Approximation of Modified Jakimovski-Leviatan-Beta Type Operators

Mohammad Mursaleen* and Mohammad Nasiruzzaman

Abstract

In the present paper, we define Jakimovski-Leviatan type modified operators. We study some approximation results for these operators. We also determine the order of convergence in terms of modulus of continuity, Lipschitz functions, Peetre's K-functional, second order modulus of continuity and weighted modulus of continuity.

Keywords: Jakimovski-Leviatan operators, Korovkin's theorem, Modulus of continuity, Rate of convergence, K functional, Weighted space

2010 Mathematics Subject Classification: 41A10, 41A25, 41A36.

1. Introduction and Preliminaries

Appell polynomials were introduced in 1880 (see [4]). In 1969, Jakimovski and Leviatan introduced an operators P_{n} by using Appell polynomials [7]. The Appell polynomials are defined by the identity as follows:

$$
\begin{equation*}
S(u) e^{u x}=\sum_{k=0}^{\infty} p_{k}(x) u^{k}, \tag{1.1}
\end{equation*}
$$

for an analytic function in the disk $|u|<r(r>1)$ and $p_{n}(x)=\sum_{i=0}^{n} a_{i} \frac{x^{n-i}}{(n-i)!}(n \in \mathbb{N})$ taken $S(u)=\sum_{n=0}^{\infty} a_{n} u^{n}, S(1) \neq 0$. An exponential type the class of functions considerable on the semi-axis and satisfy the property $|f(x)| \leq \kappa e^{\gamma x}$, for some finite constants $\kappa, \gamma>0$ and denote the set of such functions by $E[0, \infty)$. The sequence of infinite sum of the operators P_{n} is convergent and well-defined which are considered by the authors as follows [7]:

$$
\begin{equation*}
P_{n}(f ; x)=\frac{e^{-n x}}{S(1)} \sum_{k=0}^{\infty} p_{k}(n x) f\left(\frac{k}{n}\right) \tag{1.2}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where $n>\frac{\alpha}{\log r}$. In case of $\frac{a_{n}}{S(1)} \geq 0$ for all $n \in \mathbb{N}$, Wood [20] proved that the operator P_{n} is positive on [0;1). For more results see also [13], [11] and [6]. They established that $\lim _{n \rightarrow \infty} P_{n}(f ; x) \rightarrow f(x)$, uniformly in each compact subset of $[0,1)$.

If $S(1)=1$ in (1.2) we get $p_{n}(x)=\frac{x^{n}}{n!}$, and we recover the well-known classical FavardSzász operators defined in 1950 by

$$
\begin{equation*}
S_{n}(f ; x)=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right) . \tag{1.3}
\end{equation*}
$$

[^0]In the last quarter of twentieth century, the quantum calculus (also known as q-calculus) was studied in $[8,12]$ (see $[3,14,15,18]$).

2. Construction of Operators and Auxiliary results

In this paper, we define a Beta integral type modification of Jakimovski-Leviatan operators. We also introduce modified Jakimovski-Leviatan-Stancu type operators and obtain better approximation results. For $x \in[0, \infty), \quad p_{r}(x) \geq 0$ and $S(1) \neq 0$, we define

$$
\begin{equation*}
J_{n}^{*}(f ; x)=\frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{1}{B(r+1, n)} \int_{0}^{\infty} \frac{t^{r}}{(1+t)^{r+n+1}} f(t) \mathrm{d} t \tag{2.4}
\end{equation*}
$$

Lemma 2.1. If we take $e_{i}=t^{i-1}$ for $i=1,2,3$. Let $J_{n}^{*}(\cdot ; \cdot)$ be the operators given by (2.4). Then for all $x \in[0, \infty), \quad p_{r}(x) \geq 0$ and $S(1) \neq 0$, we have the following identities:
(1) $J_{n}^{*}\left(e_{1} ; x\right)=1$,
(2) $J_{n}^{*}\left(e_{2} ; x\right)=\left(\frac{n}{n-1}\right) x+\frac{1}{n-1}\left(\frac{S^{\prime}(1)}{S(1)}+1\right)$,
(3) $J_{n}^{*}\left(e_{3} ; x\right)=\frac{n^{2}}{(n-2)(n-1)} x^{2}+\frac{2 n}{(n-2)(n-1)}\left(\frac{S^{\prime}(1)}{S(1)}+2\right) x+\frac{1}{(n-2)(n-1)}\left(\frac{S^{\prime \prime}(1)}{S(1)}+\frac{S^{\prime}(1)}{S(1)}+2\right)$.

Proof. We can easily see that

$$
\begin{equation*}
\sum_{r=0}^{\infty} P_{r}(n x)=S(1) e^{n x} \tag{2.5}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{r=0}^{\infty} r P_{r}(n x)=\left(S^{\prime}(1)+n S(1) x\right) e^{n x}, \tag{2.6}\\
\sum_{r=0}^{\infty} r^{2} P_{r}(n x)=\left(S^{\prime \prime}(1)+2 n S^{\prime}(1) x+S^{\prime}(1)+n^{2} S(1) x^{2}\right) e^{n x} . \tag{2.7}
\end{gather*}
$$

(1) By taking $f=e_{1}$

$$
\begin{aligned}
J_{n}^{*}\left(e_{1} ; x\right) & =\frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{1}{B(r+1, n)} \int_{0}^{\infty} \frac{t^{r}}{(1+t)^{r+n+1}} \mathrm{~d} t \\
& =\frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{B(r+1, n)}{B(r+1, n)} \\
& =1
\end{aligned}
$$

(2) By taking $f=e_{2}$

$$
\begin{aligned}
J_{n}^{*}\left(e_{2} ; x\right) & =\frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{1}{B(r+1, n)} \int_{0}^{\infty} \frac{t^{r+1}}{(1+t)^{r+n+1}} \mathrm{~d} t \\
& =\frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{B(r+2, n-1)}{B(r+1, n)} \\
& =\frac{r+1}{n-1} \frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{B(r+1, n)}{B(r+1, n)} \\
& =\frac{1}{n-1}+\frac{1}{n-1} \frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} r P_{r}(n x) \\
& =\frac{1}{n-1}+\frac{n}{n-1}\left(x+\frac{1}{n} \frac{S^{\prime}(1)}{S(1)}\right)
\end{aligned}
$$

(3) By taking $f=e_{3}$

$$
\begin{aligned}
J_{n}^{*}\left(e_{2} ; x\right) & =\frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{1}{B(r+1, n)} \int_{0}^{\infty} \frac{t^{r+2}}{(1+t)^{r+n+1}} \mathrm{~d} t \\
& =\frac{1}{(n-2)(n-1)} \frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x)\left(r^{2}+3 r+2\right) \\
& =\frac{2}{(n-2)(n-1)}+\frac{3}{(n-2)(n-1)}\left(\frac{S^{\prime}(1)}{S(1)}+n x\right) \\
& +\frac{1}{(n-2)(n-1)}\left(\frac{S^{\prime \prime}(1)}{S(1)}+2 n x \frac{S^{\prime}(1)}{S(1)}+\frac{S^{\prime}(1)}{S(1)}+n x+n^{2} x^{2}\right) .
\end{aligned}
$$

Lemma 2.2. Take $\eta_{j}=\left(e_{i}-x\right)^{j}$ for $i=2, j=1,2$. Let $J_{n}^{*}(\cdot ; \cdot)$ be the operators given by (2.4). Then for all $x \in[0, \infty), \quad p_{r}(x) \geq 0$ and $S(1) \neq 0$, we have the following identities:

$$
\begin{aligned}
& 1^{\circ} J_{n}^{*}\left(\eta_{1} ; x\right)=\frac{x}{n}+\frac{1}{n-1}\left(\frac{S^{\prime}(1)}{S(1)}+1\right) \\
= & \frac{2^{\circ} J_{n}^{*}\left(\eta_{2} ; x\right)}{(n-2)(n-1)} x^{2}+\frac{2 n}{(n-2)(n-1)}\left(\frac{2}{n}\left(\frac{S^{\prime}(1)}{S(1)}\right)+1\right) x+\frac{1}{(n-2)(n-1)}\left(\frac{S^{\prime \prime}(1)}{S(1)}+\frac{S^{\prime}(1)}{S(1)}+2\right) x .
\end{aligned}
$$

Let $\alpha, \beta \in \mathbb{R}$ such that $0 \leq \alpha<\beta$. Then for $x \in[0, \infty), \quad p_{r}(x) \geq 0$, and $S(1) \neq 0$, we define

$$
\begin{equation*}
J_{n}^{\alpha, \beta}(f ; x)=\frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{1}{B(r+1, n)} \int_{0}^{\infty} \frac{t^{r}}{(1+t)^{r+n+1}} f\left(\frac{n t+\alpha}{n+\beta}\right) \mathrm{d} t \tag{2.8}
\end{equation*}
$$

Lemma 2.3. Take $e_{i}=t^{i-1}$ for $i=1,2,3$. Let $J_{n}^{\alpha, \beta}(\cdot ; \cdot)$ be the operators given by (2.8). Then for all $x \in[0, \infty), \quad p_{r}(x) \geq 0$ and $S(1) \neq 0$, we have the following identities:

$$
\begin{aligned}
& \text { (1) } J_{n}^{\alpha, \beta}\left(e_{1} ; x\right)=1 \\
& \text { (2) } J_{n}^{\alpha, \beta}\left(e_{2} ; x\right)=\frac{n^{4}}{(n+\beta)(n-1)} x+\frac{n}{(n+\beta)(n-1)}\left(\frac{S^{\prime}(1)}{S(1)}+1\right)+\frac{\alpha}{n+\beta} \\
& \text { (3) } J_{n}^{\alpha, \beta}\left(e_{3} ; x\right)=\frac{n^{2}}{(n+\beta)^{2}(n-2)(n-1)} x^{2}+\frac{2 n^{2}}{(n+\beta)^{2}(n-1)}\left\{\frac{n}{n-2}\left(\frac{S^{\prime}(1)}{S(1)}+2\right)+\alpha\right\} x \\
& +\frac{n^{2}}{(n+\beta)^{2}(n-2)(n-1)}\left(\frac{S^{\prime \prime}(1)}{S(1)}+\frac{S^{\prime}(1)}{S(1)}+2\right)+\frac{2 n \alpha}{(n+\beta)^{2}(n-1)}\left(\frac{S^{\prime}(1)}{S(1)}+1\right)+\frac{\alpha^{2}}{(n+\beta)^{2}} .
\end{aligned}
$$

3. Main Results

We obtain the Korovkin type and weighted Korovkin type approximation theorems for the operators defined by (2.8).

Let $C_{B}[0, \infty)$ be the set of all bounded and continuous functions on $[0, \infty)$, which is a linear normed space with

$$
\|f\|_{C_{B}}=\sup _{x \geq 0}|f(x)| .
$$

Let

$$
C_{\zeta}[0, \infty):=\left\{f \in C[0, \infty):|f(t)| \leq M(1+t)^{\zeta} \text { for some } M>0\right\}
$$

and

$$
H:=\left\{f \in C[0, \infty): \frac{f(x)}{1+x^{2}} \quad \text { is convergent as } x \rightarrow \infty\right\}
$$

Theorem 3.1. Let $x \in[0, \infty), \quad f \in C_{\zeta}[0, \infty) \cap H$ with $\zeta \geq 2$. Then for $p_{r}(x) \geq 0, \quad S(1) \neq 0$, the operators $J_{n}^{\alpha, \beta}(\cdot ; \cdot)$ defined by (2.8) satisfy

$$
\lim _{n \rightarrow \infty} J_{n}^{\alpha, \beta}(f ; x) \rightarrow f(x)
$$

uniformly on each compact subset of $[0, \infty)$.
Proof. The proof is based on Lemma 2.3 and well known Korovkin's theorem regarding the convergence of a sequence of linear positive operators. So it is enough to prove the conditions

$$
\lim _{n \rightarrow \infty} J_{n}^{\alpha, \beta}\left(\left(e_{i} ; x\right)=x^{i-1}, \quad i=1,2,3 \quad \text { as } n \rightarrow \infty\right.
$$

uniformly on $[0, \infty]$.
Clearly $\frac{1}{n} \rightarrow 0, \quad(n \rightarrow \infty)$ we have

$$
\lim _{n \rightarrow \infty} J_{n}^{\alpha, \beta}\left(e_{2} ; x\right)=x, \quad \lim _{n \rightarrow \infty} J_{n}^{\alpha, \beta}\left(e_{3} ; x\right)=x^{2}
$$

This completes the proof.
In the space $[0, \infty)$, following Gadžiev $[9,10,17]$, we recall the weighted spaces of the functions for which the analogous of the Korovkin theorem holds (see also [1,5,19]) .

Let $x \rightarrow \phi(x)$ be a continuous and strictly increasing function and $\varrho(x)=1+\phi^{2}(x)$, $\lim _{x \rightarrow \infty} \varrho(x)=\infty$. Let $B_{\varrho}[0, \infty)$ be a set of functions defined on $[0, \infty)$ and satisfying

$$
|f(x)| \leq M_{f} \varrho(x)
$$

where M_{f} is a constant depending only on f. Its subset of continuous functions will be denoted by $C_{\varrho}[0, \infty)$, i.e., $C_{\varrho}[0, \infty)=B_{\varrho}[0, \infty) \cap C[0, \infty)$. It is well known that a sequence of linear positive operators $\left\{J_{n}^{\alpha, \beta}\right\}_{n \geq 1}$ maps $C_{\varrho}[0, \infty)$ into $B_{\varrho}[0, \infty)$ if and only if

$$
\left|L_{n}(\varrho ; x)\right| \leq K \varrho(x)
$$

where $x \in[0, \infty)$ and K is a positive constant. Note that $B_{\varrho}[0, \infty)$ is a normed space with the norm

$$
\|f\|_{\varrho}=\sup _{x \geq 0} \frac{|f(x)|}{\varrho(x)}
$$

Finally, let $C_{\varrho}^{0}[0, \infty)$ be a subset of $C_{\varrho}[0, \infty)$ such that the limit

$$
\lim _{n \rightarrow \infty} \frac{f(x)}{\varrho(x)}=K_{f}
$$

exists and is finite.
Let $B[0,1]$ be the space of all bounded functions on $[0,1]$ and $C[0,1]$ be the space of all functions f continuous on $[0,1]$ equipped with norm

$$
\|f\|_{\infty}=\sup _{x \in[0,1]}|f(x)|, \quad f \in C[0,1] .
$$

The famous Korovkin's theorems state as follows:
Theorem 3.2 (cf. [16]). Let $\left\{L_{n}\right\}_{n \geq 1}$ be the sequence of linear positive operators acting from $C[0,1]$ into $B[0,1]$. Then

$$
\lim _{n \rightarrow \infty}\left\|L_{n}\left(t^{k} ; x\right)-x^{k}\right\|_{\infty}=0(k=0,1,2)
$$

if and only if for all $f \in C[0,1]$

$$
\lim _{n \rightarrow \infty}\left\|L_{n}(f(t) ; x)-f\right\|_{\infty}=0
$$

Theorem 3.3. Let $\left\{J_{n}^{\alpha, \beta}\right\}_{n \geq 1}$ be the sequence of linear positive operators acting from $C_{\varrho}[0, \infty)$ into $B_{\varrho}[0, \infty)$ satisfies the conditions

$$
\lim _{n \rightarrow \infty}\left\|J_{n}^{\alpha, \beta}\left(\varphi^{i-1}(t) ; x\right)-\varphi^{i-1}(x)\right\|_{\varrho}=0(i=1,2,3)
$$

then for any function $f \in C_{\varrho}^{0}[0, \infty)$,

$$
\lim _{n \rightarrow \infty}\left\|J_{n}^{\alpha, \beta}(f(t) ; x)-f\right\|_{\varrho}=0
$$

Proof. For the completeness, we give some sketch of the proof for the version which will be used in our next result. Consider $\varphi(x)=x, \quad \varrho(x)=1+x^{2}$, and

$$
\left\|J_{n}^{\alpha, \beta}\left(e_{i} ; x\right)-x^{i-1}\right\|_{\varrho}=\sup _{x \geq 0} \frac{\left|J_{n}^{\alpha, \beta}\left(e_{i} ; x\right)-x^{i-1}\right|}{1+x^{2}} .
$$

Then for $i=1,2,3$ it is easily proved that

$$
\lim _{n \rightarrow \infty}\left\|J_{n}^{\alpha, \beta}\left(e_{i} ; x\right)-x^{i-1}\right\|_{\varrho}=0
$$

Hence by using the above Theorem 3.2, for any function $f \in C_{\varrho}^{0}\left(\mathbb{R}^{+}\right)$, we get

$$
\lim _{n \rightarrow \infty}\left\|J_{n}^{\alpha, \beta}(f(t) ; x)-f\right\|_{\varrho}=0
$$

Theorem 3.4. Let $x \in[0, \infty), \quad f \in C_{\varrho}^{0}[0, \infty)$ with $\varrho(x)=1+x^{2}$. Then for $p_{r}(x) \geq 0, \quad S(1) \neq 0$, we have

$$
\lim _{n \rightarrow \infty}\left\|J_{n}^{\alpha, \beta}(f ; x)-f\right\|_{\varrho} \rightarrow 0
$$

Proof. Using Theorem 3.3 for $\varphi(x)=x$ and $\varrho(x)=1+x^{2}$, we consider

$$
\left\|J_{n}^{\alpha, \beta}\left(e_{i} ; x\right)-x^{i-1}\right\|_{\varrho}=\sup _{x \geq 0} \frac{\left|J_{n}^{\alpha, \beta}\left(e_{i} ; x\right)-x^{i-1}\right|}{1+x^{2}}
$$

for $i=1,2,3$.
According to Lemma 2.3 for $i=1$, it is obvious that $\left|J_{n}^{\alpha, \beta}\left(e_{1} ; x\right)-1\right| \rightarrow 0$, and therefore

$$
\lim _{n \rightarrow \infty}\left\|J_{n}^{\alpha, \beta}\left(e_{1} ; x\right)-1\right\|_{\varrho}=0
$$

For $i=2$

$$
\begin{aligned}
\sup _{x \geq 0} \frac{\left|J_{n}^{\alpha, \beta}\left(e_{2} ; x\right)-t\right|}{1+x^{2}} & \leq\left|\frac{n^{2}}{(n+\beta)(n-1)}-1\right| \sup _{x \geq 0} \frac{x}{1+x^{2}} \\
& +\left|\frac{n}{(n+\beta)(n-1)}\left(\frac{S^{\prime}(1)}{S(1)}+1\right)+\frac{\alpha}{n+\beta}\right| \sup _{x \geq 0} \frac{1}{1+x^{2}}
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left\|J_{n}^{\alpha, \beta}\left(e_{2} ; x\right)-x\right\|_{\varrho}=0
$$

For $i=3$

$$
\begin{aligned}
\sup _{x \geq 0} \frac{J_{n}^{\alpha, \beta}\left(e_{3} ; x\right)-x^{2} \mid}{1+x^{2}} & \leq\left|\frac{n^{4}}{(n+\beta)^{2}(n-2)(n-1)}-1\right| \sup _{x \geq 0} \frac{x^{2}}{1+x^{2}} \\
& +\left|\frac{2 n^{2}}{(n+\beta)^{2}(n-2)(n-1)}\left\{\frac{n}{n-2}\left(\frac{S^{\prime}(1)}{S(1)}+2\right)+\alpha\right\}\right| \sup _{x \geq 0} \frac{x}{1+x^{2}} \\
& +\left\lvert\, \frac{n^{2}}{(n+\beta)^{2}(n-2)(n-1)}\left(\frac{S^{\prime \prime}(1)}{S(1)}+\frac{S^{\prime}(1)}{S(1)}+2\right)\right. \\
& \left.+\frac{2 n \alpha}{(n+\beta)^{2}(n-1)}\left(\frac{S^{\prime}(1)}{S(1)}\right)+\frac{\alpha^{2}}{(n+\beta)^{2}} \right\rvert\, \sup _{x \geq 0} \frac{1}{1+x^{2}} .
\end{aligned}
$$

Hence we have

$$
\lim _{n \rightarrow \infty}\left\|J_{n}^{\alpha, \beta}\left(e_{3} ; x\right)-x^{2}\right\|_{\varrho}=0
$$

Which completes the proof of Korovkin's type theorem.

4. Rate of Convergence

Here we calculate the rate of convergence of operators (2.8) by means of modulus of continuity and Lipschitz type functions.

Let $f \in C_{B}[0, \infty]$ be the space of all bounded and uniformly continuous functions on $[0, \infty)$ and $x \geq 0$. Then for $\delta>0$, the modulus of continuity of f denoted by $\omega(f, \delta)$ gives the maximum oscillation of f in any interval of length not exceeding $\delta>0$ and it is given by

$$
\begin{equation*}
\omega(f, \delta)=\sup _{|t-x| \leq \delta}|f(t)-f(x)|, \quad t \in[0, \infty) \tag{4.9}
\end{equation*}
$$

It is known that $\lim _{\delta \rightarrow 0+} \omega(f, \delta)=0$ for $f \in C_{B}[0, \infty)$ and for any $\delta>0$ one has

$$
\begin{equation*}
|f(t)-f(x)| \leq\left(\frac{|t-x|}{\delta}+1\right) \omega(f, \delta) \tag{4.10}
\end{equation*}
$$

Take $\mu_{j}=\left(e_{i}-x\right)^{j}$ for $i=2, j=1,2$ and in the sequel we use the following notations:

$$
\begin{equation*}
\delta_{n}^{\alpha, \beta}=\sqrt{J_{n}^{\alpha, \beta}\left(\mu_{2} ; x\right)} \tag{4.11}
\end{equation*}
$$

Here

$$
\left\{\begin{array}{l}
\left(\frac{n^{2}}{(n+\beta)(n-1)}-1\right) x+\frac{n}{(n+\beta)(n-1)}\left(\frac{S^{\prime}(1)}{S(1)}+1\right)+\frac{\alpha}{n+\beta} \\
\quad \text { for } j=1,0<\alpha<\beta, \alpha, \beta \in \mathbb{R}
\end{array}\right.
$$

$$
J_{n}^{\alpha, \beta}\left(\mu_{j} ; x\right)=\left\{\begin{array}{l}
\left(\frac{n^{4}}{(n+\beta)^{2}(n-2)(n-1)}-\frac{2 n^{2}}{(n+\beta)(n-1)}+1\right) x^{2} \\
+\left[\frac{2 n^{2}}{(n+\beta)^{2}(n-1)}\left\{\frac{n}{n-2}\left(\frac{S^{\prime}(1)}{S(1)}+2\right)+\alpha\right\}\right. \\
\left.-\frac{2 n}{(n+\beta)(n-1)}\left(\frac{S^{\prime}(1)}{S(1)}+1\right)+\frac{2 \alpha}{n+\beta}\right] x \\
+\frac{n^{2}}{(n+\beta)^{2}(n-2)(n-1)}\left(\frac{S^{\prime \prime}(1)}{S(1)}+\frac{S^{\prime}(1)}{S(1)}+2\right) \\
+\frac{2 n \alpha}{(n+\beta)^{2}(n-1)}\left(\frac{S^{\prime}(1)}{S(1)}+1\right)+\frac{\alpha^{2}}{(n+\beta)^{2}} \\
\text { for } j=2,0<\alpha<\beta, \alpha, \beta \in \mathbb{R}
\end{array}\right.
$$

when $\alpha=\beta=0$, then $\delta_{n}^{\alpha, \beta}$ is reduced to $\delta_{n}^{*}=\sqrt{J_{n}^{*}\left(\eta_{2} ; x\right)}$.
Theorem 4.5. For $x \in[0, \infty), \quad f \in C_{B}[0, \infty)$ the operators $J_{n}^{\alpha, \beta}(\cdot ; \cdot)$ defined by (2.8) satisfying:

$$
\begin{equation*}
\left|J_{n}^{\alpha, \beta}(f ; x)-f(x)\right| \leq 2 \omega\left(f ; \delta_{n}^{\alpha, \beta}\right), \tag{4.12}
\end{equation*}
$$

where $n \in \mathbb{N}, \quad p_{r}(x) \geq 0, \quad S(1) \neq 0$ and $\delta_{n}^{\alpha, \beta}$ is defined in (4.11).
Proof. For our sequence of positive linear operators $\left\{J_{n}^{\alpha, \beta}(. ;).\right\}$ we have

$$
\begin{aligned}
J_{n}^{\alpha, \beta}(f ; x)-f(x) & =J_{n}^{\alpha, \beta}(f ; x)-f(x) J_{n}^{\alpha, \beta}(1 ; x) \\
& =J_{n}^{\alpha, \beta}(f(t)-f(x) ; x) \\
& \leq J_{n}^{\alpha, \beta}(|f(t)-f(x)| ; x),
\end{aligned}
$$

since $J_{n}^{\alpha, \beta}(1 ; x)=1$. From (4.9) and (4.10) easily we get

$$
\begin{aligned}
\left|J_{n}^{\alpha, \beta}(f ; x)-f(x)\right| & \leq J_{n}^{\alpha, \beta}\left(1+\frac{|t-x|}{\delta} ; x\right) \omega(f ; \delta) \\
& =\left(1+\frac{1}{\delta} J_{n}^{\alpha, \beta}(|t-x| ; x)\right) \omega(f ; \delta) .
\end{aligned}
$$

Cauchy-Schwarz inequality give us

$$
J_{n}^{\alpha, \beta}(|t-x| ; x) \leq J_{n}^{\alpha, \beta}(1 ; x)^{\frac{1}{2}} J_{n}^{\alpha, \beta}\left((t-x)^{2} ; x\right)^{\frac{1}{2}}
$$

so that

$$
\begin{equation*}
\left|J_{n}^{\alpha, \beta}(f ; x)-f(x)\right| \leq\left(1+\frac{1}{\delta} J_{n}^{\alpha, \beta}\left((t-x)^{2} ; x\right)^{\frac{1}{2}}\right) \omega(f ; \delta) \tag{4.13}
\end{equation*}
$$

Finally, putting $\delta=\delta_{n}^{\alpha, \beta}=\sqrt{J_{n}^{\alpha, \beta}\left(\mu_{2} ; x\right)}$ we get the assertion.

Remark 4.1. Choosing $\delta=\frac{1}{n+\beta}$ in (4.13) we obtain the following estimate

$$
\begin{equation*}
\left|J_{n}^{\alpha, \beta}(f ; x)-f(x)\right| \leq\left(1+(n+\beta) \delta_{n}^{\alpha, \beta}\right) \omega\left(f ; \frac{1}{n+\beta}\right) \tag{4.14}
\end{equation*}
$$

where δ_{n}^{*} defined in (4.11).
Remark 4.2. For $\alpha=\beta=0$ the corresponding estimate for the sequence of positive linear operators $\left\{J_{n}^{\alpha, \beta}\right\}$ is reduced to $\left\{J_{n}^{*}\right\}$ defined by (2.4) which can take the form as

$$
\begin{equation*}
\left|J_{n}^{*}(f ; x)-f(x)\right| \leq 2 \omega\left(f ; \delta_{n}^{*}\right) \tag{4.15}
\end{equation*}
$$

where $\delta_{n}^{*}=\sqrt{\left.J_{n}^{*}\left(\eta_{2} ; x\right)\right)}$.
Now we give the rate of convergence of the operators $J_{n}^{\alpha, \beta}(f ; x)$ defined in (2.8) in terms of the elements of the usual Lipschitz class $\operatorname{Lip}_{M}(\nu)$. Let $f \in C_{B}[0, \infty), M>0$ and $0<\nu \leq 1$. The class $\operatorname{Lip}_{M}(\nu)$ is defined as

$$
\begin{equation*}
\operatorname{Lip}_{M}(\nu)=\left\{f:\left|f\left(\zeta_{1}\right)-f\left(\zeta_{2}\right)\right| \leq M\left|\zeta_{1}-\zeta_{2}\right|^{\nu}\left(\zeta_{1}, \zeta_{2} \in[0, \infty)\right)\right\} \tag{4.16}
\end{equation*}
$$

Theorem 4.6. Suppose $x \in[0, \infty), \quad f \in \operatorname{Lip}_{M}(\nu)$ with $(M>0, \quad 0<\nu \leq 1)$. Then operators $J_{n}^{\alpha, \beta}(\cdot ; \cdot)$ defined by (2.8) satisfying:

$$
\left|J_{n}^{\alpha, \beta}(f ; x)-f(x)\right| \leq M\left(\delta_{n}^{\alpha, \beta}\right)^{\nu / 2}
$$

where $\delta_{n}^{\alpha, \beta}$ is defined in (4.11).
Proof. Use (4.16) and apply Hölder's inequality

$$
\begin{aligned}
\left|J_{n}^{\alpha, \beta}(f ; x)-f(x)\right| & \leq\left|J_{n}^{\alpha, \beta}(f(t)-f(x) ; x)\right| \\
& \leq J_{n}^{\alpha, \beta}(|f(t)-f(x)| ; x) \\
& \leq M J_{n}^{\alpha, \beta}\left(|t-x|^{\nu} ; x\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mid J_{n}^{\alpha, \beta}(f ; x) & -f(x) \mid \\
& \leq M \frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{1}{B(r+1, n)} \int_{0}^{\infty} \frac{t^{r}}{(1+t)^{r+n+1}}|t-x|^{\nu} \mathrm{d} t \\
& =M \frac{e^{-n x}}{S(1)}\left(\sum_{r=0}^{\infty} P_{r}(n x) \frac{1}{B(r+1, n)}\right)^{\frac{2-\nu}{2}} \\
& \times\left(P_{r}(n x) \frac{1}{B(r+1, n)}\right)^{\frac{\nu}{2}} \int_{0}^{\infty} \frac{t^{r}}{(1+t)^{r+n+1}}|t-x|^{\nu} \mathrm{d} t \\
& \leq M\left(\frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{1}{B(r+1, n)} \int_{0}^{\infty} \frac{t^{r}}{(1+t)^{r+n+1}} \mathrm{~d} t\right)^{\frac{2-\nu}{2}} \\
& \times\left(\frac{e^{-n x}}{S(1)} \sum_{r=0}^{\infty} P_{r}(n x) \frac{1}{B(r+1, n)} \int_{0}^{\infty} \frac{t^{r}}{(1+t)^{r+n+1}}|t-x|^{2} \mathrm{~d} t\right)^{\frac{\nu}{2}} \\
& =M J_{n}^{\alpha, \beta}\left(\mu_{2} ; x\right)^{\frac{\nu}{2}} .
\end{aligned}
$$

This completes the proof.

Let

$$
\begin{equation*}
C_{B}^{2}[0, \infty)=\left\{g \in C_{B}[0, \infty): g^{\prime}, g^{\prime \prime} \in C_{B}[0, \infty)\right\} \tag{4.17}
\end{equation*}
$$

with the norm

$$
\begin{equation*}
\|g\|_{C_{B}^{2}[0, \infty)}=\|g\|_{C_{B}[0, \infty)}+\left\|g^{\prime}\right\|_{C_{B}[0, \infty)}+\left\|g^{\prime \prime}\right\|_{C_{B}[0, \infty)} \tag{4.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\|g\|_{C_{B}[0, \infty)}=\sup _{x \in[0, \infty)}|g(x)| . \tag{4.19}
\end{equation*}
$$

Theorem 4.7. Let $x \in[0, \infty)$ and $J_{n}^{\alpha, \beta}(\cdot ; \cdot)$ be the operator defined by (2.8). Then for any $g \in$ $C_{B}^{2}[0, \infty)$, we have

$$
\left|J_{n}^{\alpha, \beta}(f ; x)-f(x)\right| \leq \frac{1}{2} \delta_{n}^{\alpha, \beta}\left(2+\delta_{n}^{\alpha, \beta}\right)\|g\|_{C_{B}^{2}[0, \infty)}
$$

where $n \in \mathbb{N}, \quad p_{r}(x) \geq 0, S(1) \neq 0$ and $\delta_{n}^{\alpha, \beta}$ is defined in (4.11).
Proof. Let $g \in C_{B}^{2}[0, \infty)$. Then by using the generalized mean value theorem in the Taylor series expansion we have

$$
g(t)=g(x)+g^{\prime}(x)(t-x)+g^{\prime \prime}(\psi) \frac{(t-x)^{2}}{2}
$$

which follows

$$
|g(t)-g(x)| \leq M_{1}|t-x|+\frac{1}{2} M_{2}(t-x)^{2}
$$

where by using the result of (4.18) and (4.19) we have

$$
\begin{aligned}
& M_{1}=\sup _{x \in[0, \infty)}\left|g^{\prime}(x)\right|=\left\|g^{\prime}\right\|_{C_{B}[0, \infty)} \leq\|g\|_{C_{B}^{2}[0, \infty)} \\
& M_{2}=\sup _{x \in[0, \infty)}\left|g^{\prime \prime}(x)\right|=\left\|g^{\prime \prime}\right\|_{C_{B}[0, \infty)} \leq\|g\|_{C_{B}^{2}[0, \infty)}
\end{aligned}
$$

again from 4.18, we have

$$
|g(t)-g(x)| \leq\left(|t-x|+\frac{1}{2}(t-x)^{2}\right)\|g\|_{C_{B}^{2}[0, \infty)}
$$

Since

$$
\left|J_{n}^{\alpha, \beta}(g, x)-g(x)\right|=\left|J_{n}^{\alpha, \beta}(g(t)-g(x) ; x)\right| \leq J_{n}^{\alpha, \beta}(|g(t)-g(x)| ; x)
$$

and also

$$
J_{n}^{\alpha, \beta}(|t-x| ; x) \leq J_{n}^{\alpha, \beta}\left((t-x)^{2} ; x\right)^{\frac{1}{2}}=\delta_{n}^{\alpha, \beta}
$$

we get

$$
\begin{aligned}
\left|J_{n}^{\alpha, \beta}(g ; x)-g(x)\right| & \leq\left(J_{n}^{\alpha, \beta}(|t-x| ; x)+\frac{1}{2} J_{n}^{\alpha, \beta}\left((t-x)^{2} ; x\right)\right)\|g\|_{C_{B}^{2}[0, \infty)} \\
& \leq \frac{1}{2} \delta_{n}^{\alpha, \beta}\left(2+\delta_{n}^{\alpha, \beta}\right)\|g\|_{C_{B}^{2}[0, \infty)}
\end{aligned}
$$

This completes the proof.

The Peetre's K-functional is defined by

$$
\begin{equation*}
K_{2}(f, \delta)=\inf _{C_{B}^{2}[0, \infty)}\left\{\left(\|f-g\|_{C_{B}[0, \infty)}+\delta\left\|g^{\prime \prime}\right\|_{C_{B}^{2}[0, \infty)}\right): g \in \mathcal{W}^{2}\right\} \tag{4.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{W}^{2}=\left\{g \in C_{B}[0, \infty): g^{\prime}, g^{\prime \prime} \in C_{B}[0, \infty)\right\} \tag{4.21}
\end{equation*}
$$

There exits a positive constant $C>0$ such that $K_{2}(f, \delta) \leq C \omega_{2}\left(f, \delta^{1 / 2}\right), \delta>0$, where the second order modulus of continuity is given by

$$
\begin{equation*}
\omega_{2}\left(f, \delta^{1 / 2}\right)=\sup _{0<h<\delta^{1 / 2}} \sup _{x \in \mathbb{R}^{+}}|f(x+2 h)-2 f(x+h)+f(x)| . \tag{4.22}
\end{equation*}
$$

Theorem 4.8. Suppose $x \in[0, \infty), n \in \mathbb{N}$ and $f \in C_{B}[0, \infty)$. Then the operators $J_{n}^{\alpha, \beta}(\cdot ; \cdot)$ defined by (2.8) satisfying

$$
\left|J_{n}^{\alpha, \beta}(f ; x)-f(x)\right| \leq 2 M\left\{\omega_{2}\left(f ; \sqrt{\Delta_{n}^{\alpha, \beta}}\right)+\min \left(1, \Delta_{n}^{\alpha, \beta}\right)\|f\|_{C_{B}[0, \infty)}\right\}
$$

where M is a positive constant, $p_{r}(x) \geq 0, \quad S(1) \neq 0$ and $\Delta_{n}^{\alpha, \beta}=\frac{\left(2+\delta_{n}^{\alpha, \beta}\right) \delta_{n}^{\alpha, \beta}}{4}$.
Proof. As previous we easily conclude that

$$
\begin{aligned}
\left|J_{n}^{\alpha, \beta}(f ; x)-f(x)\right| & \leq\left|J_{n}^{\alpha, \beta}(f-g ; x)\right|+\left|J_{n}^{\alpha, \beta}(g ; x)-g(x)\right|+|f(x)-g(x)| \\
& \leq 2\|f-g\|_{C_{B}[0, \infty)}+\frac{\delta_{n}^{\alpha, \beta}}{2}\left(2+\delta_{n}^{\alpha, \beta}\right)\|g\|_{C_{B}^{2}[0, \infty)} \\
& \leq 2\left(\|f-g\|_{C_{B}[0, \infty)}+\frac{\delta_{n}^{\alpha, \beta}}{4}\left(2+\delta_{n}^{\alpha, \beta}\right)\|g\|_{C_{B}^{2}[0, \infty)}\right)
\end{aligned}
$$

By taking infimum over all $g \in C_{B}^{2}[0, \infty)$ and by using (4.20), we get

$$
\left|J_{n}^{\alpha, \beta}(f ; x)-f(x)\right| \leq 2 K_{2}\left(f ; \frac{\delta_{n}^{\alpha, \beta}\left(2+\delta_{n}^{\alpha, \beta}\right)}{4}\right)
$$

Now for an absolute constant $M>0$ in [2] we use the relation

$$
K_{2}(f ; \delta) \leq M\left\{\omega_{2}(f ; \sqrt{\delta})+\min (1, \delta)\|f\|\right\}
$$

This completes the proof.

REFERENCES

[1] T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput., 263 (2015) 223239.
[2] A. Ciupa, A class of integral Favard-Szász type operators, Stud. Univ. Babeş-Bolyai, Math., 40 (1995) 39-47.
[3] W.A. Al-Salam, q-Appell polynomials. Ann. Mat. Pura Appl., 4 (1967) 31-45.
[4] P. Appell, Une classe de polynômes, Ann. Sci. École Norm. Sup., 9 (1880) 119-144.
[5] A. Aral, T. Acar, Weighted approximation by new Bernstein-Chlodowsky- Gadjiev operators, Filomat, 27 (2013) 371-380.
[6] C. Atakut, I. Büyükyazici, Approximation by modified integral type Jakimovski-Leviatan operators, Filomat, 30 (2016) 29-39.
[7] İ. Büyükyazıcı, H. Tanberkan, S. Serenbay, C. Atakut, Approximation by Chlodowsky type Jakimovski-Leviatan operators, Jour. Comput. Appl. Math., 259 (2014) 153-163.
[8] J. Choi, H.M. Srivastava, q-Extensions of a multivariable and multiparameter generalization of the Gottlieb polynomials in several variables, Tokyo J. Math., 37 (2014) 111-125.
[9] A. D. Gadzhiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin's theorem. Dokl. Akad. Nauk SSSR (Russian), 218 (1974) 1001-1004.
[10] A. D. Gadzhiev, Weighted approximation of continuous functions by positive linear operators on the whole real axis, Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz.-Tehn. Mat. Nauk (Russian), 5 (1975) 41-45.
[11] P. Gupta, P. N. Agarwal, Jakimovski-Leviatan operators of Durrmeyer type involving involving Appell polynomials, Turk J. Math., 42 (2018) 1457-1470.
[12] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41(15) (1910) 193-203.
[13] A. Jakimovski, D. Leviatan, Generalized Szasz operators for the approximation in the infinite interval. Mathematica (Cluj), 11 (34) (1969) 97-103.
[14] V. Kac., A. De Sole, On integral representations of q-gamma and q-beta functions, Rend. Mat. Acc. Lincei, 9 (200) 11-29.
[15] M.E. Keleshteri, N.I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comp., 260 (2015) 351-369.
[16] P.P. Korovkin, Linear Operators And Approximation Theory, Hindustan Publ. Co. Delhi, 1960.
[17] G. V. Milovanović, M. Mursaleen., M. Nasiruzzaman, Modified Stancu type Dunkl generalization of SzászKantorovich operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 112(1) (2018) 135-151.
[18] M. Mursaleen, K.J. Ansari, M. Nasiruzzaman, Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials, Iran. J. Sci. Technol. Trans. Sci. 41 (2017) 891-900.
[19] A. Wafi, N. Rao, D. Rai, Appproximation properties by generalized-Baskakov-Kantrovich-Stancu type operators, Appl. Math. Inform. Sci. Lett., 4 (2016) 111-118.
[20] B. Wood, Generalized Szász operators for the approximation in the complex domain, SIAM J. Appl. Math., 17 (1969) 790-801.

Department of Mathematics
Aligarh Muslim University
Aligarh-202002, INDIA
E-mail address: mursaleenm@gmail.com
Department of Computer Science (SEST)
Jamia Hamdard University
New Delhi-110062,
India Department of Civil Engineering
Jamia Millia University
New Delhi-110025, InDIA
E-mail address: nasir3489@gmail.com

[^0]: Received: August 13, 2018; In revised form: September 23, 2018; Accepted: October 1, 2018
 *Corresponding author: M. Mursaleen; mursaleenm@gmail.com
 DOI: 10.33205/cma. 453284

