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Abstract 
 
Deep Learning (DL) is an effective way that reveals on computation capability and advantage of the 
hidden layer in the network models. It has pre-training phases which define the output parameters in 
unsupervised ways and supervised training for optimization of the pre-defined classification 
parameters. This study aims to perform high generalized fast training for DL algorithms with the 
simplicity advantage of Extreme Learning machines (ELM).  
 
The applications of the proposed classifier model were experimented on RespiratoryDatabase@TR. 
Hilbert-Huang Transform was applied to the 12-channel lung sounds for analyzing amplitude-time-
frequency domain. The statistical features were extracted from the intrinsic mode function 
modulations of lung sounds. The feature set was fed into the proposed Deep ELM with the HessELM-
AE. The proposed model was structured with 2 hidden layers (340,580 neurons) to classify the lung 
sounds for separating Chronic Obstructive Pulmonary Disease and healthy subjects. The classification 
performance was tested using 6-fold cross-validation with proposed Deep. HessELM-AE has achieved 
an influential accuracy rate of 92.22% whereas the conventional ELM-AE has reached an accuracy 
rate of 80.82%. 
 
 
Keywords: Deep learning, RespiratoryDatabase@TR, COPD, lung sounds, deep ELM, Hessenberg 

decomposition. 
 

 
1. Introduction 

 
Machine learning (ML) algorithms are the most popular research areas for computer 
engineering demanding on necessity for the accurate fast learning kernels. ML merges 
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computer engineering and statistic models. The ML focuses on real-world problems with 
artificial neural network which is projected for decision-making on new situations demanding 
similar ones. The learning procedures on the ML create statistical models and optimizes the 
network parameters for making a better pattern prediction and recognition in data. Especially, 
the nonlinear classifier models for computer vision, object recognition, image processing and 
time-series signals have accelerated the developments for deeper and detailed analysis of big 
data. Artificial intelligence was the most spectacular approach with similarities on the 
modeling the human brain and learning procedure in last decades [1]. With the augmentation 
of the data and the need of generating the knowledge from the information have given a path 
to the deeper analysis and raising learning capabilities of machine learning algorithms. In 
recent years the most capable learning algorithm is Deep Learning (DL) which is born from 
the idea of detailed artificial intelligence idea [2].  
 
The biggest advantage of the DL is supporting both feature learning including feature 
extraction and classification stages with many hidden layers. The DL is a complex neural 
network model with many hidden layers and big size of neuron numbers in each hidden layer. 
The point that differentiates the DL against neural network model is possessing of 
unsupervised learning in the pre-definition of the classification parameter instead of 
randomness [2], [3].  The DL algorithms differ at the pre-definition of the model using 
various unsupervised kernels such as autoencoder, sparse autoencoder, contrastive 
divergence, stack autoencoder, restricted Boltzmann machines, and more.  The rise of DL has 
been corroborated by recent advanced technologies, specially the efficient and high capable 
parallel processing in CPUs and GPUs. The weakest specification of the conventional DL is 
long training time for the real-world problems even when also using GPUs. In future works, 
accelerating the learning and recognition speed with algorithms and machine powered 
hardware technologies will be the prominent interest of the DL before increasing the accuracy 
performance, in the meantime object recognition models have reached achieving about 
accuracy rate of 98% in image processing [4].  
 
Auscultation is a basic physical examination method which is based on listening inner body 
parts with a stethoscope. The auscultation sounds are not hearable sounds without tools. In 
contrast with the simplicity of the method, it is still the most used diagnostic tool for 
respiratory, cardiac and cardio-pulmonary diseases [5]. The stethoscope provides listening 
sounds from heart, lungs and gastrointestinal parts. Whereas the cardiac auscultation sounds 
are based on specified areas on the back and chest, pulmonary auscultation areas are not 
certain points for the disorders demanding of the structure of the lungs. The history of the 
stethoscopes started with a basic wooden pipe, and recent developments on the stethoscopes 
has provided getting and also recording clear and adventitious sounds by digital stethoscopes. 
The adventitious auscultation sounds are very important for differential diagnosis in medicine. 
The recent digital stethoscopes have ability to amplify the adventitious auscultation sounds in 
various filters and levels for eliminating experience-based faults of physicians [5], [6]. In spite 
of the developments on biomedical devices and diagnostic tools in medicine, the auscultation 
and pulmonary function test are still the simplest and the most influential method for 
diagnosing the respiratory diseases.  
 
Lung sounds are the most common type of the auscultation sounds which are heard on chest 
and back. Lung sounds are used to detect the state of the airways in lung parts. The state of 
the lung airways and the obstructions in the bronchus are the main symptoms of the 
respiratory diseases [7]. The breathing results vibrations on the lung walls and bronchus. The 
vibrations and air circulation during breathing turn into the lung sounds. The elasticity, 
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thickness of the walls and obstructions, mucus in the airways compose various types of lung 
sounds. The pathological sounds are heard as wheeze and crackles which are audio-visual 
forms for the pulmonary disorders and every so often cardiac disorders [8]. 
 
Chronic Obstructive Pulmonary Disease (COPD) is a group of diseases that include 
emphysema and chronic bronchitis. It is a progressive and not fully reversible and curable, but 
preventable and treatable lung disease. The main reason of the COPD is smoking for many 
years and chemical dusty working environment [9]. It causes much of the discomfort for 
patients with narrowing airways and airflow in the lungs symptoms. Inspiration and 
exhalation problems and coughing with mucus are usually progressive for advanced levels of 
the COPD [10]. Hereby the COPD is not a curable disease, the diagnosis of the COPD is 
mandatory to control the disease in the severe levels.  
 
Wisniewski et al. proposed a diagnosis model for chronic lung diseases including the COPD. 
They analyzed 246 lung sounds by wavelet decomposition transform at different levels and 
pointed Daubechies 6th level sub-band features as the most responsible features for chronic 
lung diseases [11]. Amaral et al. focused on the clinical parameters and spirometry test 
measurements and its application on artificial neural network for discriminating the COPD 
patients [12]. Ying et al. statistically analyzed respiratory questionnaire results, physical 
examination status, spirometry measurements for separating different COPD levels using an 
integrated model of Deep Belief Networks (DBN) [13]. Altan et al. performed a COPD 
severity classification model using a quantization model on lung sound visualizer plot with 
the DBN classifier model [2]. 
 
In this study, considering the importance of the diagnosis of COPD, the 12-channel lung 
auscultation sounds from RespiratoryDatabase@TR were analyzed using Hilbert-Huang 
Transform (HHT) and the statistical features were evaluated for classification of the COPD 
patients and healthy subjects. We aimed to proposed a DL kernel for Deep Extreme Learning 
Machines (Deep ELM) kernel as an alternative to the traditional Deep ELM kernel by Kasun 
et al [14] to accelerate the training speed and to improve the generalization performance for 
the simple and complex structured network models using simple matrix inversing capability 
of the Hessenberg decomposition technique. 
 
The paper is organized into multimedia respiratory database which is called as 
RespiratoryDatabase@TR, HHT in detail, structure and mathematical model of the Deep 
ELM, and the proposed Hessenberg decomposition Deep ELM autoencoder kernel. The 
experimental results of the proposed Hessenberg Deep ELM autoencoder on diagnosis of the 
COPD are evaluated in following sections. 
 

2. Materials and Method 
 
The section contains detailed information about RespiratoryDatabase@TR which is a unique 
multimedia respiratory database and data acquisition process, applying HHT to lung sounds, 
statistical feature extraction from the modulated frequency bands and classification 
algorithms. 
 

2.1 Database 
 
Lung sounds are the main markers of the respiratory diseases for a steady diagnosis. In the 
cases which is not certain with the lung sounds, pulmonologist and cardiac physicians use 
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2.2 Hilbert-Huang Transform 
 
The HHT is an influential transformation algorithm which may handle non-linear and non-
linearity signals. The HHT is a favorite signal analysis method in the feature extraction, 
filtering, and pre-processing steps of the ML. It may extract energy-time-frequency 
distributions in different signal modulations. The most powerful course of the HHT is that, its 
theory is still empirical and is not completed [16]. Considering the empirical statue of the 
HHT, adapting the novel approaches and ML algorithms is recent researches. The HHT is 
comprised of Empirical Mode Decomposition (EMD) which has sifted signal modulations 
from the signal for analyzing time domain, and the Hilbert Transform (HT) which has applied 
for non-stationary problems for analyzing the signal in frequency domain [17], [18]. 
 

1) Empirical Mode Decomposition: The EMD starts by pointing out minima and maxima 
points in the signal. The obtained extrema points were splined as maximum and minimum 
envelopes [19]. The mean envelope of the signal at any t time needs to be a monotonic 
function to extract signal modulations.  Monotonic function represents for the signal which 
has at most one extremum or the standard deviation in the signal handles to a very small 
number for the sifting process. If the obtained mean envelope meets the expectations of the 
monotonic function, the signal modulation that is called as Intrinsic Mode Function (IMF) is 
extracted from the signal else the sifting process continues in the same modulation [17], [18]. 
𝑟௡ is the residual signal, 𝑥ሺ𝑡ሻ is the input signal, and 𝑛 is the number of obtained the IMF. 
 

𝑥ሺ𝑡ሻ ൌ 𝑟௡ሺ𝑡ሻ ൅ ෍ 𝐼𝑀𝐹௝ሺ𝑡ሻ
௡

௝ୀଵ

                                                                                                                  ሺ1ሻ 

 

2) Hilbert Spectral Analysis: The extracted IMFs have also the frequency modulations. 
The HT decomposes instantaneous frequency meaning of each period. The HT extracts the 
amplitude-frequency-time description of the IMFs in HHT process [16]. 𝜔 is instantaneous 
frequency function, ℜ is the real part of the complex function. Considering the 𝜔 of the signal 
𝑥ሺ𝑡ሻ at any t time, the analytic function of the HHT can be defined as follows 
 

𝑥ሺ𝑡ሻ െ 𝑟௡ሺ𝑡ሻ ൌ ℜ ቎෍ 𝐴௝ሺ𝑡ሻ𝑒௜ ׬ ఠೕሺ௧ሻௗ௧

௡

௝ୀଵ

቏                                                                                         ሺ2ሻ 

 
2.3 Deep Extreme Learning Machines 

 
Extreme Learning Machines (ELM) is modelled as a simple neural network model with a 
single hidden layer. The learning capability of the ELM was approved by Huang in 2004 [20]. 
The ELM kernel is utilized for classification and regression solutions by Singular Value 
Decomposition which is a simplistic inversing solution. The ELM has a fast learning 
algorithm for the single neural network model. It is an efficient decomposition technique with 
randomly defined classification parameters and determining output weights of the model (𝛽) 
using principal inversing solutions [21]. In the mean while the same structure, optimization 
using optimizing the model with Eigen vector determinations is the fundamental disparity for 
the ELM.  
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2. Experimental Results 
 
The lung sounds were segmented with 10s window to set the signals to same length for HHT 
signal analysis. The recordings from COPD patients and healthy subjects were selected in 
same numbers for handling the homogeneity in the subject distribution in the experiments.  
The experiments were evaluated in a limited number of neuron sizes and hidden layer size. 
The HHT decomposition and time-frequency-amplitude distributions of the IMF modulations 
were statistically analyzed and the classification performances including accuracy, specificity, 
and selectivity were evaluated. 
 
The researches on early diagnosis of COPD by distinguishing healthy lung sounds and 
pathological lung sounds, and detecting different severities of the COPD are the pioneer 
approaches in signal analysis. The literature usually focuses on cardiac diseases using ECG 
[8], [24], [25], neurological disorders using EEG [26], disabled activities using EMG. It is a 
recent area analyzing musical characteristic auscultation signals including lung, tracheal, 
vesicular, and bronchial sounds for detecting abnormalities on respiratory and cardio-
pulmonary diseases. It has taken a great importance by placing the COPD in the deadliest list 
of the world. The proposed Deep ELM with HessELM-AE kernel was evaluated on COPD 
diagnosis using the HHT based amplitude-time-frequency characteristics. 10s of segmented 
lung sounds were utilized in the analysis considering at least two breathing cycles. The 
statistical features of the HHT-based IMF modulations were counted as feature set. In the 
consequence of various number of IMFs from the signals, IMF1 to IMF5 modulations were 
determined. The statistical classification performance measurements were assessed from the 
contingency table of Deep ELM with HessELM-AE kernel. 
 
12-channel lung sounds from RespiratoryDatabase@TR were included in the diagnosis 
analysis. The COPD has five severities considering the symptoms and spirometry 
measurements of the patients. The COPD population has selected 15 of COPD patients in 
which 3 patients from each level of the COPD. COPD0 is the closest specifications with the 
healthy auscultation sounds who has none of physical disability expect smoking. The other 
COPD severities has increasing disabilities and pathological wheezing during respiratory. 15 
healthy subjects were selected among the people who have never used any tobacco products 
and have no diagnosed chronic lung disorder. A total number of 360 lung sounds were 
evaluated for COPD analysis by Deep ELM with HessELM-AE. The HT was applied to each 
IMF modulation after extracting IMFs by EMD.  
 
The statistical and power features were calculated from each HHT-based IMF modulation. 
The feature set consists of 12 features such as mean, median, standard deviation, max, min, 
variance, mode, kurtosis, moment, cumulant, power and energy of the IMF1-5 modulations 
except the residual signal and IMF6,7. 
 
The experimented Deep ELM networks with HessELM-AE and conventional ELM-AE were 
structured from 2-3 hidden layers. The number of neurons in each hidden layer was 
experimentally selected at a range of 60 to 500 neurons. The sparsity parameter for Deep 
ELM-AE kernels was selected so small (0.001). The classification performances for each 
Deep ELM model were evaluated using 6-fold cross validation technique and the best 
measurements were compared. 
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Table 1. Classification performances (%) of the Deep ELM kernels on entire IMF feature sets. 
 

Deep ELM  Accuracy Sensitivity Specificity 

HessELM-AE 68.61 71.67 65.56 

Conventional ELM-AE 64.17 66.67  61.67 

HessELM-AE with IMF selection algorithm 92.22 89.44 95.00 

Conventional ELM-AE with IMF selection algorithm 80.83 88.89 72.78 

 
The Deep ELM with HessELM-AE which was the best performance was structured with three 
hidden layers, 360-270-180 neurons in hidden layers, respectively. The lung sounds with the 
COPD and healthy lung sounds can be separated with high classification performance rates of 
68.61%, 71.67%, and 65.56% for overall accuracy, sensitivity, and specificity, respectively 
using statistical features from entire IMFs. Since the various number of IMFs, it is necessary 
to determine the highest responsible IMF modulation features by adapting feature selection 
algorithms to IMF selection process. The sequential feature forward selection algorithm was 
adapted to find state the best features and increasing the classification performance. When the 
classification was performed for each IMF modulation features as a feature set, the three 
highest responsible IMFs are IMF5, IMF3, and IMF4 in a sequence. IMF selection algorithm 
effect the model as an increase in performance rates of 92.22%, 89.44%, and 95.00% for 
accuracy, sensitivity, and specificity, sequentially. The lowest responsible feature is IMF1 
with the Deep ELM classifier with HessELM-AE. The Deep ELM with conventional ELM-
AE was performed on the same experimental setup. The Deep ELM with conventional ELM-
AE has achieved the highest classification performance with two hidden layers, 340-580 
neurons in each layer, respectively. The achieved classification performances on entire IMF 
features are 64.17%, 66.67%, and 61.67% for accuracy, sensitivity, and specificity, 
respectively. The classification performance is augmented to 80.83%, 88.89%, and 72.78% 
using IMF selection algorithm. The highest responsible IMF is IMF3, and lowest responsible 
feature is IMF1 using Deep ELM with conventional ELM-AE. 
 

4. Conclusion 
 
The respiratory sounds are effective diagnostic method for detecting respiratory diseases. The 
detailed assessment of the pathological variations and wheeze on lung sounds is an 
essentialness for upgrading treatment processes and disorder management processes. The 
instantaneous pathological changes on respiratory sounds effect signal in frequency-time 
domain. The analysis on frequency domain has ability to extract significant characteristics of 
the lung sounds. The HHT is an efficient way to perform frequency-time-amplitude 
specification of the biomedical signals. The extracted IMF modulation based features had 
differentiated healthy lung sounds from pathological ones. The study is of great importance 
on the grounds of it is one of the pioneer studies on COPD diagnosis using computerized lung 
sound analysis on the DL. The merging the HHT-based statistical features, the proposed Deep 
ELM with HessELM-AE kernel and the RespiratoryDatabase@TR has provided enhancing 
revolutionizing classification performances and upgrading computerized training algorithms.  
 
IMF modulations carry different frequency range specifications. In the experiments, the IMF1 
which is extracted from 10s lung sound is the lowest responsible feature for the COPD 
diagnosis using Deep ELM kernels. The reason of the fact that the IMF1 is usually qualified as 
the noisy modulation for the distributions [18].  
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The COPD is a fatal condition that limits the life quality and social life with bedridden. The 
cases of the COPD including incurability and just controllability in the diagnosed severe make 
the early detection of the disease and starting the treatment in early so significant for 
preventing the prevalence. Supportive deterministic diagnostic tools for the COPD including 
spirometry measurements, chest X-ray, and the clinical parameters are time consuming 
operations, but they result much lose time to apply. It is also dependent to well-experienced 
pulmonologist clinicians.  The proposed model has ability to separate the COPD patients and 
healthy subjects using 10s auscultation sounds. It is a big step to develop diagnosis-early 
diagnosis models for small and medium-budget health institutions.  
 
The proposed HessELM-AE has improved the generalization capacity of the Deep ELM 
against the ELM-AE. The mathematical simplicity of the Hessenberg decomposition enhances 
generating significant and meaningful representations of HHT-based features on lung sounds. 
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