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Abstract

One can often see caustic by reflection in nature but it is rather hard to understand the way
of how caustic arise and which geometric properties of a mirror surface define geometry of
the caustic. The caustic by reflection has complicated topology and much more complicated
geometry. From engineering point of view the geometry of caustic by reflection is important
for antenna’s theory because it can be considered as a surface of concentration of the
reflected wave front. In this paper we give purely geometric description of the caustics of
wave front (flat or spherical) after reflection from mirror surface. The description clarifies
the dependence of caustic on geometrical characteristics of a surface and allows rather
simple and fast computer visualization of the caustics in dependence of location of the rays
source or direction of the pencil of parallel rays.

Introduction

The caustic of reflected wave front is the envelope of the family of rays emitted from a given point O (source) and reflected by smooth
surface S (mirror). This type of caustics are called by catacaustics or caustics by reflection. There are a number of research on caustics and
catacaustics. Mostly, the authors were interested in topology of the caustic [1, 3]. Nice research concerning location of the catacaustic inside
compact convex body one can find in [2]. The catacaustics of a canal surfaces were studied in [4]. The caustics of a translation surfaces were
considered in [6]. The caustics on spheres and cylinders of revolution were studied in [7]. A survey on the theory of caustics and wave
front propagations with applications to geometry one can found in [5]. The catacaustics from engineering viewpoint in connection with
antenna’s technologies have been studied in [8]. The research presented in the mentioned above papers do not use the parametric equation of
the caustic.
In this paper, we show that to find the caustic of reflected rays of a surface we should consider a ”virtual deformation” of the mirror and its
second fundamental form under influence of the incident pencil of rays. This approach allowed to give an explicit parameterization of the
caustic of the reflected front in geometric terms of the mirror surface (Theorem 1, Theorem 2).

1. Caustics by reflected in case of flat incident front

Let us be given a regular surface S parameterized by vector-function r : D2(u1,u2)→ S ⊂ E3. Let n be the unit normal vector field of S
oriented in such a way that the support function is positive (the origin is in positive half-space with respect to each tangent plane). Suppose
a (|a|= 1) is a unit normal to a flat front incident on the surface and such that the dot-product (a,n)< 0. If b is the direction of reflected ray,
then

b = a−2(a,n)n. (1.1)

We also suppose that at initial time t = 0 the incident front F0 passes through the origin. Let L be the distance that each ”photon” of F0
passes along the ray in direction of a. The front Ft reaches the surface S if L≥ (r,a). Denote by λ the distance that each ”photon” of the
front Ft passes after reflection. Then evidently (r,a)+λ = L and hence

λ = L− (r,a). (1.2)
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Therefore, the parametric equation of the reflected front is

ρ = r+λ ·b (λ ≥ 0). (1.3)

The following assertion simplifies calculations.

Lemma 1.1. Denote by gi j and Bi j the matrices of the first and the second fundamental forms of a regular surface S⊂ E3, respectively. A
caustic of the reflected front of the surface S is the same as a focal set of a surface with the first and second fundamental forms given by

g∗i j = gi j− (∂ jr,a)(∂ir,a), B∗i j =−2cosθBi j. (1.4)

Proof. Let

ρ = r+λ ·b (λ ≥ 0) (1.5)

be a parametric equation of the reflected front, where b is given by (1.1). Let us show that b is a unit normal vector field of the reflected front.
Indeed,

∂iρ = ∂ir+∂iλ ·b+λ ·∂ib (1.6)

and hence (∂iρ,b) = (∂ir,b)+∂iλ = (∂ir,b)− (∂ir,a) = 0. Let g and B are the first and the second fundamental forms of S. Denote by g∗

and B∗ the first and the second fundamental forms of the reflected front. Denote, in addition, b∗i j = (∂ib,∂ jb) and cosθ = (a,n). Then

g∗i j = gi j +4λ cosθBi j +λ
2b∗i j− (∂ir,a)(∂ jr,a), B∗i j =−2cosθBi j +λb∗i j.

To prove this, remark that g∗i j = (∂iρ,∂ jρ). From (1.1) and (1.2) it follows that

∂ib =−2(a,∂in)n−2(a,n)∂in, ∂iλ =−(∂ir,a), ∂iρ = ∂ir− (∂ir,a)b+λ∂ib.

Thus we have

B∗i j =−
(

∂iρ,∂ jb
)
=−

(
∂ir+∂iλ ·b+λ ·∂ib,∂ jb

)
=−(∂ir,∂ jb)−λb∗i j =−2(a,n)Bi j−λb∗i j,

g∗i j = (∂iρ,∂ jρ) =
(

∂ir− (∂ir,a)b+λ∂ib,∂ jρ
)
=
(

∂ir,∂ jρ
)
+λ

(
∂ib,∂ jρ

)
= gi j− (∂ jr,a)(∂ir,a)+2λ (a,n)Bi j−λB∗i j.

The caustic of reflected front is nothing else but its focal surface. The latter is formed by striction lines of ruled surface generated by the unit
normal vector field along lines of curvature of the reflected front. It is well known that Gaussian curvature of the latter ruled surface has to be
zero. If X = X1∂1ρ +X2∂2ρ is tangent to line of curvature of the reflected front, then the condition on Gaussian curvature takes the form

(∂X ρ,∂X b,b) = (∂X r− (X ,a)b+λ∂X b,∂X b,b) = (∂X r,∂X b,b) = 0. (1.7)

The condition (1.7) does not depend on λ and is equivalent to the condition on X to be tangent to principal direction of the reflected front at
the initial moment, when the reflected front and the mirror surface coincide pointwise, i.e. when λ = 0. As a consequence, the caustic can be
found as a focal surface of reflected front at the moment λ = 0. Therefore, to find the caustic we can take

g∗i j = gi j− (∂ jr,a)(∂ir,a), B∗i j =−2cosθBi j,

where cosθ = (a,n) is the angle function between the incident rays and the unit normal vector field of the surface.

Theorem 1.2. Let S be a regular surface of non-zero Gaussian curvature parameterized by position-vector r and n be a the unit normal
vector field of S. Denote by a (|a|= 1) a direction of incident rays. Then there exist two caustics of the reflected front and their parametric
equations can be given by

ξ
∗ = r+

1
k∗i

b (i = 1,2),

where b = a−2(a,n)n is a direction of reflected rays and k∗i are the roots of the equation

(k∗)2 +2cosθ
(
2H + kn(at) tan2

θ
)
k∗+4K = 0,

where H is the mean curvature, K is the Gaussian curvature and kn(at) is the normal curvature of the surface in a direction of tangential
projection of the incident rays.

Proof. Introduce on the surface the curvature coordinates (u1,u2). Then

g =

(
g11 0
0 g22

)
, B =

(
k1g11 0

0 k2g22

)
,

where k1 and k2 are the principal curvatures of the surface S. Introduce the orthonormal frame

e1 =
1
√

g11
∂1r, e2 =

1
√

g22
∂2r, e3 = n. (1.8)

Decompose a = a1e1 +a2e2 +a3e3 (a2
1 +a2

2 +a2
3 = 1). We have

B∗ =−2a3

(
k1g11 0

0 k2g22

)
, g∗ =

(
g11(1−a2

1) −√g11g22a1a2

−√g11g22a1a2 g22(1−a2
2)

)
.
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Figure 1.1: Caustic of the hemi-sphere when the rays are parallel to the hemi-sphere axis of symmetry (left) and non parallel to this axis (right)

Then, evidently,
detg∗ = g11g22(1−a2

1−a2
2) = g11g22a2

3.

The Weingarten matrix is

A∗ =− 2
a3

 (1−a2
2)k1 a1a2k2

√
g22
g11

a1a2k1

√
g11
g22

(1−a2
1)k2

 .

Thus, the characteristic equation on k∗i takes the form

(k∗)2 +
2
a3

(
(a2

1 +a2
3)k1 +(a2

2 +a2
3)k2

)
k∗+4k1k2 = 0,

or

(k∗)2 +2a3

(
k1 + k2 +

a2
1k1 +a2

2k2

a2
3

)
k∗+4k1k2 = 0.

It remains to notice that k1 + k2 = 2H, k1k2 = K, a2
1k1 +a2

2k2 = B(at ,at) = kn(at)g(at ,at) = kn(at)sin2
θ and a3 = cosθ . As a result, we

obtain
(k∗)2 +2cosθ

(
2H + kn(at) tan2

θ
)
k∗+4K = 0.

If we denote by k∗i the roots, then the equation of caustic of the reflected front takes the form

ξ
∗
i = r+

1
k∗i

b.

Evidently, k∗1k∗2 = 4K and hence, if K 6= 0, then both of caustics exit.

Example 1.3. The sphere of radius 1. We have k1 = k2 = 1, K = 1,H = 1, kn(at) = 1 and hence the equation on k∗ takes the form

(k∗)2 +2
(

cosθ +
1

cosθ

)
k∗+4 = 0

with evident solutions k∗1 =−2cosθ , k∗2 =− 2
cosθ

So, the parametric equations of caustics of the reflected front take the forms

ξ
∗
1 = r− 1

2cosθ
b, ξ

∗
2 = r− cosθ

2
b.

Take a local parameterization for the sphere as r = {cosucosv,cosusinv,sinu} and suppose a = {0,0,1}. Then cosθ = (a,n) = −sinu
where u ∈ (0,π/2). Thus, we have two caustics

ξ
∗
1 =

{
0,0,

1
2sinu

}
, ξ

∗
2 =

{
cos3 ucosv,cos3 usinv,

sinu
2

(2cos2 u+1)
}
.

The first caustic degenerates into a straight line, the second one is a surface of revolution generated by the caustic of plane circle (see Figure
1.1)

Example 1.4. General surface of revolution.We have

r = {x(u)cos(v),x(u)sin(v),z(u)},
(
(x′)2 +(z′)2 = 1

)
and let a = {0,0,1}. Then

e1 = {x′ cosv,x′ sinv,z′},
e2 = {−sinv,cosv,0},
e3 = {−z′ cosv,−z′ sinv,x′}

and hence a = z′e1 + x′e3, i.e. a1 = z′,a2 = 0,a3 = x′. The equation on k∗ takes the form

(k∗)2 +2
( k1

a3
+a3k2

)
k∗+4k1k2 = 0
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with evident solutions k∗1 =− 2k1
a3

, k∗2 =−2a3k2. The caustics are

ξ
∗
1 = r− a3

2k1
b, ξ

∗
2 = r− 1

2k2a3
b,

where
b = a−2a3n = z′e1− x′e3 = {2x′z′ cosv,2x′z′ sinv,(z′)2− (x′)2}.

So we have

ξ
∗
1 =

{(
x− (x′)2z′

(z′′x′− z′x′′)

)
cosv,

(
x− (x′)2z′

(z′′x′− z′x′′)

)
sinv,z− x′((z′)2− (x′)2)

2(z′′x′− z′x′′)

}
, ξ

∗
2 =

{
0,0,z− x((z′)2− (x′)2)

2x′z′

}
The ξ ∗1 is a surface of revolution generated by caustic of curve on a plane in case when incident rays are parallel to the axis of revolution.
The caustic ξ ∗2 is the degenerated one.

Example 1.5. Translation surface. Let us be given a translation surface r = {x,y, f (x)+h(y)} and suppose a = {0,0,1}. Then

n =−
∂xr×∂yr
|∂xr×∂yr|

=
1√

1+ f 2
x +h2

y

{ fx,hy,−1}

and
b =

1
1+ f 2

x +h2
y
{2 fx,2hy,−1+ f 2

x +h2
y}.

A direct computation show that in this case

g∗ =
(

1 0
0 1

)
, B∗ =

2
1+ f 2

x +h2
y

(
− fxx 0

0 −hyy

)
and hence

1
k∗1

=−
1+ f 2

x +h2
y

2 fxx
,

1
k∗2

=−
1+ f 2

x +h2
y

2hyy
.

Therefore, the equations of caustics take the forms

ξ
∗
1 = {x,y, f (x)+h(y)}− 1

2 fxx
{2 fx,2hy,−1+ f 2

x +h2
y},

ξ
∗
2 = {x,y, f (x)+h(y)}− 1

2hyy
{2 fx,2hy,−1+ f 2

x +h2
y}.

In partial case of the hyperbolic paraboloid r =
{

x,y, 1
2 x2− 1

2 y2} we have fx = x, fxx = 1,hy =−y,hyy =−1 and after simplifications we
get

ξ
∗
1 =

{
0,2y,

1
2
− y2

}
, ξ

∗
1 =

{
2x,0,x2− 1

2

}
.

The caustics degenerate into two parabolas (See Figure 1.2). In partial case of elliptic paraboloid r =
{

x,y, 1
2 x2 + 1

2 y2} the both caustics
degenerate into one point

(
0,0, 1

2
)

(see Figure 1.3 for the other cases)

Figure 1.2: Reflected caustics of hyperbolic paraboloid in case of incident rays parallel to the axis of symmetry (left) and non-parallel to this axis (right)

Example 1.6. Cylinder over curve in a plane. Consider a cylinder based on a naturally parameterized curve γ(s) in xOy plane and suppose
the rulings are directed along the Oz axis. Then the parametric equation of the cylinder is r = γ + t e3. Denote by τ = γ ′s and ν the Frenet
frame of the curve. The orthonormal tangent frame of the surface consists of τ and e3. The unit normal vector field of the surface is ν .
Suppose a⊥e3. Then the decomposition of a with respect to the frame τ, e3, ν takes the form

a = sinθ τ + cos θ ν .

The principal curvatures of this kind of cylinder are k1 = k(s) and k2 = 0, where k(s) is the curvature of γ . Hence K = 0, 2H = k(s). In
addition, the first and second fundamental forms are

g =

(
1 0
0 1

)
, B =

(
k(s) 0

0 0

)
,
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Figure 1.3: Two reflected caustics of elliptic paraboloid in case of incident rays parallel non-parallel to the axis of symmetry

respectively. Thus we have the following equation on k∗

(k∗)2 +2
(

k(s) cos θ +
1

cos θ
k(s)sin2

θ

)
k∗ = 0.

We have two solutions

(1) k∗ = 0, (2) k∗ =− 2k(s)
cos θ

.

The solution (1) gives rise to ”caustic” at infinity. The solution (2) gives rise to cylinder over caustic of the curve γ

ξ
∗ = r− cos θ

2k(s)
(sinθ τ− cos θ ν) = r+

(a,ν)
2k(s)

(−(a,τ)τ +(a,ν)ν) ,

which is the same as one can find in textbooks (see, e.g. [10], p. 109).

2. Caustics by reflection in case of spherical incident front.

In this section we consider the case when the source of the rays is located at the origin.

Theorem 2.1. Let S be a regular surface parameterized by position-vector r and n be a the unit normal vector field of S. Denote by
a = r

r (r = |r|) a direction of incident rays. Denote by k∗i (i = 1,2) the solutions of(
k∗+

1
r

)2
+2cosθ

(
2H + kn(at) tan2

θ
)(

k∗+
1
r

)
+4K = 0,

where H is the mean curvature, K is the Gaussian curvature and kn(at) is the normal curvature of the surface in a direction of tangential
projection of the incident rays. Then, over each local domain where k∗i 6= 0, the parametric equations of caustics of the reflected front can be
given by

ξ
∗
i = r+

1
k∗i

b,

where b = a−2(a,n)n is a direction of the reflected rays .

Proof. By Lemma 1.1, we can restrict our research to the case λ = 0. Denote r = |r|. After computations we get

g∗i j = gi j− (∂ jr,a)(∂ir,a), B∗i j =−2cosθBi j− (∂ir,∂ jb) =−2cosθBi j−
1
r

g∗i j (2.1)

This means that in this case the Weingarten matrix W ∗ takes the form

W ∗ = A∗− 1
r

E,

where A∗ is a matrix of the same structure as the Weingarten matrix of the flat front. The equation on k∗ take the form

det
(

A∗−
(

k∗+
1
r

)
E
)
= 0

or (
k∗+

1
r

)2
+2cosθ

(
2H + kn(at) tan2

θ

)(
k∗+

1
r

)
+4K = 0 (2.2)

If we denote by k∗i the solution for (2.2), then the parametric equation of the caustic takes the form

ξ
∗
i = r+

1
k∗i

b

provided that k∗i 6= 0 over a local domain.

Example 2.2. The sphere of radius 1 centered at the origin. Suppose the emitting point is at the origin and hence

r = 1,a = r =−n, θ = π,H = K = 1.

Then the equation on k∗ takes the form (k∗+1)2−4(k∗+1)+4 = 0, i.e. k∗ = 1 and hence ξ ∗ = r+n = 0.
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Figure 2.1: Caustic inside the sphere when the source is located not far from the center (left). This caustic itself (right)

Figure 2.2: Caustic inside the three-axis ellipsoid when the source is located not far from the center of symmetry

If the source does not located at the center, the caustic of reflected front has rather complicated structure, see Figure 2.1.
Inside three-axis ellipsoid in case of source does not located at the center of symmetry (but not too far from it), the caustic can be seen at
Figure 2.2.

Example 2.3. Cylinder over curve in a plane. Consider a cylinder based on a naturally parameterized curve γ(s) in xOy plane and suppose
the rulings are directed along the Oz axis. Then the parametric equation of the cylinder is r = γ + t e3. Denote by τ = γ ′s and ν the Frenet
frame of the curve. The orthonormal tangent frame of the surface consists of τ and e3. The unit normal vector field of the surface is ν .
Denote r = |r| and a = r

r . Then the decomposition of a with respect to the frame τ, e3, ν takes the form

a = sinθ cosα τ + sinθ sinα e3 + cos θ ν .

As it well known, the principal curvatures of this kind of a cylinder are k1 = k(s) and k2 = 0, where k(s) is the curvature of γ . Hence
K = 0, 2H = k(s). In addition, the first and second fundamental forms are

g =

(
1 0
0 1

)
and B =

(
k(s) 0

0 0

)
,

respectively. Thus we have the equation on k∗ of the following form

(
k∗+

1
r

)2
+2
(

k(s) cos θ +
1

cos θ
k(s)sin2

θ cos2
α

)(
k∗+

1
r

)
= 0.

We have two solutions

(1) k∗ =−1
r

(2) k∗ =−1
r
− 2k(s)

cos θ

(
cos2

θ + sin2
θ cos2

α

)
.

The cross-section α = 0 is the caustic of rays reflected by the curve γ in xOy- plane. The equation takes the form

ξ
∗ = r− cos θ

cosθ

r +2k(s)
(sinθ τ− cos θ ν) = r+

(r,ν)
(r,ν)+2r2k(s)

(−(r,τ)τ +(r,ν)ν) ,

which is the same as one can find in textbooks (see, e.g. [10], p. 109).

3. Conclusion

In this paper we have found exact and simple parameterization of caustics of reflected wave fronts by using purely geometric approach. Now
we know which geometric characteristic of a mirror surface define geometry of the caustic, how the location of the surface with respect
to incident pencil of rays changes the caustic. As a byproduct, the results allow to get fast and exact formulas for computer simulation of
caustics of reflected fronts that can be used both in geometry and engineering. The examples approve the calculations and have nice visual
representations.
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