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Asymptotically ���-statistical equivalence of sequences of sets defined by a modulus 
functions 
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Abstract  

We investigate the notions of strongly asymptotically ���-equivalence, f-asymptotically ���-equivalence, strongly 
f-asymptotically ���-equivalence and asymptotically ���-statistical equivalence for sequences of sets. Also, we
investigate some relationships among these concepts.
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1. INTRODUCTION

Recently, concepts of statistical convergence and ideal 
convergence were studied and dealt with by several 
authors. Fast [1] and Schoenberg [2] independently 
introduced statistical convergence and this concept 
studied by many authors. Lacunary statistical 
convergence was defined by Fridy and Orhan [3] using 
the notion of lacunary sequence � = {��}. Kostyrko et 
al. [4] introduced and dealt with the idea of ℐ-
convergence. ℐ-statistical convergence and ℐ-lacunary 
statistical convergence were introduced by Das et al. 
[5].  

Several authors studied some convergence types of the 
notion of set sequences. Nuray and Rhoades [6] defined 
statistical convergence of set sequences. Lacunary 
statistical convergence of set sequences was introduced 
by Ulusu and Nuray [7] and they gave some examples 
and  investigated some properties of this notion. ℐ-
convergence of set sequences was studied by Kişi and 
Nuray [8]. On ℐ-lacunary statistical convergence of set 
sequences was studied by Ulusu and Dündar [9]. Also, 
after these important studies, the notions of statistical 
convergence, ideal convergence and ℐ-statistical 
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convergence of set sequences and some properties  was 
studied and dealt with by several authors. 

Several authors including Raimi [10], Schaefer [11], 
Mursaleen [12,13], Savaş [14,15], Mursaleen and 
Edely [16], Pancarog�lu and Nuray [17,18] and some 
authors have studied invariant convergent sequences. 
The notion of strong  �-convergence was defined by 
Savaş [16]. Savaş and Nuray [19] defined the ideas of 
�-statistical convergence and lacunary �-statistically 
convergence and gave some inclusion relations. Then, 
Pancaroğlu and Nuray [17] introduced the ideas of ��-
summability and the space [���]�. Recently, Ulusu and 

Nuray [20] defined the notions of ��-uniform density 
of subsets A of ℕ, ℐ��-convergence and investigated 
relationships between ℐ��-convergence and lacunary 
invariant convergence also ℐ��-convergence and 
[���]�-convergence. 

Asymptotically equivalent and asymptotic regular 
matrices were peresented by Marouf [21]. Patterson 
and Savaş [22,23] introduced asymptotically lacunary 
statistically equivalent sequences and also 
asymptotically ��-statistical equivalent sequences. 
Ulusu and Nuray [24] defined the ideas of some basic 
asymptotically equivalence for sequences of sets. 
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Pancaroğlu et al. [25] studided asymptotically ��-
statistical equivalent sequences of sets. Ulusu and 
Gülle [26] introduced asymptotically ℐ�-equivalence of 
sequences of sets. 

Nakano [27] introduced modulus function. Maddox 
[28], Pehlivan and Fisher [29], Pancaroğlu and Nuray 
[30,31] and several authors define some new concepts 
and give inclusion theorems using a modulus function 
�. Kumar and Sharma [32] studied ℐ�-equivalent 
sequences using a modulus function �. Kişi et al. [33] 
introduced �-asymptotically ℐ�-equivalent set 
sequences. P. Akın et al. [34] introduced �-
asymptotically ℐ-invariant statistical equivalence of set 
sequences. 

Now, we recall the basic concepts and some definitions 
and notations (See [18, 21, 24-26, 28, 29, 32, 33, 35-
42]). 

Two nonnegative sequences � = (��) and � = (��) 
are said to be asymptotically equivalent if  

lim
�

��

��
= 1 

(denoted by �~�).  

Throughout this study, we let (�, �) be a metric space 
and �, �� and �� (� = 1,2, . . . ) be non-empty closed 
subsets of �.  

For any point � ∈ � and any non-empty subset � of �, 
we define the distance from � to  � by  

�(�, �) = inf
�∈�

�(�, �). 

Let ��, �� ⊆ � such that �(�, ��) > 0 and �(�, ��) >
0, for each � ∈ �. The sequences {��} and {��} are 
asymptotically equivalent if for each � ∈ �, 

lim
�

�(�, ��)

�(�, ��)
= 1 

(denoted by ��~��). 

Let ��, �� ⊆ � such that �(�, ��) > 0 and �(�, ��) >
0, for each � ∈ �. The sequences {��} and {��} are 
asymptotically statistical equivalent of multiple � if for 
every � > 0 and for each � ∈ �, 

lim
�

1

�
��� ≤ �: �

�(�, ��)

�(�, ��)
− �� ≥ ��� = 0 

(denoted by �� ~
���

��).  

Let � be a mapping of the positive integers into itself. 
A continuous linear functional � on ℓ�, the space of 
real bounded sequences, is said to be an invariant mean 
or a � mean if and only if   

1.  �(�) ≥ 0, when the sequence � = (��) has �� ≥

0 for all �,  

2.  �(�) = 1, where � = (1,1,1. . . ),  

3.  �(��(�)) = �(�) for all � ∈ ℓ�.  

The mappings � are assumed to be one-to-one and such 
that ��(�) ≠ � for all positive integers � and �, where 
��(�) denotes the �th iterate of the mapping � at �. 
Thus � extends the limit functional on �, the space of 
convergent sequences, in the sense that �(�) = lim� 
for all � ∈ �. If � is a translation mappings that is 
�(�) = � + 1, the � mean is often called a Banach limit.  

By a lacunary sequence we mean an increasing integer 
sequence � = {��} such that �� = 0 and ℎ� = �� −
���� → ∞ as � → ∞. Throughout the paper, we let � =
{��} be a lacunary sequence.  

A sequence {��} is Wijsman ��-statistically 
convergent to � if for every � > 0 and for each � ∈ �,  

lim
�→�

1

ℎ�
|{� ∈ ��: |�(�, ���(�)) − �(�, �)| ≥ �}| = 0 

uniformly in �. It is denoted by �� → �([����]). 

For non-empty closed subsets ��,  �� of � define 
�(�; ��, ��) as follows: 

�(�; ��, ��) =

⎩
⎨

⎧
�(�, ��)

�(�, ��)
,  � ∉  �� ∪ ��; 

       �      ,  � ∈  �� ∪  ��.

 

The sequences {��} and {��}are Wijsman strongly 
asymptotically ��-equivalent of multiple � if for each 
� ∈ �,  

lim
�→�

1

ℎ�
�

�∈��

��(�; ���(�), ���(�)) − �� = 0 

uniformly in �, (denoted by �� ~
[��]��

�

��). 

The sequences {��} and {��} are Wijsman 
asymptotically ��-statistical equivalent of multiple � 
if for each � ∈ �,  

lim
�→�

1

ℎ�

��� ∈ ��: |�(�; ���(�), ���(�)) − �| ≥ ��� = 0 

uniformly in �, (denoted by �� ~
����

�

��). 

A family of sets ℐ ⊆ 2ℕ is called an ideal if and only if 

(�)  ∅ ∈ ℐ,  

(��)  For each �, � ∈ ℐ we have � ∪ � ∈ ℐ,   

(���)  For each � ∈ ℐ and each � ⊆ � we have � ∈ ℐ. 
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If ℕ ∉ ℐ, ℐ is called non-trivial and if {�} ∈ ℐ for each 
� ∈ ℕ, a non-trivial ideal is called admissible ideal. 
Throughout this study, we let ℐ be an admissible ideal. 

Let � ⊆ ℕ and 

�� = min
�

{|� ∩ {��(�): � ∈ ��}|}     

and 

�� = max
�

{|� ∩ {��(�): � ∈ ��}|}. 

If the limits 

��(�) = lim�→�

��

ℎ�
   and    ��(�) = lim�→�

��

ℎ�
 

exist, then they are called a lower lacunary �-uniform 
(lower ��-uniform) density and an upper lacunary          
�-uniform (upper ��-uniform) density of the set �, 

respectively. If ��(�) = ��(�), then  

��(�) = ��(�) = ��(�) 

is called the lacunary �-uniform density or ��-uniform 
density of �. 

Denoted by ℐ��, we denote the class of all � ⊆ ℕ with 
��(�) = 0. 

A sequence {��} is said to be Wijsman lacunary ℐ-
invariant convergent or ℐ��

� -convergent to � if for 
every � > 0 and for each � ∈ �, the set  

�(�, �) = {�: |�(�, ��) − �(�, �)| ≥ �} 

belongs to ℐ��, that is, ��(�(�, �)) = 0. It is shown by 
�� → �(ℐ��

� ). 

A function �: [0, ∞) → [0, ∞) is called a modulus if   

1. �(�) = 0 if and only if � = 0,  

2.   �(� + �) ≤ �(�) + �(�)  

3.   � is increasing  

4.   � is continuous from the right at 0.  

A modulus may be unbounded (for example �(�) = �, 

0 < � < 1) or bounded (for example �(�) =
�

���
). 

Throughout this study, we let � be a modulus function.  

The sequences {��} and {��} are said to be Wijsman 
�-asymptotically ℐ-equivalent of multiple � if for 
every � > 0 and for each � ∈ �,  

{� ∈ ℕ: �(|�(�; ��, ��) − �|) ≥ �} ∈ ℐ 

(denoted by �� ~
ℐ�(�)

��). 

The sequences {��} and {��} are said to be strongly 
Wijsman �-asymptotically ℐ�-equivalent of multiple � 
if for every � > 0 and for each � ∈ �,  

�� ∈ ℕ:
1

ℎ�
�

�∈��

�(|�(�; ��, ��) − �|) ≥ �� ∈ ℐ 

(denoted by �� ~
��

�
(ℐ�)

��). 

The sequences {��} and {��} are said to be strongly 
Wijsman asymptotically ℐ-invariant equivalent of 
multiple � if for every � > 0 and for each � ∈ �,  

�� ∈ ℕ:
1

�
�

�

���

|�(�; ��, ��) − �| ≥ �� ∈ ℐ� 

(denoted by �� ~
[�ℐ�

� ]

��). 

The sequences {��} and {��} are said to be Wijsman 
�-asymptotically ℐ-invariant equivalent of multiple � 
if for every � > 0 and for each � ∈ �,  

{� ∈ ℕ: �(|�(�; ��, ��) − �|) ≥ �} ∈ ℐ� 

(denoted by �� ~
�ℐ�

� (�)

��). 

The sequences {��} and {��} are said to be strongly �-
asymptotically ℐ-invariant equivalent of multiple � if 
for every � > 0 and for each � ∈ �,  

�� ∈ ℕ:
1

�
�

�

���

�(|�(�; ��, ��) − �|) ≥ �� ∈ ℐ� 

(denoted by �� ~
[�ℐ�

� (�)]

��) . 

The sequences {��} and {��} are said to be 
asymptotically ℐ-invariant statistical equivalent of 
multiple � if for every � > 0, � > 0 and for each � ∈
�,  

�� ∈ ℕ:
1

�
|{� ≤ �: |�(�; ��, ��) − �| ≥ �}| ≥ �� ∈ ℐ� 

(denoted by �� ~
�ℐ�

� (�)

��). 

Lemma 1 [29] Let 0 < � < 1. Then, for each � ≥ � 
we have �(�) ≤ 2�(1)����. 

2. MAIN RESULTS 

Definition 2.1 The sequences {��} and {��} are said to 
be strongly Wijsman asymptotically ℐ��-equivalent of 
multiple � if for every � > 0 and for each � ∈ �,  
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�� ∈ ℕ:
1

ℎ�
�

�∈��

|�(�; ��, ��) − �| ≥ �� ∈ ℐ�� 

(denoted by �� ~
[�ℐ��

� ]

��). 

Definition 2.2 {��} and {��} are said to be Wijsman 
�-asymptotically ℐ��-equivalent of multiple � if for 
every � > 0 and for each � ∈ �,  

{� ∈ ℕ: �(|�(�; ��, ��) − �|) ≥ �} ∈ ℐ�� 

(denoted by �� ~
�ℐ��

� (�)

��).  

Definition 2.3 {��} and {��} are said to be strongly 
Wijsman �-asymptotically ℐ��-equivalent of multiple 
� if for every � > 0 and for each � ∈ �,  

�� ∈ ℕ:
1

ℎ�
�

�∈��

�(|�(�; ��, ��) − �|) ≥ �� ∈ ℐ�� 

(denoted by �� ~
[�ℐ��

� (�)]

��).  

Theorem 2.1 For each � ∈ �, we have 

�� ~
[�ℐ��

� ]

�� ⇒ �� ~
[�ℐ��

� (�)]

��. 

Proof. Let �� ~
[�ℐ��

� ]

�� and � > 0 be given. Select 0 <
� < 1 such that �(�) < � for 0 ≤ � ≤ �. So, for each 
� ∈ � and for � = 1,2, …, we can write   

1

ℎ�
�

�∈��

������; ���(�), ���(�)� − ��� = 

1

ℎ�

�

�∈��

����;�
��(�)

,�
��(�)

������

������; ���(�), ���(�)� − ��� 

+
1

ℎ�

�

�∈��

����;�
��(�),�

��(�)������

������; ���(�), ���(�)� − ��� 

and so, by Lemma 1, we have 

1

ℎ�
�

�∈��

������; ���(�), ���(�)� − ��� 

< ε + (
��(�)

�
)

�

��
∑�∈��

����; ���(�), ���(�)� − �� 

uniformly in �. Thus, for every � > 0 and for each � ∈
�, 

�� ∈ ℕ:
1

ℎ�

�

�∈��

������; ���(�), ���(�)� − ��� ≥ �� 

⊆ �� ∈ ℕ:
1

ℎ�

�

�∈��

|���; ���(�), ���(�)� − �| ≥
(� − �)�

2�(1)
� 

uniformly in �.   

Since �� ~
[�ℐ��

� ]

��, the second set belongs to ℐ�� and 
thus, the first set belongs to ℐ��. This proves that 

�� ~
[�ℐ��

� (�)]

��.  

Theorem 2.2 If ���
�→�

�(�)

�
= � > 0, then 

             �� ~
[�ℐ��

� ]

�� ⇔ �� ~
[�ℐ��

� (�)]

��. 

Proof. If ���
�→�

�(�)

�
= � > 0, then we have �(�) ≥ �� for 

all � ≥ 0. Assume that �� ~
[�ℐ��

� (�)]

��. Since for � =
1,2, … and for each � ∈ � 

1

ℎ�
�

�∈��

������; ���(�), ���(�)� − ��� 

≥
1

ℎ�
�

�∈��

������; ���(�), ���(�)� − ���      

=  � �
1

ℎ�
�

�∈��

����; ���(�), ���(�)� − ���, 

 it follows that for each � > 0, we have  

�� ∈ ℕ:
1

ℎ�

�

�∈��

|���; ���(�), ���(�)� − �| ≥ �� 

⊆ �� ∈ ℕ:
1

ℎ�

�

�∈��

�(|���; ���(�), ���(�)� − �|) ≥ ��� 

uniformly in �. Since �� ~
[�ℐ��

� (�)]

��, it follows that 
second set belongs to ℐ��. This proves that  

�� ~
[�ℐ��

� ]

�� ⇔ �� ~
[�ℐ��

� (�)]

��. 

Definition 2.4 We say that the sequences {��} and 
{��} are said to be Wijsman asymptotically lacunary ℐ-
invariant statistical equivalent of multiple �, if for 
every �, � > 0 and for each � ∈ �  

�� ∈ ℕ:
1

ℎ�

|{� ∈ ��: |�(�; ��, ��) − �| ≥ �}| ≥ �� ∈ ℐ��  

(denoted by �� ~
�ℐ��

� (�)

��).  

Theorem 2.3  For each � ∈ �, we have  
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�� ~
[�ℐ��

� (�)]

�� ⇒ �� ~
�ℐ��

� (�)

��. 

Proof. Assume that �� ~
[�ℐ��

� (�)]

�� and � > 0 be given. 
Since for each � ∈ � and for � = 1,2, …  

1

ℎ�
�

�∈��

������; ���(�), ���(�)� − ��� ≥ 

1

ℎ�

�

�∈��

����;�
��(�),�

��(�)������

������; ���(�), ���(�)� − ��� 

≥ �(�).
1

ℎ�

��� ∈ ��: ����; ���(�), ���(�)� − �� ≥ ���, 

then for any � > 0 and for each � ∈ �  

{� ∈ ℕ:
1

ℎ�

|{� ∈ ��: ����; ���(�), ���(�)� − �� ≥ �}| ≥
�

�(�)
} 

⊆ �� ∈ ℕ:
1

ℎ�

�

�∈��

������; ���(�), ���(�)� − ��� ≥ �� 

uniformly in �. Since �� ~
[�ℐ��

� (�)]

��, the last set 
belongs to ℐ��. So, the first set belongs to ℐ�� and  

�� ~
�ℐ��

� (�)

��.  

Theorem 2.4 If � is bounded, then for each � ∈ �  

�� ~
[�ℐ��

� (�)]

�� ⇔ �� ~
�ℐ��

� (�)

��. 

Proof. Let � be bounded and �� ~
�ℐ��

� (�)

��. Then, there 
exists a � > 0 such that |�(�)| ≤ � for all � ≥ 0. 
Further using the fact, for � = 1,2, …, we have  

1

ℎ�
�

�∈��

������; ���(�), ���(�)� − ��� = 

1

ℎ�

�

�∈��

����;�
��(�)

,�
��(�)

������

������; ���(�), ���(�)� − ��� 

+
1

ℎ�

�

�∈��

����;�
��(�)

,�
��(�)

������

������; ���(�), ���(�)� − ��� 

 

≤
�

ℎ�

��� ∈ ��: ����; ���(�), ���(�)� − �� ≥ ��� + �(�) 

uniformly in �. This proves that �� ~
[�ℐ��

� (�)]

��. 
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