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Abstract − In this paper, it is introduced the notion of r-fuzzy β-Ti, i = 0, 1, 2 separation axioms
related to a fuzzy operator β on the initial set X which is a generalization of previous fuzzy separa-
tion axioms. An r-fuzzy α-connectedness related to a fuzzy operator α on the set X is introduced
which is a generalization of many types of r-fuzzy connectedness. An r-fuzzy α-compactness related
to a fuzzy operator α on the set X is introduced which is a generalization of many types of fuzzy
compactness.
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1 Introduction

It is a way to use fuzzy operators α, β on the initial set X and to use fuzzy operators
θ, δ on the set Y giving generalizations of many notions and results in fuzzy topolog-
ical spaces. r-fuzzy β-Ti, i = 0, 1, 2 separation axioms of the set X is a new type of
fuzzy separation axioms related with a fuzzy operator β on X. It is proved that the
image of r-fuzzy β-Ti, i = 0, 1, 2 is r-fuzzy δ-Ti, i = 0, 1, 2, and also the preimage
of r-fuzzy δ-Ti, i = 0, 1, 2 is r-fuzzy β-Ti, i = 0, 1, 2. r-fuzzy α-connectedness is
introduced related with the fuzzy operator α on X giving a generalization of many
of fuzzy connectedness notions. It is proved that the image of r-fuzzy α-connected is
r-fuzzy θ-connected, and some particular cases are included. r-fuzzy α-compactness
is introduced using the fuzzy operator α on X giving a generalization of many of
fuzzy compactness notions. It is proved that the image of r-fuzzy r-fuzzy compact
is r-fuzzy θ-compact, and many special cases are deduced.

2 Preliminaries

Throughout the paper, X refers to an initial universe, IX is the set of all fuzzy sets
on X (where I = [0, 1], I0 = (0, 1], λc(x) = 1 − λ(x) ∀x ∈ X and for all t ∈ I,
t(x) = t ∀x ∈ X).
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(X, τ) is a fuzzy topological space ([14]), if τ : IX → I satisfies the following
conditions:

(O1) τ(0) = τ(1) = 1,

(O2) τ(λ1 ∧ λ2) ≥ τ(λ1) ∧ τ(λ2) for all λ1, λ2 ∈ IX ,

(O3) τ(
∨
j∈J

λj) ≥
∧
j∈J

τ(λj) for all {λj}j∈J ⊆ IX .

By the concept of a fuzzy operator on a set X is meant a map γ : IX × I0 → IX .
Assume with respect to a fuzzy topology in Šostak sense defined on X, we have

intτ (µ, r) ≤ γ(µ, r) ≤ clτ (µ, r) ∀µ ∈ IX , ∀r ∈ I0,

where intτ , clτ : IX × I0 → IX are defined in Šostak sense for any µ ∈ IX and each
grade r ∈ I0 as follows:

intτ (µ, r) =
∨
{η ∈ IX : η ≤ µ, τ(η) ≥ r}

and
clτ (µ, r) =

∧
{η ∈ IX : η ≥ µ, τ(ηc) ≥ r}

Let (X, τ1) and (Y, τ2) be two fuzzy topological spaces, α and β are fuzzy operators
on X, θ and δ are fuzzy operators on Y , respectively. This type of maps α or β is
called an expansion on X or a fuzzy operator on (X, τ1), and the map θ or δ is called
an expansion on Y or a fuzzy operator on (Y, τ2) and let us fix that:

(1) β is a fuzzy operator on X such that β(µ, r) ≤ µ ∀µ ∈ IX , ∀r ∈ I0.

(2) α is a fuzzy operator on X such that α(µ, r) ≥ µ ∀µ ∈ IX , ∀r ∈ I0.

As a special case of fuzzy operators, by the identity fuzzy operator idX on a set
X we mean that idX : IX × I0 → IX so that idX(ν, r) = ν ∀ν ∈ IX ,∀r ∈ I0.

Recall that a fuzzy ideal I on X ([13]) is a map I : IX → I that satisfies the
following conditions:

(1) λ ≤ µ ⇒ I(λ) ≥ I(µ),

(2) I(λ ∨ µ) ≥ I(λ) ∧ I(µ).

Also, I is called proper if I(1) = 0 and there exists µ ∈ IX such that I(µ) > 0.
Define the fuzzy ideal I◦ by

I◦(µ) =

{
1 at µ = 0,
0 otherwise

Let us define the fuzzy difference between two fuzzy sets as follows:

(λ ∧̄ µ) =

{
0 if λ ≤ µ,
λ ∧ µc if otherwise.
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Definition 2.1. [4]

(1) A mapping f : (X, τ1) → (Y, τ2) is said to be fuzzy (α, β, θ, δ, I)-continuous if
for every µ ∈ IY , any fuzzy ideal I on X,

I[α(f−1(δ(µ, r)), r) ∧̄ β(f−1(θ(µ, r)), r)] ≥ τ2(µ); r ∈ I0.

We can see that the above definition generalizes the concept of fuzzy continuity
([14]) when we choose α = identity operator, β = interior operator, δ = identity
operator, θ = identity operator and I = I◦.

(2) A mapping f : (X, τ1) → (Y, τ2) is said to be fuzzy (α, β, θ, δ, I∗)-open if for
every λ ∈ IX , any fuzzy ideal I∗ on Y ,

I∗[θ(f(β(λ, r)), r) ∧̄ δ(f(α(λ, r)), r)] ≥ τ(λ); r ∈ I0.

We can see that the above definition generalizes the concept of fuzzy openness
([14]) when we choose α = identity operator, β = interior operator, δ = interior
operator, θ = identity operator and I∗ = I◦.

3 r-Fuzzy β-Ti Separation Axioms

Here, we introduce and study fuzzy separation axioms related with a fuzzy operator
β on the initial set X.

Definition 3.1.

(1) A set X is called r-fuzzy β-T0 if for all x 6= y in X, there exists λ ∈ IX , r ∈ I0

with t ≤ β(λ, r) (x); t ∈ I0 such that t > λ(y) or there exists µ ∈ IX , r ∈ I0

with s ≤ β(µ, r) (y); s ∈ I0 such that s > µ(x).

(2) A set X is called r-fuzzy β-T1 if for all x 6= y in X, there exist λ, µ ∈ IX , r ∈ I0

with t ≤ β(λ, r) (x), s ≤ β(µ, r) (y); t, s ∈ I0 such that t > λ(y), s > µ(x).

(3) A set X is called r-fuzzy β-T2 if for all x 6= y in X, there exist λ, µ ∈ IX , r ∈ I0

with t ≤ β(λ, r) (x), s ≤ β(µ, r) (y); t, s ∈ I0 such that (t ∧ s) > sup(λ ∧ µ).

Proposition 3.2. Every r-fuzzy β-Ti set X is an r-fuzzy β-Ti−1, i = 1, 2.

Proof. r-fuzzy β-T2 ⇒ r-fuzzy β-T1: Suppose that X is an r-fuzzy β-T2 but it is not
r-fuzzy β-T1. Then, for all x 6= y in X and for all λ ∈ IX with t ≤ β(λ, r) (x), r ∈ I0,
suppose that λ(y) ≥ t; t ∈ I0. Now, for µ ∈ IX with s ≤ β(µ, r) (y) ≤ µ(y); s ∈ I0,
we get that

sup(λ ∧ µ) ≥ (λ ∧ µ) (y) ≥ (t ∧ s),

which means a contradiction to X is r-fuzzy β-T2. Hence, X is an r-fuzzy β-T1.
r-fuzzy β-T1 ⇒ r-fuzzy β-T0: Direct.
Recall that: a fuzzy operator θ is finer than a fuzzy operator β on a set X,

denoted by β v θ, if β(ν, r) ≤ θ(ν, r) ∀ν ∈ IX , ∀r ∈ I0.

Proposition 3.3. Let X be an r-fuzzy β-Ti, i = 0, 1, 2, and θ a fuzzy operator on
X finer than β. Then X is also r-fuzzy θ-Ti space, i = 0, 1, 2.
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Proof. For all the axioms r-fuzzy β-Ti, i = 0, 1, 2, the proof comes from that β(ν, r) ≤
θ(ν, r) ∀ν ∈ IX , ∀r ∈ I0.

Example 3.4.

(1) Let X = {x, y}, r ∈ I0 and

β(ν, r) =





ν at ν = 0, 1
x1 at x1 ≤ ν < 1,
0 otherwise.

Then, we get λ = x1 ∈ IX , t = 1
4
∈ I0 with β(λ, r) (x) = x1(x) = 1 ≥ t and

λ(y) = x1(y) = 0 < t. Hence, the set X is an r-fuzzy β-T0 set and it is neither
r-fuzzy β-T1 nor r-fuzzy β-T2.

(2) Let X = {x, y}, r ∈ I0 and

β(ν, r) =





ν at ν = 0, 1
x1 at x1 ≤ ν < 1,
y1 at y1 ≤ ν < 1,
0 otherwise.

Then, we get λ = y1 ∈ IX , t = 1
5
∈ I0 with β(λ, r) (y) = y1(y) = 1 ≥ t and

λ(x) = y1(x) = 0 < t. Similarly, we get µ = x1 ∈ IX , s = 1
3
∈ I0 with

β(µ, r) (x) = x1(x) = 1 ≥ s and µ(y) = x1(y) = 0 < s. Hence, the set X is an
r-fuzzy β-T1 set.

For λ = x1 ∨ y 1
2
, µ = y1 ∨ x 1

2
∈ IX , t, s > 1

2
∈ I0, we get that

β(λ, r) (x) = x1(x) = 1 ≥ t and β(µ, r)(y) = y1(y) = 1 ≥ s

such that

(t ∧ s) >
1

2
= sup(x 1

2
∨ y 1

2
) = sup(λ ∧ µ).

Hence, the set X is an r-fuzzy β-T2 set.

(3) Let X = {x, y}, r ∈ I0 and

β(ν, r) =





ν at ν = 0, 1
0.2 at 0.2 ≤ ν, ν < x1 ∨ y0.2, ν < x0.2 ∨ y1,
x1 ∨ y0.2 at x1 ∨ y0.2 ≤ ν < 1,
x0.2 ∨ y1 at x0.2 ∨ y1 ≤ ν < 1
0 otherwise.

Then, there exist λ = x1 ∨ y0.3, µ = x0.3 ∨ y1 such that β(λ, r) (x) = 1 ≥ t >
0.3 = λ(y) for t ∈ I0 and β(µ, r) (y) = 1 ≥ s > 0.3 = µ(x) for s ∈ I0, and then
X is an r-fuzzy β-T1 set.

Now, we study all possible fuzzy sets in IX :

Then
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(a) For any λ = x1 ∨ yp, µ = x1 ∨ yq, p, q ≥ 0.2, we get that: β(λ, r) (x) = 1 ≥
t, β(µ, r) (y) = 0.2 ≥ s; t, s ∈ I0 but (t∧s) ≤ 0.2 ≤ sup(λ∧µ), p, q ≥ 0.2.

(b) For any λ = xp ∨ y1 or x1 ∨ yp, µ = xq ∨ y1 or x1 ∨ yq, p, q < 0.2, we get
that: β(λ, r) (x) = 0(x) = 0 = 0(y) = β(µ, r) (y).

(c) For any λ = xp, µ = xq or λ = yp, µ = yq or λ = xp, µ = yq, p, q ∈ I, we
get that: β(λ, r) (x) = 0(x) = 0 = 0(y) = β(µ, r) (y).

Hence, for every λ, µ ∈ IX with β(λ, r) (x) ≥ t and β(µ, r) (y) ≥ s; t, s ∈ I0,
we have (t ∧ s) ≤ sup(λ ∧ µ), and thus X is not an r-fuzzy β-T2 set.

Proposition 3.5. Let f : X → Y be an injective mapping. Assume that δ is a
fuzzy operator on Y such that

f−1(δ(λ, r)) ≤ β(f−1(λ), r) ∀λ ∈ IY , ∀r ∈ I0.

Then, Y is an r-fuzzy δ-Ti implies that X is an r-fuzzy β-Ti, i = 0, 1, 2.

Proof. Since x 6= y in X implies that f(x) 6= f(y) in Y and Y is an r-fuzzy δ-T1,
then there exists λ ∈ IY with t ≤ δ(λ, r)(f(x)); t ∈ I0 so that t > λ(f(y)), that is,

t ≤ [f−1(δ(λ, r))](x) ≤ [β(f−1(λ), r)](x) and t > (f−1(λ)) (y),

which means that there exists µ = f−1(λ) ∈ IX with t ≤ β(µ, r)(x); t ∈ I0 so that
t > µ(y). Hence, X is an r-fuzzy β-T1, and consequently X is an r-fuzzy β-T0.

Now, for x 6= y in X implies that f(x) 6= f(y) in Y and Y is an r-fuzzy δ-T2,
then there exist λ, µ ∈ IY with t ≤ δ(λ, r)(f(x)), s ≤ δ(µ, r)(f(y)); s, t ∈ I0 so that
(t ∧ s) > sup(λ ∧ µ).

Since sup(λ ∧ µ) ≥ sup(f−1(λ) ∧ f−1(µ)), then (t ∧ s) > sup(f−1(λ) ∧ f−1(µ)).
Also,

t ≤ [f−1(δ(λ, r))](x) ≤ [β(f−1(λ), r)](x)

and
s ≤ [f−1(δ(µ, r))](y) ≤ [β(f−1(µ), r)](y).

Hence, there exist ν = f−1(λ), ρ = f−1(µ) ∈ IX with t ≤ β(ν, r)(x), s ≤ β(ρ, r)(y); s, t ∈
I0 so that (t ∧ s) > sup(ν ∧ ρ), and thus X is an r-fuzzy β-T2.

Proposition 3.6. Let f : X → Y be a surjective mapping. Assume that δ is a
fuzzy operator on Y such that

f(β(λ, r)) ≤ δ(f(λ), r) ∀λ ∈ IX , ∀r ∈ I0.

Then, X is an r-fuzzy β-Ti implies that Y is an r-fuzzy δ-Ti, i = 0, 1, 2.

Proof. Since p 6= q in Y implies that x 6= y where x = f−1(p), y = f−1(q) in X, and
X is an r-fuzzy β-T1, then there exists λ ∈ IX with t ≤ β(λ, r)(f−1(p)); t ∈ I0 so
that t > λ(f−1(q)), that is,

t ≤ [f(β(λ, r))](p) ≤ [δ(f(λ), r)](p) and t > (f(λ)) (q),

which means that there exists µ = f(λ) ∈ IY with t ≤ δ(µ, r)(p); t ∈ I0 so that
t > µ(q). Hence, Y is an r-fuzzy δ-T1, and consequently Y is an r-fuzzy δ-T0.
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Now, for p 6= q in Y implies that f−1(p) 6= f−1(q) in X and X is an r-fuzzy β-T2,
then there exist λ, µ ∈ IX with t ≤ β(λ, r)(f−1(p)), s ≤ β(µ, r)(f−1(q)); s, t ∈ I0 so
that (t ∧ s) > sup(λ ∧ µ).

Since sup(λ ∧ µ) ≥ sup(f(λ) ∧ f(µ)), then (t ∧ s) > sup(f(λ) ∧ f(µ)). Also,

t ≤ [f(β(λ, r))](p) ≤ [δ(f(λ), r)](p) and s ≤ [f(β(µ, r))](q) ≤ [δ(f(µ), r)](q).

Hence, there exist ν = f(λ), ρ = f(µ) ∈ IY with t ≤ δ(ν, r)(p), s ≤ δ(ρ, r)(q); s, t ∈
I0 so that (t ∧ s) > sup(ν ∧ ρ), and thus Y is an r-fuzzy δ-T2.

Remark 3.7.

(1) For a fuzzy topological space (X, τ), by choosing β = fuzzy interior operator,
you can deduce the equivalence between the graded fuzzy separation axioms
(t, s)-Ti, i = 0, 1, 2; t, s ∈ I0 introduced in [5, 6] and the axioms r-fuzzy β-
Ti, i = 0, 1, 2.

(2) For two fuzzy topological spaces (X, τ), (Y, σ), and f : X → Y a mapping,
by choosing β = fuzzy interior operator, we get that (X, τ) is (t, s)-Ti, i =
0, 1, 2; t, s ∈ I0 whenever (Y, σ) is (t, s)-Ti, i = 0, 1, 2; t, s ∈ I0 and f is
injective fuzzy continuous (when δ = fuzzy interior operator in Proposition
3.5) as shown in [5]. This is equivalent to f is injective and α = identity
operator, β = interior operator, δ = interior operator, θ = identity operator
and I = I◦ in Definition 2.1 (1).

(3) For two fuzzy topological spaces (X, τ), (Y, σ), and f : X → Y a mapping,
by choosing δ = fuzzy interior operator, we get that (Y, σ) is (t, s)-Ti, i =
0, 1, 2; t, s ∈ I0 whenever (X, τ) is (t, s)-Ti, i = 0, 1, 2; t, s ∈ I0 and f is
surjective fuzzy open (when β = fuzzy interior operator in Proposition 3.6) as
shown in [5]. This is equivalent to f is surjective and α = identity operator,
β = interior operator, δ = interior operator, θ = identity operator and I = I◦
in Definition 2.1 (2).

4 r-Fuzzy α-Connected Spaces

Here, we introduce the r-fuzzy connectedness of a space X relative to a fuzzy operator
α. Assume (with respect to any fuzzy topology τ defined on X) that:

λ ≤ α(λ, r) ≤ clτ (λ, r) ∀λ ∈ IX ; r ∈ I0.

Also, assume that α is a monotone operator, that is,

µ ≤ ν implies α(µ, r) ≤ α(ν, r) ∀µ, ν ∈ IX ; r ∈ I0.

Definition 4.1. Let X be a non-empty set. Then,

(1) the fuzzy sets λ, µ ∈ IX are called r-fuzzy α-separated sets if

α(λ, r) ∧ µ = λ ∧ α(µ, r) = 0; r ∈ I0.
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(2) X is called r-fuzzy α-connected space if it could not be found λ, µ ∈ IX ,
λ 6= 0, µ 6= 0 such that λ, µ are r-fuzzy α-separated and λ ∨ µ = 1. That is,
there are no r-fuzzy α-separated sets λ, µ ∈ IX except λ = 0 or µ = 0.

Definition 4.2. Let λ, µ ∈ IX , λ 6= 0, µ 6= 0 such that:

(1) λ, µ are r-fuzzy α-separated and λ ∨ µ = 1. Then X is called r-fuzzy α-
disconnected space.

(2) λ, µ are r-fuzzy α-separated and λ ∨ µ = ν. Then ν is called r-fuzzy α-
disconnected fuzzy set in IX .

(3) λ, µ are r-fuzzy α-separated and λ∨µ = χA, A ⊆ X. Then A is called r-fuzzy
α-disconnected crisp set in IX .

Remark 4.3. For a fuzzy topological space (X, τ)

(1) Taking α = fuzzy closure operator on (X, τ), then we have the r-fuzzy con-
nectedness as given in [7].

(2) Taking α = fuzzy preclosure operator on (X, τ), then we have the r-fuzzy
preconnectedness as given in [2].

(3) Taking α = fuzzy strongly semi-closure operator on (X, τ), then we have the
r-fuzzy strongly connectedness as given in [10].

(4) Taking α = fuzzy semi-closure operator on (X, τ), then we have the 1-type of
r-fuzzy strongly connectedness as given in [10].

(5) Taking α = fuzzy semi-preclosure operator on (X, τ), then we have the r-fuzzy
semi-preconnectedness as given in [2].

(6) Taking α = fuzzy strongly preclosure operator on (X, τ), then we have the
r-fuzzy strongly preconnectedness as given in [2].

Example 4.4. Let X = {x, y}, r ∈ I0,

α(ν, r) =





ν at ν = 0, 1
x1 at 0 < ν ≤ x1,
y1 at 0 < ν ≤ y1,
1 otherwise,

Now, at λ 6= 0, λ ≤ x1, µ 6= 0, µ ≤ y1, r ≤ 1
4
, then we have α(λ, r)∧µ = x1∧µ = 0

and α(µ, r) ∧ λ = y1 ∧ λ = 0, and thus λ, µ are r-fuzzy α-separated sets for λ 6=
0, λ ≤ x1, µ 6= 0, µ ≤ y1.

At λ = x1 and µ = y1, we get r-fuzzy α-separated sets with 1 = λ∨µ. Hence, X
is an r-fuzzy α-disconnected space.

Proposition 4.5. Let (X, τ) be a fuzzy topological space. Then the following are
equivalent.

(1) (X, τ) is r-fuzzy α-connected.
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(2) λ ∧ µ = 0, τ(λ) ≥ r, τ(µ) ≥ r; r ∈ I0, and 1 = λ ∨ µ imply λ = 0 or µ = 0.

(3) λ ∧ µ = 0, τc(λ) ≥ r, τc(µ) ≥ r; r ∈ I0, and 1 = λ ∨ µ imply λ = 0 or µ = 0.

Proof. (1) ⇒ (2): Let λ, µ ∈ IX with τ(λ) ≥ r, τ(µ) ≥ r; r ∈ I0 such that λ∧ µ = 0
and 1 = λ ∨ µ. Then, λ = µc and µ = λc, and then

0 = λ ∧ µ = µc ∧ λc = clτ (µ
c, r) ∧ λc ≥ α(µc, r) ∧ λc and

0 = λ ∧ µ = µc ∧ λc = µc ∧ clτ (λ
c, r) ≥ µc ∧ α(λc, r); r ∈ I0,

which means that λc, µc are fuzzy α-separated so that λc ∨ µc = µ ∨ λ = 1. But
(X, τ) is r-fuzzy α-connected implies that λc = 0 or µc = 0, and thus λ = 0 or µ = 0.

(2) ⇒ (3): Clear.

(3) ⇒ (1): Let λ, µ ∈ IX , λ 6= 0, µ 6= 0 such that λ∨µ = 1. Taking ν = clτ (λ, r)
and ρ = clτ (µ, r); r ∈ I0, then ν ∨ ρ = 1 and τc(ν) ≥ r, τc(ρ) ≥ r; r ∈ I0.

Now, suppose that (3) is not satisfied. That is, ν 6= 0, ρ 6= 0 and ν ∧ ρ = 0.
Then,

α(λ, r) ∧ µ ≤ clτ (λ, r) ∧ clτ (µ, r) = ν ∧ ρ = 0 and

α(µ, r) ∧ λ ≤ clτ (λ, r) ∧ clτ (µ, r) = ν ∧ ρ = 0,

which means that λ, µ are r-fuzzy α-separated sets, λ 6= 0, µ 6= 0 with λ ∨ µ = 1.
Hence, (X, τ) is not r-fuzzy α-connected space.

Proposition 4.6. Let X be a non-empty set and λ ∈ IX . Then the following are
equivalent.

(1) λ is r-fuzzy α-connected.

(2) If µ, ρ are r-fuzzy α-separated sets with λ ≤ µ∨ρ, then λ∧µ = 0 or λ∧ρ = 0.

(3) If µ, ρ are r-fuzzy α-separated sets with λ ≤ µ ∨ ρ, then λ ≤ µ or λ ≤ ρ.

Proof. (1) ⇒ (2): Let µ, ρ be r-fuzzy α-separated with λ ≤ µ ∨ ρ, that is,
α(µ, r) ∧ ρ = α(ρ, r) ∧ µ = 0; r ∈ I0 so that λ ≤ µ ∨ ρ. Then, from that α is a
monotone fuzzy operator, we get that

α((λ∧µ), r)∧(λ∧ρ) ≤ α(λ, r)∧α((µ, r)∧(λ∧ρ) = (α(λ, r)∧λ)∧(α((µ, r)∧ρ) = λ∧0 = 0

and

α((λ ∧ ρ), r) ∧ (λ ∧ µ) ≤ (α(λ, r) ∧ λ) ∧ (α(ρ, r) ∧ µ) = λ ∧ 0 = 0; r ∈ I0.

That is, λ ∧ µ and λ ∧ ρ are r-fuzzy α-separated sets so that λ = (λ ∧ µ) ∨ (λ ∧ ρ).
But λ is r-fuzzy α-connected implies that (λ ∧ µ) = 0 or (λ ∧ ρ) = 0.

(2) ⇒ (3): If λ ∧ µ = 0, then λ = λ ∧ (µ ∨ ρ) = λ ∧ ρ, and thus λ ≤ ρ. Also, if
λ ∧ ρ = 0, then λ = λ ∧ µ, and then λ ≤ µ.

(3) ⇒ (1): Let µ, ρ be r-fuzzy α-separated sets such that λ = µ∨ ρ. Then, from
(3), λ ≤ µ or λ ≤ ρ. If λ ≤ µ, then ρ = λ ∧ ρ ≤ µ ∧ ρ ≤ α(µ, r) ∧ ρ = 0. Also, if
λ ≤ ρ, then µ = λ ∧ µ ≤ ρ ∧ µ ≤ α(ρ, r) ∧ µ = 0. Hence, λ is r-fuzzy α-connected.
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Theorem 4.7. Let f : X → Y be a mapping such that

α(f−1(ν), r) ≤ f−1(θ(ν, r)) ∀ν ∈ IY , r ∈ I0,

where α is a fuzzy operator on X and θ is a fuzzy operator on Y . Then, f(λ) ∈ IY

is r-fuzzy θ-connected if λ ∈ IX is r-fuzzy α-connected.

Proof. Let µ, ρ ∈ IY , µ 6= 0, ρ 6= 0 be r-fuzzy θ-separated sets in IY with f(λ) =
µ ∨ ρ. That is, θ(µ, r) ∧ ρ = θ(ρ, r) ∧ µ = 0; r ∈ I0. Then, λ ≤ f−1(µ) ∨ f−1(ρ),
and

α(f−1(µ), r) ∧ f−1(ρ) ≤ f−1(θ(µ, r)) ∧ f−1(ρ)

= f−1(θ(µ, r) ∧ ρ)

= f−1(0) = 0,

α(f−1(ρ), r) ∧ f−1(µ) ≤ f−1(θ(ρ, r)) ∧ f−1(µ)

= f−1(θ(ρ, r) ∧ µ)

= f−1(0) = 0.

Hence, f−1(µ) and f−1(ρ) are r-fuzzy α-separated sets in X so that λ ≤ f−1(µ) ∨
f−1(ρ). But λ is r-fuzzy α-connected means, from (3) in Proposition 4.6, that
λ ≤ f−1(µ) or λ ≤ f−1(ρ), which means that f(λ) ≤ µ or f(λ) ≤ ρ. Thus, again
from (3) in Proposition 4.6, we get that f(λ) is r-fuzzy θ-connected.

Corollary 4.8. (Theorem 2.12 in [7]) Let (X, τ1), (Y, τ2) be two fuzzy topological
spaces. If f : X → Y is a fuzzy continuous mapping and λ ∈ IX is r-fuzzy connected
in X, then f(λ) is an r-fuzzy connected in Y .

Proof. Let α = fuzzy closure operator and θ = fuzzy closure operator. Then, the
result follows from Theorem 4.7.

Corollary 4.9. (Theorems 2.12, 3.11 in [10]) Let (X, τ1), (Y, τ2) be two fuzzy topo-
logical spaces. Let f : (X, τ1) → (Y, τ2) be S-irresolute (resp. irresolute). If λ ∈ IX

is r-fuzzy strongly connected (resp. 1-type of r-fuzzy strongly connected) in X, then
f(λ) is r-fuzzy strongly connected (resp. 1-type of r-fuzzy strongly connected) in Y .

Proof. Let α = fuzzy strongly semi-closure (resp. semi-closure) operator and θ =
fuzzy strongly semi-closure (resp. semi-closure) operator. Then, the result follows
from Theorem 4.7.

Corollary 4.10. Let (X, τ1), (Y, τ2) be two fuzzy topological spaces. Let f :
(X, τ1) → (Y, τ2) be fuzzy semi-pre-irresolute. If λ ∈ IX is r-fuzzy semi-preconnected
in X, then f(λ) is r-fuzzy semi-preconnected in Y .

Proof. Let α = fuzzy semi-preclosure operator and θ = fuzzy semi-preclosure oper-
ator. Then, the result follows from Theorem 4.7.

Corollary 4.11. (Theorem 5.10 in [2]) Let (X, τ1), (Y, τ2) be two fuzzy topolog-
ical spaces. Let f : (X, τ1) → (Y, τ2) be fuzzy strongly pre-irresolute (resp. pre-
irresolute). If λ ∈ IX is r-fuzzy s preconnected (resp. preconnected) in X, then
f(λ) is r-fuzzy s preconnected (preconnected) in Y .
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Proof. Let α = fuzzy strongly preclosure (resp. preclosure) operator and θ =
fuzzy strongly preclosure (resp. preclosure) operator. Then, the result follows from
Theorem 4.7.

Corollary 4.12. Let (X, τ1), (Y, τ2) be two fuzzy topological spaces. Let f :
(X, τ1) → (Y, τ2) be fuzzy semi-continuous (resp. precontinuous, strongly semi-
continuous, strongly precontinuous and semi-precontinuous) mapping. If λ ∈ IX is
1-type of r-fuzzy strongly connected (resp. r-fuzzy preconnected, r-fuzzy strongly
connected, r-fuzzy strongly preconnected and r-fuzzy semi-preconnected) in X, then
f(λ) is r-fuzzy connected in Y .

Proof. Let α = fuzzy semi-closure (resp. preclosure, strongly semi-closure, strongly
preclosure and semi-preclosure) operator and θ = fuzzy closure operator. Then, the
result follows from Theorem 4.7.

Proposition 4.13. Any fuzzy point xt, t ∈ I0 is r-fuzzy α-connected, and conse-
quently x1∀x ∈ X is r-fuzzy α-connected.

Proof. Clear.

Definition 4.14. Let X be a non-empty set and λ ∈ IX . Then, λ is r-fuzzy α-
component if λ is maximal r-fuzzy α-connected set in X, that is, if µ ≥ λ and µ is
r-fuzzy α-connected set, then λ = µ.

Proposition 4.15. Let λ 6= 0 be r-fuzzy α-connected in X and λ ≤ µ ≤ α(λ, r); r ∈
I0. Then, µ is r-fuzzy α-connected.

Proof. Let ν, ρ be r-fuzzy α-separated sets such that µ = ν∨ρ. That is, α(ν, r)∧ρ =
α(ρ, r)∧ν = 0; r ∈ I0. Since λ ≤ µ, then λ ≤ (ν∨ρ). From λ is r-fuzzy α-connected,
and from (3) in Proposition 4.6, we have λ ≤ ν or λ ≤ ρ. If λ ≤ ν, then

ρ = µ ∧ ρ ≤ α(λ, r) ∧ ρ ≤ α(ν, r) ∧ ρ = 0.

If λ ≤ ρ, then
ν = µ ∧ ν ≤ α(λ, r) ∧ ν ≤ α(ρ, r) ∧ ν = 0.

Hence, µ is r-fuzzy α-connected.

5 Fuzzy α-Compact Spaces

This section is devoted to introduce the notion of r-fuzzy α-compact spaces.

Definition 5.1. Let (X, τ) be a fuzzy topological space, α a fuzzy operator on X,
and µ ∈ IX , r ∈ I0. Then, µ is called r-fuzzy α-compact if for each family
{λj ∈ IX : τ(λj) ≥ r, j ∈ J} with µ ≤ ∨

j∈J

λj, there exists a finite subset J0 ⊆ J

such that µ ≤ ∨
j∈J0

α(λj, r).

Remark 5.2. For a fuzzy topological space (X, τ):

(1) if α = fuzzy identity operator, we get the r-fuzzy compactness as given in [1].
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(2) if α = fuzzy closure operator, we get the r-fuzzy almost compactness as given
in [1].

(3) if α = fuzzy interior closure operator, we get the r-fuzzy near compactness as
given in [1].

(4) if α = fuzzy semi-closure (resp. preclosure, strongly semi-closure, strongly
preclosure and semi-preclosure) operator, we get the r-fuzzy semi-compactness
(resp. precompactness, strongly semi-compactness, strongly precompactness
and semi-precompactness [11]).

Theorem 5.3. Let (X, τ) and (Y, σ) be two fuzzy topological spaces, α a fuzzy
operator on X, θ is a fuzzy operators on Y . If f : X → Y is fuzzy (α, intτ , θ, idY , I◦)-
continuous and µ ∈ IX is r-fuzzy compact in X, then f(µ) is r-fuzzy θ-compact in
Y .

Proof. Let {λj ∈ IY : σ(λj) ≥ r, j ∈ J} be a family with f(µ) ≤ ∨
j∈J

λj. Since f is

fuzzy (α, intτ , θ, idY , I◦)-continuous, we get that there exists µj = intτ (f
−1(θ(λj, r)), r) ∈

IX with τ(µj) ≥ r ∀j ∈ J such that

α(f−1(λj), r) ≤ µj ≤ f−1(θ(λj, r)).

Also, since f−1(λj) ≤ α(f−1(λj), r), then

f−1(λj) ≤ µj ≤ f−1(θ(λj, r)),

which means that

µ ≤
∨
j∈J

f−1(λj) ≤
∨
j∈J

(µj) ≤ f−1(
∨
j∈J

θ(λj, r)),

that is, µ ≤ ∨
j∈J

(µj). By r-fuzzy compactness of µ, there exists a finite set J0 ⊆ J

such that µ ≤ ∨
j∈J0

(µj), and thus

f(µ) ≤
∨
j∈J0

f(µj) ≤
∨
j∈J0

θ(λj, r),

and therefore f(µ) is r-fuzzy θ-compact.

Corollary 5.4. ([11]) Let (X, τ) and (Y, σ) be two fuzzy topological spaces. Let
f : X → Y be a fuzzy continuous mapping and µ ∈ IX an r-fuzzy compact set in
X, then f(µ) is r-fuzzy compact in Y .

Proof. Let α = fuzzy identity operator on X, θ = fuzzy identity operator and
I = I◦, then the result follows from Theorem 5.3.

Corollary 5.5. ([11]) Let (X, τ) and (Y, σ) be two fuzzy topological spaces. Let
f : X → Y be a fuzzy weakly continuous mapping ([8]) and µ ∈ IX an r-fuzzy
compact set in X, then f(µ) is r-fuzzy almost compact in Y .
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Proof. Let α = fuzzy identity operator on X, θ = fuzzy closure operator and I = I◦,
then the result follows from Theorem 5.3.

Corollary 5.6. ([11]) Let (X, τ) and (Y, σ) be two fuzzy topological spaces. Let
f : X → Y be a fuzzy almost continuous mapping ([9]) and µ ∈ IX an r-fuzzy
compact set in X, then f(µ) is r-fuzzy nearly compact in Y .

Proof. Let α = fuzzy identity operator on X, θ = fuzzy interior closure operator
and I = I◦, then the result follows from Theorem 5.3.

Corollary 5.7. Let (X, τ) and (Y, σ) be two fuzzy topological spaces. Let f : X →
Y be a fuzzy semi-continuous [12] (resp. precontinuous [8], strongly semi-continuous
[3], strongly precontinuous [2] and semi-precontinuous [8]) mapping, and µ ∈ IX an
r-fuzzy compact set in X, then f(µ) is r-fuzzy semi-compact (resp. precompact,
strongly semi-compact, strongly precompact and semi-precompact) in Y .

Proof. Let α = fuzzy identity operator on X, θ = fuzzy semi-closure (resp. pre-
closure, strongly semi-closure, strongly preclosure and semi-preclosure) operator and
I = I◦, then the result follows from Theorem 5.3.
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