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Abstract 

Variable exponent spaces and Hardy operator space have played an important role in recent harmonic 

analysis because they have an interesting norm including both local and global properties. The variable 

exponent Lebesgue spaces are of interest for their applications to modeling problems in physics, and to the 

study of variational integrals and partial differential equations with non-standard growth conditions. This  

studies  also  has  been  stimulated  by  problems  of  elasticity,  fluid  dynamics,  calculus  of variations,  

and   differential   equations  with  non-standard   growth   conditions. In this study, we will discuss a 

characterization of approximation of Hardy operators in variable Lebesgue spaces. 

Keywords: Variable exponent, Hardy operator, Sobolev space. 

 

 

1. Introduction 

 
Theory of approximation with linear integral operators 

started with Bernstein operators [1], Bernstein operators 

in the space 𝐶[0,1] defined by 𝐵𝑛𝑓(𝑥) =

∑ 𝑓(
𝑘

𝑛
)𝑝𝑛,𝑘(𝑥)𝑛

𝑘=0  for 𝑥 ∈ [0,1] with the Bernstein basis, 

𝑝𝑛,𝑘(𝑥) = (
𝑛
𝑘

) 𝑥𝑘(1 − 𝑥)𝑛−𝑘 

 

Previously, we have been working on the approach in 

𝐶[0,1] or 𝐿𝑝[0,1] space functions with Bernstein type 

linear positive operators (see [2, 3, 4, 5]) 

In this paper we study a characterization of  

approximation of functions by Hardy operators on 

variable 𝐿𝑝(.)  spaces. Hardy type operator is defined by  

𝐻𝑓(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡

𝑥

0

                            (1.1) 

Functions are defined on an explicit subset Λ of 𝑅𝑑. 

𝐿𝑝(.) space, 𝐿𝑝(.)(Λ) is associated with a measurable 

function 𝑝: Λ → [1, ∞). The variable exponent Lebesgue 

space 𝐿𝑝(.) be composed of all measurable functions 𝑓 

on Λ such that 

∫ (
|𝑓(𝑥)|

𝜆
)

𝑝(𝑥)

𝑑𝑥 ≤ 1
Λ  

 

 

for any 𝜆 > 0. The norm in 𝐿𝑝(.) space is the 

generalization of the norm in 𝐿𝑝 space (𝑝 is constant). 

The norm in 𝐿𝑝(.) space is defined in the following 

manner 

‖𝑓‖
𝐿𝑝(.) = inf {𝜆 > 0: ∫ (

|𝑓(𝑥)|

𝜆
)

𝑝(𝑥)

𝑑𝑥 ≤ 1
Λ  

}   (1.2) 

 

At the same time 𝐿𝑝(.) becomes a Banach space. The 

idea of variable exponent 𝐿𝑝(.) spaces was popularized 

by Orlicz (see [6]). Inspired by relations to variational 

integrals with non-standard growth linked to design of 

electrorheological fluids (e.g., [7, 8, 9, 10, 11]),  

 

2. Materials and Methods 

 

Definition 2.1. (see Definition 1, [5]) The exponent 

function 𝑝: Λ → [1, ∞) is log-Hölder continuous. if 

there exist a positive constants �̃�𝑝 > 0 such that 

|𝑝(𝑥) − 𝑝(𝑦)| ≤
�̃�𝑝

− log|𝑥 − 𝑦|
, x, y ∈ Λ ,

|𝑥 − 𝑦| <
1

2
                 (2.1) 

and 𝑝 is log-Hölder continuous at infinity if there holds 

|𝑝(𝑥) − 𝑝(𝑦)| ≤
�̃�𝑝

− log(𝑒 + |𝑥|)
, x, y ∈ Ω,

|𝑦| ≥ |𝑥|                     (2.2) 

 

Denote,  𝑝− = inf
y∈Λ  

𝑝(𝑦),  𝑝+ = sup
y∈Λ  

𝑝(𝑦). It is clear that 

1 ≤ 𝑝− ≤ 𝑝+ < ∞.  
 

Uniformly of approximated functions on the variable 

exponent Lebesgue space 𝐿𝑝(.) can be illustrated by the 

variable Sobolev space 𝑊ℎ,𝑝(.)(Λ  ) (e.g., [12, 13]) with 

a uniformly index ℎ ∈ 𝑁 which is the Banach space of 

measurable functions 𝑓 such that for 𝛼 =
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(𝛼1, 𝛼2, … , 𝛼) ∈ 𝑍+
𝑏   with |𝛼|1 = ∑ 𝛼𝑖

𝑏
𝑖=1 ≤ ℎ, the 

partial derivative 

𝐵𝛼𝑓 =
𝜕|𝛼|1

𝜕𝑥1
𝛼1…𝜕𝑥𝑏

𝛼𝑑
𝑓 ∈ 𝐿𝑝(.)(Λ ). 

The norm in Sobolev space 𝑊ℎ,𝑝(.)(Λ )  by 

‖𝑓‖ℎ,𝑝(.) = ‖𝑓‖
𝑊ℎ,𝑝(.)(Λ ) = ∑ ‖𝐵𝛼𝑓‖𝑝(.)

|𝑎|1≤ℎ

 

 

It is clear that 𝑊0,𝑝(.)(Λ ) = 𝐿𝑝(.)(Λ ).  

 

Denote the seminorm, 

|𝑓|ℎ,𝑝(.) = ∑ ‖𝐵𝛼𝑓(𝑥)‖𝑝(.)

𝛼1=𝑟

 

Linear operators for approximating functions on 𝑅𝑏 take 

the form 

𝑇(𝑓, 𝑥) = ∫ K(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡,   

𝑅𝑏

𝑥 ∈ 𝑅𝑏                  (2.3) 

 

where  K ∶ 𝑅𝑏 × 𝑅𝑏 → 𝑅 is a kernel function  

∫ K(𝑥, 𝑡)𝑑𝑡

𝑅𝑏

≡ 1                                                          (2.4) 

 

and any conditions for degenerations of K(𝑥, 𝑡) as 

|𝑥 − 𝑡| increases. Lets assume that the integral operator 

degenerations polynomially speed in the feel that for 

any non-negative integer 𝑚 and a constant 𝐶𝑚 there 

holds 

|K(𝑥, 𝑡)| ≤
𝐶𝑚

(1 + |𝑥 − 𝑡|)𝑚
, ∀𝑥, 𝑡 ∈ 𝑅𝑏                     (2.5) 

 

Definition 2. 2. (see Definition 2, [5]) Let a positive 

integer 𝑚, we say that a linear integral operator 𝑇 on 

𝐿𝑝(𝑅𝑏) defined by (2.3) holds approximation order 𝑚 ∈
𝑁 if for every sufficiently smooth function  𝑓 ∈ 𝐿𝑝(𝑅𝑏), 

‖𝑇𝑑𝑓 − 𝑓‖𝑝(.) ≤ �̃�𝑑𝑚,    as  𝑑 → 0                           (2.6) 

where the constant �̃� is independent of 𝑑.  
 

Herewith the measuring operator with a measuring 

parameter 𝑑 > 0 defined by 𝜎𝑑𝑓 = 𝑓(
.

𝑑
), 𝑇ℎ is the linear 

operator  𝜎𝑑𝑇 𝜎1 𝑑⁄ . 
 

Lemma 2. 3. (see Lemma 1, [5]) If 𝑔 ∈ 𝐿𝑙𝑜𝑐
1 (𝑅𝑏) 

satisfies |Δ𝑔| ∈ 𝐿𝑙𝑜𝑐
1 (𝑅𝑏) , then for any 𝑥, 𝑡 ∈ 𝑅𝑏 and 𝐻 

is Hardy operator, there holds  

|𝑔(𝑥) − 𝑔(𝑡)| ≤
6𝑏

𝑏
(𝐻(|Δ𝑔|)(𝑥) + 𝐻(|Δ𝑔|)(𝑡))|𝑥 − 𝑡| 

                                                                                   (2.7) 

Lemma 2. 4. (see Lemma 2, [5]) Let 𝑠 > 𝑏. If  𝑔 ∈
𝐿𝑙𝑜𝑐

1 (𝑅𝑏) satisfies |Δ𝑔| ∈ 𝐿𝑙𝑜𝑐
1 (𝑅𝑏) and 𝐻 is Hardy 

operator, then 

|𝑔(𝑥) − 𝑔(𝑡)| ≤ 𝑐𝑠,𝑏[𝐻(|Δ𝑔|𝑠)(𝑥)]
1
𝑠|𝑥 − 𝑡|, ∀𝑥, 𝑡 ∈ 𝑅𝑏 

                                                                           (2.8) 

Lemma 2. 5. (see Lemma 3, [5]) If  Λ is an open subset 

of 𝑅𝑏 and 𝑝: Λ → [1, ∞) satisfies 1 < 𝑝− ≤ 𝑝+ < ∞, 

and the log-Hölder conditions (2.1) and (2.2), there exist 

a constant 𝐵𝑝 > 0 depending only on 𝑝 such that 

‖𝐻(𝑓)‖𝑝(.) ≤ 𝐵𝑝‖𝑓‖𝑝(.)   , ∀𝑓 ∈ 𝐿𝑝(.)(Λ)     (2.9) 

 

Lemma 2. 6. (see Lemma 4, [5])  If  Λ is an open subset 

of 𝑅𝑏 and 𝑝: Λ → [1, ∞) satisfies 1 < 𝑝− ≤ 𝑝+ < ∞, 

then for any ℎ > 0 with ℎ𝑝− ≥ 1 and 𝑓 ∈ 𝐿ℎ𝑝(.)(Λ), 

there holds 

‖|𝑓|ℎ‖𝑝(.) = ‖𝑓‖ℎ𝑝(.)
ℎ  

 

3. Results and Discussion 

 

Theorem 3.1. We assume that the exponent function 

𝑝: 𝑅𝑏 → (1, ∞) satisfies 1 < 𝑝− ≤ 𝑝+ < ∞, and the log-

Hölder conditions (2.1) and (2.2). If the kernel function 

𝐾 holds conditions (2.4) and (2.5) with 𝑚 > 𝑏 +
𝑝−

𝑝−−1
, 

then the operators {𝑇𝑑}𝑑>0 on 𝐿𝑝(.)(𝑅𝑏)  are regularity 

bounded by a positive constant 𝐻𝑝 

‖𝑇ℎ‖ ≤ 𝐻𝑝,    ∀ℎ > 0                        (3.1)                                                             

 

Proof.. Step 1. We will prove the regular boundedness 

of {𝑇𝑑} on 𝐿𝑝(.)(𝑅𝑏).  

𝑇𝑑(𝑓)(𝑥) =
1

𝑑𝑏
∫ K (𝑥𝑑−1, 𝑡𝑑−1)𝑓(𝑡)𝑑𝑡

𝑅𝑑

, 𝑥 ∈ 𝑅𝑏  (3.2) 

By the condition (2.5), we have 

|𝑇𝑑(𝑓)(𝑥)| ≤
𝐶𝑚

𝑑𝑏
∫

1

(1 + |
𝑥 − 𝑡

𝑑
|)

𝑚 |𝑓(𝑡)|𝑑𝑡

𝑅𝑏

  

                  = 𝐶𝑚K̃𝑑 . |𝑓|(𝑥), 𝑥 ∈ 𝑅𝑏                   (3.3) 
 

where K̃𝑑(𝑥, 𝑡) =
1

𝑑𝑏 .
1

(1+|
𝑥−𝑡

𝑑
|)

𝑚. From [14] we say that 

there exists a constant 𝐵 depending on 𝑏 and 𝑚 such 

that 

K̃𝑑 . |𝑓|(𝑥) ≤ 𝐵𝐻(𝑓)(𝑥), ∀𝑥 ∈ 𝑅𝑏 , 𝑑 > 0,         (3.4). 

and from Lemma 2.5, we have 

‖𝑇𝑑(𝑓)‖𝑝(.) ≤ 𝐶𝑚𝐵‖𝐻(𝑓)‖𝑝(.) ≤ 𝐶𝑚𝐵𝐵𝑝‖𝑓‖𝑝(.), (3.5) 

 

As a result, the operators {𝑇𝑑} are regular limited with 

‖𝑇𝑑‖ ≤ 𝐶𝑚𝐵𝐵𝑝 , for any 𝑑 > 0. 

 

Step 2. From  ∫ K(𝑥, 𝑡)𝑑𝑡
𝑅𝑏 ≡ 1, we have 𝑇𝑑(1, 𝑥) ≡ 1. 

So for any 𝑓 ∈ 𝐿𝑝(.)(𝑅𝑏) and 𝑔 ∈ 𝑊1,𝑝(.) , by the 

uniform boundedness of the operators {𝑇𝑑}, we have  

‖𝑇𝑑(𝑓 − 𝑔)‖𝑝(.) ≤ ‖𝑇𝑑‖‖𝑓 − 𝑔‖𝑝(.) 

 

Thus for any 𝑔 ∈ 𝑊1,𝑝(.), 

 

‖Td(f) − f‖p(.) = ‖Td(f − g) + Td(g) − g + g − f‖p(.) 

≤ (‖𝑇𝑑‖ + 1)‖𝑓 − 𝑔‖𝑝(.) + ‖𝑇𝑑(𝑔) − 𝑔‖𝑝(.) 
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Therefore, ‖𝑇𝑑(𝑔) − 𝑔‖𝑝(.),    for    𝑔 ∈ 𝑊1,𝑝(.). 

By Lemma 2.3, for any 𝑥 ∈ 𝑅𝑏, we have 

 

|𝑇𝑑(𝑔, 𝑥) − 𝑔(𝑥)| 
 

= |
1

𝑑𝑏
∫ K (𝑥𝑑−1, 𝑡𝑑−1)[𝑓(𝑡) − 𝑓(𝑥)]𝑑𝑡

𝑅𝑏

| 

≤
6𝑏

𝑏
( ∫ K̃ℎ(𝑥, 𝑡)𝐻(|Δ𝑔|)(𝑥)|𝑡 − 𝑥|𝑑𝑡

𝑅𝑏

) 

+
6𝑏

𝑏
( ∫ K̃𝑑(𝑥, 𝑡)𝐻(|Δ𝑔|)(𝑡)|𝑡 − 𝑥|𝑑𝑡

𝑅𝑏

) 

       =
6𝑏

𝑏
(𝐸1,𝑑(𝑥) + 𝐸2,𝑑(𝑥)) 

Consequently, 

 

‖𝑇𝑑(𝑔) − 𝑔‖𝐿𝑝(.) 

≤
6𝑏

𝑏
(‖𝐸1,𝑑(𝑥)‖

𝑝(.)
+ ‖𝐸2,𝑑(𝑥)‖

𝑝(.)
)         (3.6) 

 

We first estimate ‖𝐸2,𝑑‖
𝑝(.)

.  Since 𝑚 > 𝑏 +
𝑝−

𝑝−−1
 

Let a positive number 𝑘′ >
𝑝−

𝑝−−1
 such that 𝑚 > 𝑏 + 𝑘′. 

Here 𝑘′ is conjugate of 𝑘. 
1

𝑘
+

1

𝑘′ = 1. Then 1 < 𝑘 < 𝑝−. 

Then there hold 
𝑘

𝑝−
< 1 and 𝑘𝑝− > 1. By the Hölder 

inequality, 𝐸2,𝑑(𝑥) is bounded by  

( ∫ K̃𝑑(𝑥, 𝑡)[𝐻(|Δ𝑔|)(𝑡)]𝑘𝑑𝑡

𝑅𝑏

)

1
𝑘⁄

× 

× ( ∫ K̃𝑑(𝑥, 𝑡)|𝑡 − 𝑥|𝑘′
𝑑𝑡

𝑅𝑏

)

1
𝑘′⁄

         (3.7)    

Since 𝑚 > 𝑏 + 𝑘′, we set the constant 

 

  �̂�𝑚 = ∫
1

(1+|𝑡|)𝑚−𝑘′ 𝑑𝑡
𝑅𝑏 , and get  

( ∫ K̃𝑑(𝑥, 𝑡)|𝑡 − 𝑥|𝑘′
𝑑𝑡

𝑅𝑏

)

1
𝑘′⁄

≤ 𝑑 ( ∫
𝑑−𝑏

(1 + |
𝑥 − 𝑡

𝑑
|)

𝑚−𝑘′ 𝑑𝑡

𝑅𝑏

)

1
𝑘′⁄

= �̂�𝑚

1
𝑘′⁄

, ∀𝑥 ∈ 𝑅𝑏             (3.8)  
 

By Lemma 2.5 and Lemma 2.6, from estimates (3.4) 

and (3.5), we have 

‖( ∫ K̃𝑑(𝑥, 𝑡)[𝐻(|Δg|)(𝑡)]𝑘𝑑𝑡

𝑅𝑏

)

1
𝑘⁄

‖

𝑝(.)

= ‖( ∫ 𝐾𝑑(𝑥, 𝑡)[𝐻(|Δ𝑔|)(𝑡)]𝑘𝑑𝑡

𝑅𝑏

)

1
𝑘⁄

‖

𝑝(.)
𝑘

1
𝑘

 

≤ (𝐵𝐵𝑝
𝑘

)

1
𝑘⁄

‖[𝐻|Δ𝑔|]𝑘‖
𝑝(.)

𝑘

1
𝑘 = (𝐵𝐵𝑝

𝑘
)

1
𝑘⁄

‖𝐻|Δ𝑔|‖𝑝(.)

≤ (𝐵𝐵𝑝
𝑘

)

1
𝑘⁄

𝐵𝑝‖|Δ𝑔|‖𝑝(.) 

 

Combining this estimate with (3.7) and (3.8), we get 

‖𝐸2,𝑑(𝑥)‖
𝑝(.)

≤ (𝐵𝐵𝑝
𝑘

)

1
𝑘⁄

𝐵𝑝�̂�𝑚

1
𝑘′⁄

𝑑‖|Δ𝑔|‖𝑝(.)     (3.9) 

 

The first term ‖𝐸1,𝑑(𝑥)‖
𝑝(.)

  is easier to estimate. 

𝐸1,𝑑(𝑥) =
1

𝑑𝑏
∫

|𝑡 − 𝑥|

(1 + |
𝑥 − 𝑡

𝑑
|)

𝑚 𝑑𝑡

𝑅𝑏

𝐻(|Δ𝑔|)(𝑥)

≤
𝑑

𝑑𝑏
∫

|𝑡 − 𝑥|

(1 + |
𝑥 − 𝑡

𝑑
|)

𝑚−1 𝑑𝑡

𝑅𝑏

𝐻(|Δ𝑔|)(𝑥) 

= 𝑑 ∫
1

(1 + |𝑡|)𝑚−1
𝑑𝑡

𝑅𝑏

𝐻(|Δ𝑔|)(𝑥) 

 

Hence,  𝐸1,𝑑(𝑥) ≤ �̂�𝑚𝑑𝐻(|Δ𝑔|)(𝑥) ,    ∀𝑥 ∈ 𝑅𝑏 .Thus, 

we have 

‖𝐸1,𝑑(𝑥)‖
𝑝(.)

≤ �̂�𝑚𝑑‖𝐻(|Δ𝑔|)‖𝑝(.)

≤ �̂�𝑚𝐵𝑝𝑑‖|Δ𝑔|‖𝑝(.)                   (3.10) 

Putting (3.9) and (3.10) into (3.6), we finally conclude 

 

‖𝑇𝑑(𝑔) − 𝑔‖𝐿𝑝(.) ≤
6𝑏

𝑏
(�̂�𝑚𝐵𝑝

+ (𝐵𝐵𝑝
𝑘

)

1
𝑘⁄

𝐵𝑝�̂�𝑚

1
𝑘′⁄

) 𝑑‖|Δ𝑔|‖𝑝(.) 

for some 𝑓 ∈ 𝐿𝑝(.)(𝑅𝑏), we have 

‖𝑇𝑑(𝑓) − 𝑓‖𝐿𝑝(.) ≤
6𝑏

𝑏
(�̂�𝑚𝐵𝑝 + (𝐵𝐵𝑝

𝑘
)

1
𝑘⁄

𝐵𝑝�̂�𝑚

1
𝑘′⁄

+ ‖𝑇𝑑‖ + 1) ≤ �̃�𝑝 

with the constant,  

 

�̃�𝑝 =
6𝑏

𝑏
(�̂�𝑚𝐵𝑝 + (𝐵𝐵𝑝

𝑘
)

1
𝑘⁄

𝐵𝑝�̂�𝑚

1
𝑘′⁄

+ 𝐶𝑚𝐵𝐵𝑝 + 1) 

depending only on 𝑝(. ), 𝑏, 𝑚 and 𝐶𝑚.  

 

Theorem 3.1 has been completed. 
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4. Conclusion 

We showed a characterization of approximation of 

Hardy operators in variable Lebesgue spaces 
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