22], optimization techniques [21, 29], among others.

Later on, the GPGPU programming paradigm was replaced by the Compute Unified Device Architecture (CUDA) in 2007.
CUDA has several advantages compared to GPGPU and CPU which includes faster memory sharing and read backs, minimal
threads creation overhead, etc. [17]. Since GAs are inherently parallel, the CUDA computing paradigm provides an interesting
framework, allowing a strong optimization in terms of processing performance and scalability [15, 25, 23].

In this paper an open source code written in the C++ programming language that allows the optimization of n-dimensional
space functions using GA classical metaheuristic techniques is developed. In order to reduce the computational cost of
metaheuristic optimization, a parallelization of a classic GA code using a GPU in a CUDA environment is also proposed.
Moreover, a sensitivity analysis is performed in order to identify the relative computational cost of each GA operator.

Three different objective functions are employed, which are often used as benchmark functions in optimization problems:
De Jong’s function, Rastrigin’s function and Ackley’s function. The global optimum is the same and is known for all test cases:
this allows to make comparisons from the GA performance point of view. The paralellized algorithm propoed in this work is
capable of optimize n-dimensional functions using CUDA programming paradigm. The obtained results using a GeForce GTX
750 Ti GPU show that the proposed code is a valuable tool for accelerating GAs, reducing its computational cost by about 92%.

The article is structured as follows. Section 2 presents some characteristics of classical GAs as well as the main features
of the GA proposed in this work. Section 3 describes the characteristics of the employed hardware and some key aspects of
the parallelization strategy using CUDA. The results are shown in Section 4 while the conclusions and final discussions are
presented in Section 5.

2. Classical genetic algorithm
Based on the Darwin’s evolution theory, genetic algorithms are analogous to the natural selection laws and survival of strongest
individuals. Therefore, the individuals with higher fitness in a population have a greater chance of survival than the others.
Each individual is a candidate solution of the optimization problem and its quality is assessed by evaluating an objective (or
fitness) function which has to be minimized or maximized.

2.1 General characteristics
Some features of classical genetic algorithms are [5, 14]:

• Individuals can be defined with arrays of integer, real or binary numbers as well as a combination.

• The iterative process is usually known as elitist algorithm. Thus, the better adapted individuals pass to the next generation
without going through the crossover and mutation procedures.

• Continuous functions for individual definition allow imposing conditions on lower and upper bounds of the variables in
order to fulfill the objective function domain.

• Partial renewal of the population in order to prevent the saturation with the best individuals. In this step, the mutation
procedure is no longer required.

Figure 1.1a shows the pseudocode of the GA developed in this article. Also, the main features of the classical GA are
included, being pop, sel and shoot three entities accounting population, selection operator and the randomized shooting
procedure, respectively.

2.2 Characterization of individuals
In Fig. 2.1, a generic coordinate xi is presented. Therefore, each generic coordinate of an individual is composed by nvdec
genes and nvbin chromosomes. The first gene is used for sign assignation. Thus, the negative sign of a generic coordinate is
adopted when the first digit is less than five, otherwise the obtained coordinate is positive. Form example, Fig. 2.2 shows the
determination of a real number from a binary random matrix.

Although individuals are defined from a binary matrix of nvbin∗nvdec elements, in the GA code developed in this work
the population is organized as a vector of size psize∗nvbin∗nvdec in order to optimize memory access. According to this
definition of individuals, the domain of the generic coordinate is setting automatically in xi ∈ ]−1,1[ . Thus, no further penalty
functions are required in order to impose boundary conditions.
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Figure 2.1. Definition of a generic coordinate xi

Figure 2.2. Example of a real number determination.

2.3 Initiation
At the beginning, the control variables should be defined, i.e. the population size (psize), the maximum number of generations
(ngen), the number of genes (or variables) for each individual (nvars), which in this case is obtained by the product between the
total amount of decimal digits plus one, for the sign assignation (nvdec) and the adopted quantity of binary digits (nvbin). Also,
the mutation probability (mut prob) and the elite size (nelit) should be set at the beginning of the GA.

2.4 Initial population
The initial population is generated by a random algorithm specially designed to fulfil the boundary conditions regarding to
the upper and lower bounds of the variables. Individuals are vectors of nvars dimension composed by eight integer digits (the
first one used for sign assignation). Each integer digit is determined by a four digits binary number (see Fig. 2.1). Therefore,
on the optimization problem of two three-dimensional functions (two independent variables), the individual dimension is
nvars = 2∗nvdec∗nvbin = 128 binary digits.

2.5 Cost functions
In a classical GA, the concept of fitness involves testing how “fit” a given individual is in comparison with other individuals
using a cost function in order to obtain the best individual of the population. If a GA is used in unconstrained optimization
problems, as in the case of this study, the fitness coincided with the actual cost function [26].

In the following, three different cost functions are considered. These functions are widely used to evaluate the performance
of new optimization algorithms [15, 27, 28, 23]. Being n the problem dimension, the following cost functions are used:

• The simplest test function, the De Jong’s function, also known as the sphere model. It is continuos, convex and unimodal
(see Fig. 2.3a):

f1 =
n

∑
i=1

x2
i . (2.1)

• The Ackley’s function [3], widely used as a multimodal test function. It has many extreme values and a unique absolute
minimum (see Fig. 2.3b):

f2 =−a exp
[
−b

( n

∑
i=1

x2
i /n

)− 1
2
]
− exp

( n

∑
i=1

cos(c xi)/n
)
+a+ exp(1) , (2.2)

where, the adopted values of the constant parameters a, b and c are: 20, 0.2 and 2π , respectively.
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• The Rastrigin’s function, based on function f1, Eq. (2.1), with the addition of a cosine modulation to produce many local
minima. Therefore, is highly multimodal. However, the location of the minima are regularly distributed (see Fig. 2.3c):

f3 = 10 n+
n

∑
i=1

x2
i −10 cos(2π xi) . (2.3)

All the adopted cost functions share special characteristics. They all are continous functions with monotonic shape and
their absolute minimum is perfectly determined at xi = 0. This important feature allows an accurate evaluation of the GA
performance analyzed in this work.

2.6 Selection
The selection process is also known as Tournament or Ranking selection method. In this method, a ranking-based competition is
carried out in small groups of individuals (ngroup), randomly generated, in which the best of each group is selected according
to its cost.

The main disadvantage of this procedure is that the worst individuals have nearly zero probability of being selected. In
contrast, the population heterogeneity is better assessed in comparison with the classical Simple Roulete selection method [5, ?].

2.7 Crossover
The crossover procedure is a crucial module for the GA performance. However, as the main purpose of this work is not focused
on qualitatively improving convergence behavior of GA, an enhanced crossover technique is not required.

Furthermore, the GA parallelization in a GPGPU presented in this study allows computational cost of classical GA to be
greatly reduced. Thus the simple well known one-point crossover method is used. All data beyond that point are swapped
between the two parent individuals.

2.8 Mutation
Mutation is a genetic operator used to preserve the population diversity, behaving analogously to a biological mutation. Another
purpose of this operator is to prevent the algorithm from being trapped into a local optimum, thus increasing GA search
capability. The simplest mutation consists in modifying one or more gene values in a chromosome from its initial state according
to a user-defined mutation probability during the evolutionary process. This probability should be set to a low value (< 5%).
Otherwise, the process could switch to a primitive random search [30].

In this research, the Flip Bit mutation operator was implemented. This technique is widely used and inverts the bits of a
chosen genome according to its mutation probability (i.e. if the genome bit is 1, it is changed to 0 and viceversa).

3. Parallelization strategy in the CUDA environment
The main feature of graphics processing units is the ability to run a common process on a large number of cores working
all together over different data. In order to improve the GPGPU paradigm, the CUDA environment has been developed by
NVIDIA [18], allowing a more efficient programming. Therefore, there are two important issues that directly affect the
performance of CUDA codes. The first one is related to a basic processing element: threads. Threads are labelled between 0
and BlockDim. The group of threads is called a block, and it contains a (recommended) 32 multiple number of threads.

The following aspect to be considered in the CUDA programming style is the device architecture. The minimum unit,
where a single thread runs, is the Streaming Processor (SP). A Streaming Multiprocessor (SM) is a group of SPs.

The parallelization on GPU/CUDA architecture can be done on a fine-grained or coarse-grained level [18]. In order to
reduce the data processing latency, a fine-grained parallelization strategy is adopted [10, 13], in which each data is assigned
to each thread. This strategy in general improves GPU performance keeping busy at all times all multiprocessors cores, and
consequently, the latency diminishes [25].

The coarsest granularity of synchronization occurs between commands in a queue or stream. Although this does provide
synchronization across the entire kernel, it is very slow, as it often even involves a round trip to the CPU for API call completion.
Finer-grained barriers can also be used to synchronize control (not data) within a thread block.

Figure 1.1a presents a standard GA flowchart. To qualitatively show the computational cost of each subroutine of this GA,
the inner loops schemes required in each function of the GA are also depicted.

The flowchart of the CUDA GA algorithm implemented in this research is shown in Fig. 1.1b. The main difference
observed between the classical sequential GA and the fully parallel CUDA-based GA is the absence of the inner loop in each
GA subroutine. As will be seen later, this difference introduces a substantial improvement in the computational cost of the GA.
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Table 1. Main features of GTX GeForce 750 Ti related to CUDA environment

CUDA Driver Version / Runtime Version: 7.0 / 6.5
Total amount of global memory: 2048 MBytes
( 5) Multiprocessors, (128) CUDA Cores/MP: 640 CUDA Cores
L2 Cache Size: 2097152 bytes
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024

Furthermore, in the Appendix A the main CUDA parallelized functions developed in this work are presented. This section was
included in order to illustrate a simple way to introduce a CUDA parallelized function in a classical GA.

The graphics card used in this work is the GeForce GTX 750 Ti, and its main features can be obtained from the deviceQuery
application found in the installation folder of NVIDIA CUDA enviroment [17]. In Table 1, the main characteristics of the GPU
employed in this work are summarized.

4. Numerical results
In this section, the numerical results obtained from the computational tests using the CUDA GA algorithm developed in this
work are presented.

4.1 Sensitivity analysis on the computational cost of the different operations entailed by GA
Firstly, a sensitivity analysis similar to the proposed in [?] is carried out. In this case, the main objective is the determination of
the relative computational cost of each GA subroutine. For that purpose, each subroutine is parallelized while keeping the
traditional sequential scheme for the remaining of the code. In order to have a homogeneous basis of comparison, ngen = 100
and psize = 320 are adopted for this computational test as control variables.

Figure 4.1 shows the computational cost of each GA subroutine compared with the fully parallelized CUDA version
considering only the De Jong’s cost function. It can clearly be seen that the most expensive process is the cost function
evaluation (Func), followed by the crossing operator (Crossover).

Furthermore, it can be observed that the computational cost of the fully parallelized GA (3.54 sec) is only the 7.66% of the
computational cost of the sequential GA scheme (46.21 sec). Hence, the parallel implementation allows to achieve an 92%
improvement.

The following sensitivity analysis test consists in evaluate the De Jong’s cost function with different dimensions of the
independent variable (xi). The results obtained were presented in Fig. 4.2a in order to qualitatively show the non-linear
dependence of the total speedup of the fully parallelized GA with the independent variable dimension. Furthermore, the table
included in Fig. 4.2b shows mean values as well as standard deviation of both generations and time.

4.2 Effect of population size
The effect on population size on the computational cost of the whole GA optimization process is then analyzed. For that
purpose, both sequential and parallel codes are used with different population sizes. Also, in order to optimize the memory
access, the chosen population size (psize) is proportional to the warp size (which is equal to 32 for the graphic card used in this
work) in each numerical test.

Figure 4.3 shows a comparison between the numerical results obtained from the classical sequential GA and the fully
parallelized CUDA version, for different population sizes. In addition, a third order polynomial fitting equation is plotted. It can
be noted that the non-linear coefficients (corresponding to x3 and x2) are very small in both cases, therefore a linear function
adjustment is enough to fit the numerical test. Hence, the average speedup of the GA can be deduced through the ratio between
the values given by the two curves plotted in Fig. 4.3. Thus, the speedup obtained is equal to 14.4, neglecting higher order
terms. These results were obtained with a fixed number of iterations (ngen = 100) in order to show the average computational
cost of the sequential code compared with the fully parallelized implementation.

Actually, in classical GA optimization problems the number of generations required for obtaining the optimal solution is
not a deterministic variable. Therefore, optimized design and computational cost should be evaluated in terms of computation
time statistics (mean and standard deviation). In this regard, Fig. 4.4 illustrates the behaviour of the mean computation time for
each cost function defined in section 2.5 considering different population sizes. It can be observed that the computation time
dispersion decreases as the population size increases.
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4.3 Computational cost analysis of the optimization process

This section analyzes the computational cost required for the optimization benchmark problem. In order to obtain a probabilistic
estimation, one hundred samples were obtained by running the fully parallelized GA code considering the following population
sizes: 320, 640, 960, 1280, 1600, 1920, 2240.

In this analysis the number of generations is not set previously. Therefore, a stopping criteria for the iterative procedure
must be adopted. Since the global minimum is known in all benchmark functions described in Section 2.5 (xi = 0), the stopping
criteria is | f (xi)|< tol, being the adopted tolerance tol = 10−6.

Figure 4.5 shows the numerical results of this computational test for the De Jong’s function with different population sizes.
Similar to the results discussed in the previous section, the points representing each global optimum, obtained in successive
runs with the same population size are fairly close to a linear function. Furthermore, it can noted that the population size
directly affects the average slope of the linear function. However, the mean values for each population size is better fitted by an
exponential function (discontinuous line in Fig. 4.5). Furthermore, the statistics analysis of the fully parallel GA considering
different population sizes for each cost functions defined in section 2.5 are presented in Table 2, 3 and 4 for De Jong, Ackley
and Rastrigin’s cost functions, respectively. Also, in the above mentioned tables g, Sdg are the mean and standard deviation of
the generations number, respectively, as well as t, Sdt are the mean and standard deviation of computation time, respectively.

Table 2. Comparative study of the parallel algorithm considering different population sizes and De Jong’s cost functions.

psize g Sdg t Sdt

320 1240.13 670.51 40.33 21.75
640 299.23 209.60 20.00 11.49
960 153.28 122.32 12.51 9.75

1280 74.08 54.36 8.38 5.87
1600 47.92 34.81 6.76 4.55
1920 38.54 28.82 6.54 4.44
2240 27.91 18.63 5.79 3.37
2560 40.59 14.67 9.41 3.09
2880 161.00 125.12 13.00 2.80

Table 3. Comparative study of the parallel algorithm considering different population sizes and Ackley’s cost functions.

psize g Sdg t Sdt

320 2602.90 930.13 84.81 30.28
640 724.31 299.81 39.85 16.39
960 346.78 141.93 27.91 11.29

1280 202.62 83.81 22.21 11.00
1600 146.13 84.14 19.55 10.96
1920 131.43 61.64 20.78 9.46
2240 100.49 47.17 18.91 8.52
2560 98.46 39.04 21.56 8.20
2880 351.00 143.20 28.00 10.10
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Table 4. Comparative study of the parallel algorithm considering different population sizes and Rastrigin’s cost functions.

psize g Sdg t Sdt

320 1850.04 841.17 60.23 27.35
640 512.10 217.98 28.23 11.96
960 227.37 103.85 18.33 8.25

1280 128.94 60.58 14.10 6.68
1600 96.71 36.58 13.07 5.00
1920 73.03 27.07 11.81 4.16
2240 61.40 22.33 11.84 4.02
2560 52.43 15.26 11.86 3.20
2880 126.00 58.50 14.00 3.01

4.4 Effect of cost function complexity on computational cost

In this section, the effect of cost function complexity on the computational cost of the optimization process is studied for each
test problem running 100 times the fully parallelized GA code considering the following population sizes: 320, 640, 960, 1280,
1600, 1920 and 2240. The numerical results are summarized in Table 5.

Table 5. Statistical data on the CUDA GA computational cost for the different test problems.

psize De Jong’s function Ackley’s function Rastrigin’s function
t Sdt FA t Sdt FA t Sdt FA

320 1262.56 710.36 0 2428.01 971.40 4 1840.53 804.28 42
640 299.23 209.60 0 750.02 314.20 0 519.47 205.38 42
960 153.28 122.32 0 338.75 154.05 0 232.11 86.19 28

1280 78.82 69.34 0 208.82 118.89 0 134.49 66.45 23
1600 47.92 34.81 0 162.56 104.04 0 100.24 41.52 21
1920 38.54 28.82 0 126.61 50.95 0 74.65 32.20 17
2240 27.91 18.63 0 92.05 50.93 0 59.47 19.50 13

t, Sdt : mean and standard deviation of computation time, respectively.
FA: Failed attempts.

Figure 4.6 shows the mean lapsed computational time required for the convergence of the fully parallelized GA code against
the generations numbers considering each cost function adopted in Section 2.5.

It can be seen that the De Jong’s function optimization is faster than the others. Although the optimization of the Rastrigin’s
function requires less CPU time than the Ackley’s problem, it should be noted that this test case has a much higher number of
failed attempts, where the target global optimum could not be reached (see Table 5).
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Figure 4.6. Comparison of computational cost of parallel CUDA GA for the different test problems.

5. Conclusions
A general GA code for global optimization implemented in the GPU CUDA environment was developed in this study. The code
is capable of optimize n-dimensional functions which are frequently used as benchmark problems. Using CUDA programming
paradigm, an interesting increment in the convergence rate of about 92% compared with the sequential code is obtained, and
also, the speedup reported is about 13.05.

Furthermore, a sensitivity analysis performed on each GA operator allowed to determine its relative influence on the total
computational cost of the algorithm and enables the programmer to focus on certain routines of the GA when the goal is not
to fully parallelize the GA. The obtained numerical results show the efficiency and scalability of the proposed algorithm for
the chosen cost functions. The presented GA is very general and may be extended to more complex problems or real-life
applications in an straightforward manner, by rewriting the objective function.
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1. Parallelized functions
Main device functions parallelized in CUDA framework are presented in this appendix.

A.1 InitPop
This is the first device function, included in any classical GA, with the aim of generate the random initial population
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__global__ void InitPop(int *d_Pop, int nvars, curandState* globalState){
int it = blockDim.x * blockIdx.x + threadIdx.x;
for(int i=0; i<nvars ; i++) {
float k = generate(globalState, i+it)*1;
d_Pop[it*nvars + i] = lroundf(k);
}
}

A.2 Func n
This device subroutine contain precisely the cost functions adopted in this article for n-dimensional generic variables xi.

__global__ void Func_n(float *d_Sol, int *d_Pop, int nvbin, int nvdec, int ndim){
int it = blockDim.x * blockIdx.x + threadIdx.x;
int function = 3 ; // 1=DeJong, 2=Ackley , 3= Rastrigin
int ipop=0, two=2, ten=10, bin[4];
float x=0, y=0, X=0, Y=0, sum = 0, PI=3.141592653, xi[2], lim = 9/(powf(2,nvbin)-1);
for(int ix=0; ix<ndim; ix++){
for (int inum=1; inum<nvdec; inum++){
for(int i = 0; i<nvbin; i++) bin[i] = d_Pop[it*nvbin*nvdec*ndim + nvbin*nvdec*ix +

nvbin*inum + i];
X = lroundf(BinDec(bin, nvbin)*lim); x = x + powf(ten,(0-inum))*X;
}
xi[ix] = x, x=0, X=0;
}

for(int i=0; i<nvbin; i++) bin[i]=d_Pop[it*nvbin*nvdec*ndim+i];
if(BinDec(bin,nvbin) < (powf(two,nvbin)-1)*0.5) x = (-1)*x;

d_Sol[it]=0;
float a=20, b=0.2, c=2*PI, d=10, x1=0, x2=0;
switch(function) {
case 1: // De Jong’s function
for(int ix=0; ix<ndim; ix++) d_Sol[it] = d_Sol[it] + xi[ix]*xi[ix];
break;
case 2: // Ackley’s function
for(int ix=0; ix<ndim; ix++){
x1 = x1 + xi[ix]*xi[ix]; x2 = x2 + cos(c*xi[ix]);
}
d_Sol[it] = -a*expf(-b*sqrt(x1/ndim)) - expf(x2/ndim) + a + expf(1);
break;
case 3: // Rastrigin’s function
for(int ix=0; ix<ndim; ix++) x1 = x1+xi[ix]*xi[ix]-d*cos(two*PI*xi[ix]);
d_Sol[it] = d*ndim + x1;
break;
}
}

A.3 GroupSelection
This device function generate the group selection for the Ranking selection method adopted in this classical genetic algorithm.

__global__ void GroupSelection(int *sel, int *group, int gsize, int ngroup){
int it = blockDim.x * blockIdx.x + threadIdx.x;
if(it<ngroup){
sel[it] = group[it*gsize];
for(int i=0; i<gsize; i++){
if (sel[it] < group[it*gsize + i] ) sel[it] = group[it*gsize + i];
}
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}
}

A.4 CrossoverSingle
The crossover operation is easily performed in this device function.

__global__ void CrossoverSingle(int *NPop, int *Male, int *Female, int *Pop, int psize, int
nvars, int ndim){

int it = blockDim.x * blockIdx.x + threadIdx.x ;
if(threadIdx.x < nvars/2){
NPop[it*2] = Pop[Male[blockIdx.x]*nvars + threadIdx.x*2];
NPop[it*2+1] = Pop[Female[blockIdx.x]*nvars + threadIdx.x*2+1];
}else{
NPop[it*2] = Pop[Female[blockIdx.x]*nvars + (threadIdx.x - nvars/2)*2];
NPop[it*2+1] = Pop[Male[blockIdx.x]*nvars + (threadIdx.x - nvars/2)*2+1];
}
}

A.5 Mutation
The mutation operation is performed in this device function.

__global__ void Mutation(int *Pop, float mutp, int nvec, int nvars, curandState*
globalState){

int it = blockDim.x * blockIdx.x + threadIdx.x;
if (it < nvec) {
float ran = generate(globalState, it)*(1.0);
if(ran<mutp){
int ivar = lroundf(generate(globalState, it)*(nvars-0.5));
if(Pop[it*nvars+ivar]==0){
Pop[it*nvars+ivar] = 1;
}else{
Pop[it*nvars+ivar] = 0;
}
}
}
}
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Figure 1.1. Flowchart for: a) Sequential GA; b) GPU-GA.
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Figure 2.3. Representation of the cost function for two-dimensional optimization (n = 2): a) De Jong’s function; b) Ackley’s
function; c) Rastrigin’s function.
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Figure 4.1. Sensitivity analysis on the computational cost of classical GA operations for De Jong’s cost function (ngen = 100,
psize = 320)

Figure 4.2. Influence of the variable dimension on speedup of the fully parallelized GA: a) Qualitative representation; b) Data
table
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Figure 4.3. Comparison of the computational cost of both the fully parallelized and sequential GA implementations, assuming
the De Jong’s cost function with different population sizes.
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Figure 4.4. Mean speedup of the fully parallelized GA code vs population size. a) De Jong’s function, b) Rastrigin’s function,
c) Ackley’s function, d) Mean values and standard deviations.
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Figure 4.5. Actual computational cost of the fully parallelized CUDA GA implementation for the De Jong’s function with
different population sizes.
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