http://www.newtheory.org

ISSN: 2149-1402

Received: 26.04.2018 Published: 07.10.2018 Year: 2018, Number: 25, Pages: 16-28 Original Article

Generalized Topological Notions by Operators

Ismail Ibedou <iibedou@jazanu.edu.sa>

Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt

Abstract — In this paper, it is introduced the notion of r-fuzzy β - T_i , i = 0, 1, 2 separation axioms related to a fuzzy operator β on the initial set X which is a generalization of previous fuzzy separation axioms. An r-fuzzy α -connectedness related to a fuzzy operator α on the set X is introduced which is a generalization of many types of r-fuzzy connectedness. An r-fuzzy α -compactness related to a fuzzy operator α on the set X is introduced which is a generalization of many types of fuzzy compactness.

Keywords - Fuzzy operators, fuzzy separation axioms, fuzzy compactness, fuzzy connectedness.

1 Introduction

It is a way to use fuzzy operators α , β on the initial set X and to use fuzzy operators θ , δ on the set Y giving generalizations of many notions and results in fuzzy topological spaces. r-fuzzy β - T_i , i = 0, 1, 2 separation axioms of the set X is a new type of fuzzy separation axioms related with a fuzzy operator β on X. It is proved that the image of r-fuzzy β - T_i , i = 0, 1, 2 is r-fuzzy δ - T_i , i = 0, 1, 2, and also the preimage of r-fuzzy δ - T_i , i = 0, 1, 2 is r-fuzzy β - T_i , i = 0, 1, 2. r-fuzzy α -connectedness is introduced related with the fuzzy operator α on X giving a generalization of many of fuzzy θ -connected, and some particular cases are included. r-fuzzy α -compactness is introduced using the fuzzy operator α on X giving a generalization of many of fuzzy compactness notions. It is proved that the image of r-fuzzy α -compactness is introduced using the fuzzy operator α on X giving a generalization of many of fuzzy compactness notions. It is proved that the image of r-fuzzy α -compactness is introduced using the fuzzy operator α on X giving a generalization of many of fuzzy compactness notions. It is proved that the image of r-fuzzy r-fuzzy compactness is introduced using the fuzzy operator α on X giving a generalization of many of fuzzy θ -compact, and many special cases are deduced.

2 Preliminaries

Throughout the paper, X refers to an initial universe, I^X is the set of all fuzzy sets on X (where $I = [0, 1], I_0 = (0, 1], \lambda^c(x) = 1 - \lambda(x) \quad \forall x \in X$ and for all $t \in I$, $\overline{t}(x) = t \quad \forall x \in X$). (X, τ) is a fuzzy topological space ([14]), if $\tau : I^X \to I$ satisfies the following conditions:

(O1)
$$\tau(\overline{0}) = \tau(\overline{1}) = 1$$
,
(O2) $\tau(\lambda_1 \wedge \lambda_2) \ge \tau(\lambda_1) \wedge \tau(\lambda_2)$ for all $\lambda_1, \lambda_2 \in I^X$,
(O3) $\tau(\bigvee_{j \in J} \lambda_j) \ge \bigwedge_{j \in J} \tau(\lambda_j)$ for all $\{\lambda_j\}_{j \in J} \subseteq I^X$.

By the concept of a fuzzy operator on a set X is meant a map $\gamma : I^X \times I_0 \to I^X$. Assume with respect to a fuzzy topology in Šostak sense defined on X, we have

$$\operatorname{int}_{\tau}(\mu, r) \leq \gamma(\mu, r) \leq \operatorname{cl}_{\tau}(\mu, r) \ \forall \mu \in I^X, \ \forall r \in I_0,$$

where $\operatorname{int}_{\tau}, \operatorname{cl}_{\tau} : I^X \times I_0 \to I^X$ are defined in Šostak sense for any $\mu \in I^X$ and each grade $r \in I_0$ as follows:

$$\operatorname{int}_{\tau}(\mu, r) = \bigvee \{\eta \in I^X : \eta \le \mu, \ \tau(\eta) \ge r\}$$

and

$$\operatorname{cl}_{\tau}(\mu, r) = \bigwedge \{ \eta \in I^X : \eta \ge \mu, \ \tau(\eta^c) \ge r \}$$

Let (X, τ_1) and (Y, τ_2) be two fuzzy topological spaces, α and β are fuzzy operators on X, θ and δ are fuzzy operators on Y, respectively. This type of maps α or β is called an expansion on X or a fuzzy operator on (X, τ_1) , and the map θ or δ is called an expansion on Y or a fuzzy operator on (Y, τ_2) and let us fix that:

- (1) β is a fuzzy operator on X such that $\beta(\mu, r) \leq \mu \quad \forall \mu \in I^X, \ \forall r \in I_0.$
- (2) α is a fuzzy operator on X such that $\alpha(\mu, r) \ge \mu \quad \forall \mu \in I^X, \ \forall r \in I_0.$

As a special case of fuzzy operators, by the identity fuzzy operator id_X on a set X we mean that $id_X : I^X \times I_0 \to I^X$ so that $id_X(\nu, r) = \nu \quad \forall \nu \in I^X, \forall r \in I_0$.

Recall that a fuzzy ideal \mathcal{I} on X ([13]) is a map $\mathcal{I} : I^X \to I$ that satisfies the following conditions:

- (1) $\lambda \leq \mu \Rightarrow \mathcal{I}(\lambda) \geq \mathcal{I}(\mu),$
- (2) $\mathcal{I}(\lambda \lor \mu) \ge \mathcal{I}(\lambda) \land \mathcal{I}(\mu).$

Also, \mathcal{I} is called proper if $\mathcal{I}(\overline{1}) = 0$ and there exists $\mu \in I^X$ such that $\mathcal{I}(\mu) > 0$. Define the fuzzy ideal \mathcal{I}° by

$$\mathcal{I}^{\circ}(\mu) = \begin{cases} 1 & \text{at } \mu = \overline{0}, \\ 0 & \text{otherwise} \end{cases}$$

Let us define the fuzzy difference between two fuzzy sets as follows:

$$(\lambda \bar{\wedge} \mu) = \begin{cases} \bar{0} & \text{if } \lambda \leq \mu, \\ \lambda \wedge \mu^c & \text{if otherwise.} \end{cases}$$

Definition 2.1. [4]

(1) A mapping $f : (X, \tau_1) \to (Y, \tau_2)$ is said to be fuzzy $(\alpha, \beta, \theta, \delta, \mathcal{I})$ -continuous if for every $\mu \in I^Y$, any fuzzy ideal \mathcal{I} on X,

$$\mathcal{I}[\alpha(f^{-1}(\delta(\mu, r)), r) \land \beta(f^{-1}(\theta(\mu, r)), r)] \geq \tau_2(\mu); \ r \in I_0.$$

We can see that the above definition generalizes the concept of fuzzy continuity ([14]) when we choose α = identity operator, β = interior operator, δ = identity operator, θ = identity operator and $\mathcal{I} = \mathcal{I}^{\circ}$.

(2) A mapping $f : (X, \tau_1) \to (Y, \tau_2)$ is said to be fuzzy $(\alpha, \beta, \theta, \delta, \mathcal{I}^*)$ -open if for every $\lambda \in I^X$, any fuzzy ideal \mathcal{I}^* on Y,

$$\mathcal{I}^*[\theta(f(\beta(\lambda, r)), r) \bar{\wedge} \delta(f(\alpha(\lambda, r)), r)] \geq \tau(\lambda); \ r \in I_0.$$

We can see that the above definition generalizes the concept of fuzzy openness ([14]) when we choose α = identity operator, β = interior operator, δ = interior operator, θ = identity operator and $\mathcal{I}^* = \mathcal{I}^\circ$.

3 *r*-Fuzzy β - T_i Separation Axioms

Here, we introduce and study fuzzy separation axioms related with a fuzzy operator β on the initial set X.

Definition 3.1.

- (1) A set X is called r-fuzzy β -T₀ if for all $x \neq y$ in X, there exists $\lambda \in I^X, r \in I_0$ with $t \leq \beta(\lambda, r)(x)$; $t \in I_0$ such that $t > \lambda(y)$ or there exists $\mu \in I^X, r \in I_0$ with $s \leq \beta(\mu, r)(y)$; $s \in I_0$ such that $s > \mu(x)$.
- (2) A set X is called r-fuzzy β -T₁ if for all $x \neq y$ in X, there exist $\lambda, \mu \in I^X, r \in I_0$ with $t \leq \beta(\lambda, r)(x), s \leq \beta(\mu, r)(y); t, s \in I_0$ such that $t > \lambda(y), s > \mu(x)$.
- (3) A set X is called r-fuzzy β -T₂ if for all $x \neq y$ in X, there exist $\lambda, \mu \in I^X, r \in I_0$ with $t \leq \beta(\lambda, r)(x), s \leq \beta(\mu, r)(y); t, s \in I_0$ such that $(t \wedge s) > \sup(\lambda \wedge \mu)$.

Proposition 3.2. Every *r*-fuzzy β - T_i set X is an *r*-fuzzy β - T_{i-1} , i = 1, 2.

Proof. r-fuzzy β - $T_2 \Rightarrow r$ -fuzzy β - T_1 : Suppose that X is an r-fuzzy β - T_2 but it is not r-fuzzy β - T_1 . Then, for all $x \neq y$ in X and for all $\lambda \in I^X$ with $t \leq \beta(\lambda, r)(x), r \in I_0$, suppose that $\lambda(y) \geq t; t \in I_0$. Now, for $\mu \in I^X$ with $s \leq \beta(\mu, r)(y) \leq \mu(y); s \in I_0$, we get that

$$\sup(\lambda \wedge \mu) \ge (\lambda \wedge \mu) (y) \ge (t \wedge s),$$

which means a contradiction to X is r-fuzzy β -T₂. Hence, X is an r-fuzzy β -T₁.

r-fuzzy β - $T_1 \Rightarrow r$ -fuzzy β - T_0 : Direct.

Recall that: a fuzzy operator θ is finer than a fuzzy operator β on a set X, denoted by $\beta \sqsubseteq \theta$, if $\beta(\nu, r) \le \theta(\nu, r) \quad \forall \nu \in I^X, \ \forall r \in I_0$.

Proposition 3.3. Let X be an r-fuzzy β - T_i , i = 0, 1, 2, and θ a fuzzy operator on X finer than β . Then X is also r-fuzzy θ - T_i space, i = 0, 1, 2.

Proof. For all the axioms r-fuzzy β - T_i , i = 0, 1, 2, the proof comes from that $\beta(\nu, r) \leq \theta(\nu, r) \ \forall \nu \in I^X, \ \forall r \in I_0.$

Example 3.4.

(1) Let $X = \{x, y\}, r \in I_0$ and

$$\beta(\nu, r) = \begin{cases} \nu & \text{at } \nu = \overline{0}, \overline{1} \\ x_1 & \text{at } x_1 \le \nu < \overline{1}, \\ \overline{0} & \text{otherwise.} \end{cases}$$

Then, we get $\lambda = x_1 \in I^X$, $t = \frac{1}{4} \in I_0$ with $\beta(\lambda, r)(x) = x_1(x) = 1 \ge t$ and $\lambda(y) = x_1(y) = 0 < t$. Hence, the set X is an r-fuzzy β -T₀ set and it is neither r-fuzzy β -T₁ nor r-fuzzy β -T₂.

(2) Let $X = \{x, y\}, r \in I_0$ and

$$\beta(\nu, r) = \begin{cases} \nu & \text{at } \nu = \overline{0}, \overline{1} \\ x_1 & \text{at } x_1 \le \nu < \overline{1}, \\ y_1 & \text{at } y_1 \le \nu < \overline{1}, \\ \overline{0} & \text{otherwise.} \end{cases}$$

Then, we get $\lambda = y_1 \in I^X$, $t = \frac{1}{5} \in I_0$ with $\beta(\lambda, r)(y) = y_1(y) = 1 \ge t$ and $\lambda(x) = y_1(x) = 0 < t$. Similarly, we get $\mu = x_1 \in I^X$, $s = \frac{1}{3} \in I_0$ with $\beta(\mu, r)(x) = x_1(x) = 1 \ge s$ and $\mu(y) = x_1(y) = 0 < s$. Hence, the set X is an *r*-fuzzy β - T_1 set.

For $\lambda = x_1 \vee y_{\frac{1}{2}}, \ \mu = y_1 \vee x_{\frac{1}{2}} \in I^X, \ t, s > \frac{1}{2} \in I_0$, we get that

$$\beta(\lambda, r)(x) = x_1(x) = 1 \ge t \text{ and } \beta(\mu, r)(y) = y_1(y) = 1 \ge s$$

such that

$$(t \wedge s) > \frac{1}{2} = \sup(x_{\frac{1}{2}} \vee y_{\frac{1}{2}}) = \sup(\lambda \wedge \mu).$$

Hence, the set X is an r-fuzzy β -T₂ set.

(3) Let $X = \{x, y\}, r \in I_0$ and

$$\beta(\nu, r) = \begin{cases} \nu & \text{at } \nu = \overline{0}, \overline{1} \\ \overline{0.2} & \text{at } \overline{0.2} \le \nu, \ \nu < x_1 \lor y_{0.2}, \ \nu < x_{0.2} \lor y_1, \\ x_1 \lor y_{0.2} & \text{at } x_1 \lor y_{0.2} \le \nu < \overline{1}, \\ x_{0.2} \lor y_1 & \text{at } x_{0.2} \lor y_1 \le \nu < \overline{1} \\ \overline{0} & \text{otherwise.} \end{cases}$$

Then, there exist $\lambda = x_1 \vee y_{0.3}$, $\mu = x_{0.3} \vee y_1$ such that $\beta(\lambda, r)(x) = 1 \ge t > 0.3 = \lambda(y)$ for $t \in I_0$ and $\beta(\mu, r)(y) = 1 \ge s > 0.3 = \mu(x)$ for $s \in I_0$, and then X is an r-fuzzy β -T₁ set.

Now, we study all possible fuzzy sets in I^X :

Then

- (a) For any $\lambda = x_1 \vee y_p, \mu = x_1 \vee y_q, p, q \ge 0.2$, we get that: $\beta(\lambda, r)(x) = 1 \ge t, \beta(\mu, r)(y) = 0.2 \ge s; t, s \in I_0$ but $(t \land s) \le 0.2 \le \sup(\lambda \land \mu), p, q \ge 0.2$.
- (b) For any $\lambda = x_p \lor y_1$ or $x_1 \lor y_p$, $\mu = x_q \lor y_1$ or $x_1 \lor y_q$, p, q < 0.2, we get that: $\beta(\lambda, r)(x) = \overline{0}(x) = 0 = \overline{0}(y) = \beta(\mu, r)(y)$.
- (c) For any $\lambda = x_p, \mu = x_q$ or $\lambda = y_p, \mu = y_q$ or $\lambda = x_p, \mu = y_q, p, q \in I$, we get that: $\beta(\lambda, r)(x) = \overline{0}(x) = 0 = \overline{0}(y) = \beta(\mu, r)(y)$.

Hence, for every $\lambda, \mu \in I^X$ with $\beta(\lambda, r)(x) \ge t$ and $\beta(\mu, r)(y) \ge s$; $t, s \in I_0$, we have $(t \land s) \le \sup(\lambda \land \mu)$, and thus X is not an r-fuzzy β -T₂ set.

Proposition 3.5. Let $f: X \to Y$ be an injective mapping. Assume that δ is a fuzzy operator on Y such that

$$f^{-1}(\delta(\lambda, r)) \leq \beta(f^{-1}(\lambda), r) \quad \forall \lambda \in I^Y, \ \forall r \in I_0.$$

Then, Y is an r-fuzzy δ -T_i implies that X is an r-fuzzy β -T_i, i = 0, 1, 2.

Proof. Since $x \neq y$ in X implies that $f(x) \neq f(y)$ in Y and Y is an r-fuzzy δ - T_1 , then there exists $\lambda \in I^Y$ with $t \leq \delta(\lambda, r)(f(x)); t \in I_0$ so that $t > \lambda(f(y))$, that is,

$$t \leq [f^{-1}(\delta(\lambda, r))](x) \leq [\beta(f^{-1}(\lambda), r)](x) \text{ and } t > (f^{-1}(\lambda))(y),$$

which means that there exists $\mu = f^{-1}(\lambda) \in I^X$ with $t \leq \beta(\mu, r)(x)$; $t \in I_0$ so that $t > \mu(y)$. Hence, X is an r-fuzzy β -T₁, and consequently X is an r-fuzzy β -T₀.

Now, for $x \neq y$ in X implies that $f(x) \neq f(y)$ in Y and Y is an r-fuzzy δ -T₂, then there exist $\lambda, \mu \in I^Y$ with $t \leq \delta(\lambda, r)(f(x)), s \leq \delta(\mu, r)(f(y)); s, t \in I_0$ so that $(t \wedge s) > \sup(\lambda \wedge \mu).$

Since $\sup(\lambda \wedge \mu) \ge \sup(f^{-1}(\lambda) \wedge f^{-1}(\mu))$, then $(t \wedge s) > \sup(f^{-1}(\lambda) \wedge f^{-1}(\mu))$. Also,

$$t \leq [f^{-1}(\delta(\lambda, r))](x) \leq [\beta(f^{-1}(\lambda), r)](x)$$

and

$$s \leq [f^{-1}(\delta(\mu, r))](y) \leq [\beta(f^{-1}(\mu), r)](y).$$

Hence, there exist $\nu = f^{-1}(\lambda)$, $\rho = f^{-1}(\mu) \in I^X$ with $t \leq \beta(\nu, r)(x)$, $s \leq \beta(\rho, r)(y)$; $s, t \in I_0$ so that $(t \wedge s) > \sup(\nu \wedge \rho)$, and thus X is an r-fuzzy β -T₂.

Proposition 3.6. Let $f: X \to Y$ be a surjective mapping. Assume that δ is a fuzzy operator on Y such that

$$f(\beta(\lambda, r)) \leq \delta(f(\lambda), r) \quad \forall \lambda \in I^X, \ \forall r \in I_0.$$

Then, X is an r-fuzzy β -T_i implies that Y is an r-fuzzy δ -T_i, i = 0, 1, 2.

Proof. Since $p \neq q$ in Y implies that $x \neq y$ where $x = f^{-1}(p), y = f^{-1}(q)$ in X, and X is an r-fuzzy β -T₁, then there exists $\lambda \in I^X$ with $t \leq \beta(\lambda, r)(f^{-1}(p)); t \in I_0$ so that $t > \lambda(f^{-1}(q))$, that is,

$$t \leq [f(\beta(\lambda, r))](p) \leq [\delta(f(\lambda), r)](p) \text{ and } t > (f(\lambda))(q),$$

which means that there exists $\mu = f(\lambda) \in I^Y$ with $t \leq \delta(\mu, r)(p)$; $t \in I_0$ so that $t > \mu(q)$. Hence, Y is an r-fuzzy δT_1 , and consequently Y is an r-fuzzy δT_0 .

Now, for $p \neq q$ in Y implies that $f^{-1}(p) \neq f^{-1}(q)$ in X and X is an r-fuzzy β -T₂, then there exist $\lambda, \mu \in I^X$ with $t \leq \beta(\lambda, r)(f^{-1}(p)), s \leq \beta(\mu, r)(f^{-1}(q)); s, t \in I_0$ so that $(t \wedge s) > \sup(\lambda \wedge \mu)$.

Since $\sup(\lambda \wedge \mu) \ge \sup(f(\lambda) \wedge f(\mu))$, then $(t \wedge s) > \sup(f(\lambda) \wedge f(\mu))$. Also,

 $t \leq [f(\beta(\lambda,r))](p) \leq [\delta(f(\lambda),r)](p) \text{ and } s \leq [f(\beta(\mu,r))](q) \leq [\delta(f(\mu),r)](q).$

Hence, there exist $\nu = f(\lambda), \rho = f(\mu) \in I^Y$ with $t \leq \delta(\nu, r)(p), s \leq \delta(\rho, r)(q); s, t \in I_0$ so that $(t \wedge s) > \sup(\nu \wedge \rho)$, and thus Y is an r-fuzzy δT_2 .

Remark 3.7.

- (1) For a fuzzy topological space (X, τ) , by choosing $\beta =$ fuzzy interior operator, you can deduce the equivalence between the graded fuzzy separation axioms (t, s)- T_i , i = 0, 1, 2; $t, s \in I_0$ introduced in [5, 6] and the axioms r-fuzzy β - T_i , i = 0, 1, 2.
- (2) For two fuzzy topological spaces (X, τ) , (Y, σ) , and $f : X \to Y$ a mapping, by choosing β = fuzzy interior operator, we get that (X, τ) is (t, s)- T_i , $i = 0, 1, 2; t, s \in I_0$ whenever (Y, σ) is (t, s)- T_i , $i = 0, 1, 2; t, s \in I_0$ and f is injective fuzzy continuous (when δ = fuzzy interior operator in Proposition 3.5) as shown in [5]. This is equivalent to f is injective and α = identity operator, β = interior operator, δ = interior operator, θ = identity operator and $\mathcal{I} = \mathcal{I}^\circ$ in Definition 2.1 (1).
- (3) For two fuzzy topological spaces (X, τ) , (Y, σ) , and $f : X \to Y$ a mapping, by choosing δ = fuzzy interior operator, we get that (Y, σ) is (t, s)- T_i , $i = 0, 1, 2; t, s \in I_0$ whenever (X, τ) is (t, s)- T_i , $i = 0, 1, 2; t, s \in I_0$ and f is surjective fuzzy open (when β = fuzzy interior operator in Proposition 3.6) as shown in [5]. This is equivalent to f is surjective and α = identity operator, β = interior operator, δ = interior operator, θ = identity operator and $\mathcal{I} = \mathcal{I}^{\circ}$ in Definition 2.1 (2).

4 *r*-Fuzzy α -Connected Spaces

Here, we introduce the r-fuzzy connectedness of a space X relative to a fuzzy operator α . Assume (with respect to any fuzzy topology τ defined on X) that:

$$\lambda \leq \alpha(\lambda, r) \leq \operatorname{cl}_{\tau}(\lambda, r) \quad \forall \lambda \in I^X; \ r \in I_0.$$

Also, assume that α is a monotone operator, that is,

$$\mu \leq \nu$$
 implies $\alpha(\mu, r) \leq \alpha(\nu, r) \quad \forall \mu, \nu \in I^X; r \in I_0.$

Definition 4.1. Let X be a non-empty set. Then,

(1) the fuzzy sets $\lambda, \mu \in I^X$ are called *r*-fuzzy α -separated sets if

$$\alpha(\lambda, r) \wedge \mu = \lambda \wedge \alpha(\mu, r) = 0; \ r \in I_0.$$

(2) X is called r-fuzzy α -connected space if it could not be found $\lambda, \mu \in I^X$, $\lambda \neq \overline{0}, \mu \neq \overline{0}$ such that λ, μ are r-fuzzy α -separated and $\lambda \lor \mu = \overline{1}$. That is, there are no r-fuzzy α -separated sets $\lambda, \mu \in I^X$ except $\lambda = \overline{0}$ or $\mu = \overline{0}$.

Definition 4.2. Let $\lambda, \mu \in I^X$, $\lambda \neq \overline{0}, \mu \neq \overline{0}$ such that:

- (1) λ, μ are r-fuzzy α -separated and $\lambda \lor \mu = \overline{1}$. Then X is called r-fuzzy α -disconnected space.
- (2) λ, μ are r-fuzzy α -separated and $\lambda \lor \mu = \nu$. Then ν is called r-fuzzy α -disconnected fuzzy set in I^X .
- (3) λ, μ are r-fuzzy α -separated and $\lambda \lor \mu = \chi_A, A \subseteq X$. Then A is called r-fuzzy α -disconnected crisp set in I^X .

Remark 4.3. For a fuzzy topological space (X, τ)

- (1) Taking α = fuzzy closure operator on (X, τ) , then we have the *r*-fuzzy connectedness as given in [7].
- (2) Taking α = fuzzy preclosure operator on (X, τ) , then we have the *r*-fuzzy preconnectedness as given in [2].
- (3) Taking α = fuzzy strongly semi-closure operator on (X, τ) , then we have the *r*-fuzzy strongly connectedness as given in [10].
- (4) Taking α = fuzzy semi-closure operator on (X, τ) , then we have the 1-type of *r*-fuzzy strongly connectedness as given in [10].
- (5) Taking α = fuzzy semi-preclosure operator on (X, τ) , then we have the *r*-fuzzy semi-preconnectedness as given in [2].
- (6) Taking α = fuzzy strongly preclosure operator on (X, τ) , then we have the *r*-fuzzy strongly preconnectedness as given in [2].

Example 4.4. Let $X = \{x, y\}, r \in I_0$,

$$\alpha(\nu, r) = \begin{cases} \nu & \text{at } \nu = \overline{0}, \overline{1} \\ x_1 & \text{at } \overline{0} < \nu \le x_1, \\ y_1 & \text{at } \overline{0} < \nu \le y_1, \\ \overline{1} & \text{otherwise,} \end{cases}$$

Now, at $\lambda \neq \overline{0}, \lambda \leq x_1, \mu \neq \overline{0}, \mu \leq y_1, r \leq \frac{1}{4}$, then we have $\alpha(\lambda, r) \wedge \mu = x_1 \wedge \mu = \overline{0}$ and $\alpha(\mu, r) \wedge \lambda = y_1 \wedge \lambda = \overline{0}$, and thus λ, μ are r-fuzzy α -separated sets for $\lambda \neq \overline{0}, \lambda \leq x_1, \mu \neq \overline{0}, \mu \leq y_1$.

At $\lambda = x_1$ and $\mu = y_1$, we get *r*-fuzzy α -separated sets with $\overline{1} = \lambda \lor \mu$. Hence, X is an *r*-fuzzy α -disconnected space.

Proposition 4.5. Let (X, τ) be a fuzzy topological space. Then the following are equivalent.

(1) (X, τ) is r-fuzzy α -connected.

(2)
$$\lambda \wedge \mu = \overline{0}, \tau(\lambda) \ge r, \tau(\mu) \ge r; r \in I_0, \text{ and } \overline{1} = \lambda \vee \mu \text{ imply } \lambda = \overline{0} \text{ or } \mu = \overline{0}.$$

(3)
$$\lambda \wedge \mu = \overline{0}, \tau_c(\lambda) \ge r, \tau_c(\mu) \ge r; r \in I_0, \text{ and } \overline{1} = \lambda \lor \mu \text{ imply } \lambda = \overline{0} \text{ or } \mu = \overline{0}.$$

Proof. (1) \Rightarrow (2): Let $\lambda, \mu \in I^X$ with $\tau(\lambda) \ge r, \tau(\mu) \ge r$; $r \in I_0$ such that $\lambda \wedge \mu = \overline{0}$ and $\overline{1} = \lambda \lor \mu$. Then, $\lambda = \mu^c$ and $\mu = \lambda^c$, and then

$$\overline{0} = \lambda \wedge \mu = \mu^c \wedge \lambda^c = \mathrm{cl}_\tau(\mu^c, r) \wedge \lambda^c \geq \alpha(\mu^c, r) \wedge \lambda^c \quad \text{and} \\ \overline{0} = \lambda \wedge \mu = \mu^c \wedge \lambda^c = \mu^c \wedge \mathrm{cl}_\tau(\lambda^c, r) \geq \mu^c \wedge \alpha(\lambda^c, r); \ r \in I_0,$$

which means that λ^c, μ^c are fuzzy α -separated so that $\lambda^c \vee \mu^c = \mu \vee \lambda = \overline{1}$. But (X, τ) is r-fuzzy α -connected implies that $\lambda^c = \overline{0}$ or $\mu^c = \overline{0}$, and thus $\lambda = \overline{0}$ or $\mu = \overline{0}$.

 $(2) \Rightarrow (3)$: Clear.

(3) \Rightarrow (1): Let $\lambda, \mu \in I^X, \lambda \neq \overline{0}, \mu \neq \overline{0}$ such that $\lambda \lor \mu = \overline{1}$. Taking $\nu = cl_\tau(\lambda, r)$ and $\rho = \operatorname{cl}_{\tau}(\mu, r); r \in I_0$, then $\nu \vee \rho = \overline{1}$ and $\tau_c(\nu) \geq r, \tau_c(\rho) \geq r; r \in I_0$.

Now, suppose that (3) is not satisfied. That is, $\nu \neq \overline{0}$, $\rho \neq \overline{0}$ and $\nu \wedge \rho = \overline{0}$. Then,

$$\begin{array}{rcl} \alpha(\lambda,r)\wedge\mu &\leq \ \mathrm{cl}_\tau(\lambda,r)\wedge\mathrm{cl}_\tau(\mu,r) &= \ \nu\wedge\rho &= \ \overline{0} & \mathrm{and} \\ \alpha(\mu,r)\wedge\lambda &\leq \ \mathrm{cl}_\tau(\lambda,r)\wedge\mathrm{cl}_\tau(\mu,r) &= \ \nu\wedge\rho &= \ \overline{0}, \end{array}$$

which means that λ, μ are r-fuzzy α -separated sets, $\lambda \neq \overline{0}, \mu \neq \overline{0}$ with $\lambda \lor \mu = \overline{1}$. Hence, (X, τ) is not r-fuzzy α -connected space.

Proposition 4.6. Let X be a non-empty set and $\lambda \in I^X$. Then the following are equivalent.

- (1) λ is *r*-fuzzy α -connected.
- (2) If μ, ρ are r-fuzzy α -separated sets with $\lambda \leq \mu \lor \rho$, then $\lambda \land \mu = \overline{0}$ or $\lambda \land \rho = \overline{0}$.
- (3) If μ, ρ are r-fuzzy α -separated sets with $\lambda \leq \mu \lor \rho$, then $\lambda \leq \mu$ or $\lambda \leq \rho$.

Proof. (1) \Rightarrow (2): Let μ, ρ be r-fuzzy α -separated with $\lambda \leq \mu \lor \rho$, that is, $\alpha(\mu, r) \wedge \rho = \alpha(\rho, r) \wedge \mu = \overline{0}; r \in I_0$ so that $\lambda \leq \mu \vee \rho$. Then, from that α is a monotone fuzzy operator, we get that

 $\alpha((\lambda \wedge \mu), r) \wedge (\lambda \wedge \rho) \leq \alpha(\lambda, r) \wedge \alpha((\mu, r) \wedge (\lambda \wedge \rho) = (\alpha(\lambda, r) \wedge \lambda) \wedge (\alpha((\mu, r) \wedge \rho) = \lambda \wedge \overline{0} = \overline{0}$

and

$$\alpha((\lambda \wedge \rho), r) \wedge (\lambda \wedge \mu) \leq (\alpha(\lambda, r) \wedge \lambda) \wedge (\alpha(\rho, r) \wedge \mu) = \lambda \wedge \overline{0} = \overline{0}; \ r \in I_0.$$

That is, $\lambda \wedge \mu$ and $\lambda \wedge \rho$ are r-fuzzy α -separated sets so that $\lambda = (\lambda \wedge \mu) \vee (\lambda \wedge \rho)$. But λ is r-fuzzy α -connected implies that $(\lambda \wedge \mu) = \overline{0}$ or $(\lambda \wedge \rho) = \overline{0}$.

(2) \Rightarrow (3): If $\lambda \wedge \mu = \overline{0}$, then $\lambda = \lambda \wedge (\mu \vee \rho) = \lambda \wedge \rho$, and thus $\lambda \leq \rho$. Also, if $\lambda \wedge \rho = \overline{0}$, then $\lambda = \lambda \wedge \mu$, and then $\lambda \leq \mu$.

(3) \Rightarrow (1): Let μ, ρ be r-fuzzy α -separated sets such that $\lambda = \mu \lor \rho$. Then, from (3), $\lambda \leq \mu$ or $\lambda \leq \rho$. If $\lambda \leq \mu$, then $\rho = \lambda \wedge \rho \leq \mu \wedge \rho \leq \alpha(\mu, r) \wedge \rho = \overline{0}$. Also, if $\lambda < \rho$, then $\mu = \lambda \land \mu < \rho \land \mu < \alpha(\rho, r) \land \mu = \overline{0}$. Hence, λ is r-fuzzy α -connected.

Theorem 4.7. Let $f: X \to Y$ be a mapping such that

$$\alpha(f^{-1}(\nu), r) \le f^{-1}(\theta(\nu, r)) \quad \forall \nu \in I^Y, \ r \in I_0,$$

where α is a fuzzy operator on X and θ is a fuzzy operator on Y. Then, $f(\lambda) \in I^Y$ is r-fuzzy θ -connected if $\lambda \in I^X$ is r-fuzzy α -connected.

Proof. Let $\mu, \rho \in I^Y$, $\mu \neq \overline{0}$, $\rho \neq \overline{0}$ be r-fuzzy θ -separated sets in I^Y with $f(\lambda) = \mu \lor \rho$. That is, $\theta(\mu, r) \land \rho = \theta(\rho, r) \land \mu = \overline{0}$; $r \in I_0$. Then, $\lambda \leq f^{-1}(\mu) \lor f^{-1}(\rho)$, and

$$\begin{aligned} \alpha(f^{-1}(\mu), r) \wedge f^{-1}(\rho) &\leq f^{-1}(\theta(\mu, r)) \wedge f^{-1}(\rho) \\ &= f^{-1}(\theta(\mu, r) \wedge \rho) \\ &= f^{-1}(\overline{0}) = \overline{0}, \end{aligned}$$
$$\alpha(f^{-1}(\rho), r) \wedge f^{-1}(\mu) &\leq f^{-1}(\theta(\rho, r)) \wedge f^{-1}(\mu) \\ &= f^{-1}(\theta(\rho, r) \wedge \mu) \\ &= f^{-1}(\overline{0}) = \overline{0}. \end{aligned}$$

Hence, $f^{-1}(\mu)$ and $f^{-1}(\rho)$ are r-fuzzy α -separated sets in X so that $\lambda \leq f^{-1}(\mu) \vee f^{-1}(\rho)$. But λ is r-fuzzy α -connected means, from (3) in Proposition 4.6, that $\lambda \leq f^{-1}(\mu)$ or $\lambda \leq f^{-1}(\rho)$, which means that $f(\lambda) \leq \mu$ or $f(\lambda) \leq \rho$. Thus, again from (3) in Proposition 4.6, we get that $f(\lambda)$ is r-fuzzy θ -connected.

Corollary 4.8. (Theorem 2.12 in [7]) Let $(X, \tau_1), (Y, \tau_2)$ be two fuzzy topological spaces. If $f: X \to Y$ is a fuzzy continuous mapping and $\lambda \in I^X$ is *r*-fuzzy connected in X, then $f(\lambda)$ is an *r*-fuzzy connected in Y.

Proof. Let $\alpha =$ fuzzy closure operator and $\theta =$ fuzzy closure operator. Then, the result follows from Theorem 4.7.

Corollary 4.9. (Theorems 2.12, 3.11 in [10]) Let $(X, \tau_1), (Y, \tau_2)$ be two fuzzy topological spaces. Let $f: (X, \tau_1) \to (Y, \tau_2)$ be S-irresolute (resp. irresolute). If $\lambda \in I^X$ is r-fuzzy strongly connected (resp. 1-type of r-fuzzy strongly connected) in X, then $f(\lambda)$ is r-fuzzy strongly connected (resp. 1-type of r-fuzzy strongly connected) in Y.

Proof. Let $\alpha =$ fuzzy strongly semi-closure (resp. semi-closure) operator and $\theta =$ fuzzy strongly semi-closure (resp. semi-closure) operator. Then, the result follows from Theorem 4.7.

Corollary 4.10. Let $(X, \tau_1), (Y, \tau_2)$ be two fuzzy topological spaces. Let $f : (X, \tau_1) \to (Y, \tau_2)$ be fuzzy semi-pre-irresolute. If $\lambda \in I^X$ is *r*-fuzzy semi-preconnected in X, then $f(\lambda)$ is *r*-fuzzy semi-preconnected in Y.

Proof. Let $\alpha =$ fuzzy semi-preclosure operator and $\theta =$ fuzzy semi-preclosure operator. Then, the result follows from Theorem 4.7.

Corollary 4.11. (Theorem 5.10 in [2]) Let $(X, \tau_1), (Y, \tau_2)$ be two fuzzy topological spaces. Let $f : (X, \tau_1) \to (Y, \tau_2)$ be fuzzy strongly pre-irresolute (resp. preirresolute). If $\lambda \in I^X$ is *r*-fuzzy spreconnected (resp. preconnected) in X, then $f(\lambda)$ is *r*-fuzzy spreconnected (preconnected) in Y. *Proof.* Let $\alpha = \text{fuzzy strongly preclosure (resp. preclosure) operator and <math>\theta = \text{fuzzy strongly preclosure (resp. preclosure) operator. Then, the result follows from Theorem 4.7.$

Corollary 4.12. Let $(X, \tau_1), (Y, \tau_2)$ be two fuzzy topological spaces. Let $f : (X, \tau_1) \to (Y, \tau_2)$ be fuzzy semi-continuous (resp. precontinuous, strongly semi-continuous, strongly precontinuous and semi-precontinuous) mapping. If $\lambda \in I^X$ is 1-type of r-fuzzy strongly connected (resp. r-fuzzy preconnected, r-fuzzy strongly connected, r-fuzzy strongly preconnected and r-fuzzy semi-preconnected) in X, then $f(\lambda)$ is r-fuzzy connected in Y.

Proof. Let $\alpha = \text{fuzzy semi-closure}$ (resp. preclosure, strongly semi-closure, strongly preclosure and semi-preclosure) operator and $\theta = \text{fuzzy closure operator}$. Then, the result follows from Theorem 4.7.

Proposition 4.13. Any fuzzy point $x_t, t \in I_0$ is *r*-fuzzy α -connected, and consequently $x_1 \forall x \in X$ is *r*-fuzzy α -connected.

Proof. Clear.

Definition 4.14. Let X be a non-empty set and $\lambda \in I^X$. Then, λ is r-fuzzy α component if λ is maximal r-fuzzy α -connected set in X, that is, if $\mu \geq \lambda$ and μ is
r-fuzzy α -connected set, then $\lambda = \mu$.

Proposition 4.15. Let $\lambda \neq \overline{0}$ be *r*-fuzzy α -connected in *X* and $\lambda \leq \mu \leq \alpha(\lambda, r)$; $r \in I_0$. Then, μ is *r*-fuzzy α -connected.

Proof. Let ν, ρ be r-fuzzy α -separated sets such that $\mu = \nu \lor \rho$. That is, $\alpha(\nu, r) \land \rho = \alpha(\rho, r) \land \nu = \overline{0}$; $r \in I_0$. Since $\lambda \leq \mu$, then $\lambda \leq (\nu \lor \rho)$. From λ is r-fuzzy α -connected, and from (3) in Proposition 4.6, we have $\lambda \leq \nu$ or $\lambda \leq \rho$. If $\lambda \leq \nu$, then

$$\rho = \mu \land \rho \le \alpha(\lambda, r) \land \rho \le \alpha(\nu, r) \land \rho = \overline{0}.$$

If $\lambda \leq \rho$, then

 $\nu = \mu \land \nu \le \alpha(\lambda, r) \land \nu \le \alpha(\rho, r) \land \nu = \overline{0}.$

Hence, μ is *r*-fuzzy α -connected.

5 Fuzzy α -Compact Spaces

This section is devoted to introduce the notion of r-fuzzy α -compact spaces.

Definition 5.1. Let (X, τ) be a fuzzy topological space, α a fuzzy operator on X, and $\mu \in I^X$, $r \in I_0$. Then, μ is called *r*-fuzzy α -compact if for each family $\{\lambda_j \in I^X : \tau(\lambda_j) \ge r, j \in J\}$ with $\mu \le \bigvee_{j \in J} \lambda_j$, there exists a finite subset $J_0 \subseteq J$ such that $\mu \le \bigvee_{j \in J_0} \alpha(\lambda_j, r)$.

Remark 5.2. For a fuzzy topological space (X, τ) :

(1) if α = fuzzy identity operator, we get the r-fuzzy compactness as given in [1].

- (2) if $\alpha =$ fuzzy closure operator, we get the *r*-fuzzy almost compactness as given in [1].
- (3) if α = fuzzy interior closure operator, we get the *r*-fuzzy near compactness as given in [1].
- (4) if α = fuzzy semi-closure (resp. preclosure, strongly semi-closure, strongly preclosure and semi-preclosure) operator, we get the *r*-fuzzy semi-compactness (resp. precompactness, strongly semi-compactness, strongly precompactness and semi-precompactness [11]).

Theorem 5.3. Let (X, τ) and (Y, σ) be two fuzzy topological spaces, α a fuzzy operator on X, θ is a fuzzy operators on Y. If $f: X \to Y$ is fuzzy $(\alpha, \operatorname{int}_{\tau}, \theta, id_Y, \mathcal{I}^\circ)$ -continuous and $\mu \in I^X$ is *r*-fuzzy compact in X, then $f(\mu)$ is *r*-fuzzy θ -compact in Y.

Proof. Let $\{\lambda_j \in I^Y : \sigma(\lambda_j) \ge r, j \in J\}$ be a family with $f(\mu) \le \bigvee_{j \in J} \lambda_j$. Since f is fuzzy $(\alpha, \operatorname{int}_{\tau}, \theta, id_Y, \mathcal{I}^\circ)$ -continuous, we get that there exists $\mu_j = \operatorname{int}_{\tau}(f^{-1}(\theta(\lambda_j, r)), r) \in I^X$ with $\tau(\mu_j) \ge r \ \forall j \in J$ such that

$$\alpha(f^{-1}(\lambda_j), r) \le \mu_j \le f^{-1}(\theta(\lambda_j, r)).$$

Also, since $f^{-1}(\lambda_j) \leq \alpha(f^{-1}(\lambda_j), r)$, then

$$f^{-1}(\lambda_j) \le \mu_j \le f^{-1}(\theta(\lambda_j, r)),$$

which means that

$$\mu \leq \bigvee_{j \in J} f^{-1}(\lambda_j) \leq \bigvee_{j \in J} (\mu_j) \leq f^{-1}(\bigvee_{j \in J} \theta(\lambda_j, r)),$$

that is, $\mu \leq \bigvee_{j \in J} (\mu_j)$. By *r*-fuzzy compactness of μ , there exists a finite set $J_0 \subseteq J$ such that $\mu \leq \bigvee_{j \in J_0} (\mu_j)$, and thus

$$f(\mu) \le \bigvee_{j \in J_0} f(\mu_j) \le \bigvee_{j \in J_0} \theta(\lambda_j, r),$$

and therefore $f(\mu)$ is r-fuzzy θ -compact.

Corollary 5.4. ([11]) Let (X, τ) and (Y, σ) be two fuzzy topological spaces. Let $f: X \to Y$ be a fuzzy continuous mapping and $\mu \in I^X$ an *r*-fuzzy compact set in X, then $f(\mu)$ is *r*-fuzzy compact in Y.

Proof. Let $\alpha =$ fuzzy identity operator on X, $\theta =$ fuzzy identity operator and $\mathcal{I} = \mathcal{I}^{\circ}$, then the result follows from Theorem 5.3.

Corollary 5.5. ([11]) Let (X, τ) and (Y, σ) be two fuzzy topological spaces. Let $f : X \to Y$ be a fuzzy weakly continuous mapping ([8]) and $\mu \in I^X$ an *r*-fuzzy compact set in X, then $f(\mu)$ is *r*-fuzzy almost compact in Y.

Proof. Let $\alpha =$ fuzzy identity operator on $X, \theta =$ fuzzy closure operator and $\mathcal{I} = \mathcal{I}^{\circ}$, then the result follows from Theorem 5.3.

Corollary 5.6. ([11]) Let (X, τ) and (Y, σ) be two fuzzy topological spaces. Let $f : X \to Y$ be a fuzzy almost continuous mapping ([9]) and $\mu \in I^X$ an *r*-fuzzy compact set in X, then $f(\mu)$ is *r*-fuzzy nearly compact in Y.

Proof. Let $\alpha = \text{fuzzy identity operator on } X, \theta = \text{fuzzy interior closure operator and <math>\mathcal{I} = \mathcal{I}^{\circ}$, then the result follows from Theorem 5.3.

Corollary 5.7. Let (X, τ) and (Y, σ) be two fuzzy topological spaces. Let $f : X \to Y$ be a fuzzy semi-continuous [12] (resp. precontinuous [8], strongly semi-continuous [3], strongly precontinuous [2] and semi-precontinuous [8]) mapping, and $\mu \in I^X$ an *r*-fuzzy compact set in X, then $f(\mu)$ is *r*-fuzzy semi-compact (resp. precompact, strongly semi-compact, strongly precompact and semi-precompact) in Y.

Proof. Let $\alpha =$ fuzzy identity operator on X, $\theta =$ fuzzy semi-closure (resp. preclosure, strongly semi-closure, strongly preclosure and semi-preclosure) operator and $\mathcal{I} = \mathcal{I}^{\circ}$, then the result follows from Theorem 5.3.

Acknowledgement

The author thanks so much Prof. S.E. Abbas for his valuable discussions and support.

References

- [1] S. E. Abbas, Fuzzy super irresolute functions, IJMMS 42 (2003) 2689 2700.
- [2] S. E. Abbas, Fuzzy SP-irresolute functions, Chaos, Solitons and Fractals 21 (2004) 1075 - 1085.
- [3] S. E. Abbas, Fuzzy S-irresolute mappings, Appl. Math. Comp. 155(2) (2004) 329 - 343.
- [4] S. E. Abbas and I. Ibedou, Fuzzy (α, β, θ, δ, I)-continuous functions, J. of Fuzzy Mathematics 25(3) (2017) 691–702.
- [5] F. Bayoumi and I. Ibedou, T_i -spaces, I, The Journal of the Egyptian Mathematical Society 10(2) (2002) 179 199.
- [6] Ismail Ibedou, Graded fuzzy topological spaces, Journal of Cogent Mathematics 3 (2016) 1 - 13.
- Y. C. Kim and Y. S. Kim, Connectedness in smooth fuzzy topological spaces, Far East J. Math. Sci. 5(3) (2002) 165 - 180.
- [8] Y. C. Kim, A. A. Ramadan and S. E. Abbas, Weaker forms of continuity on Šostak's fuzzy topology, Indian J. of Pure and Applied Math. 34(2) (2003) 311 - 333.

- [9] Y. C. Kim, A. A. Ramadan and S. E. Abbas, Some good dilutions of compactness in Šostak's fuzzy topology, J. of Fuzzy Mathematics 11(4) (2003) 933–944.
- [10] Y. C. Kim, A. A. Ramadan and S. E. Abbas, Strongly connectedness in L-fuzzy topological spaces, J. of Fuzzy Mathematics 12(2) (2004) 479 - 491.
- [11] Y. C. Kim and S. E. Abbas, On several types of r-fuzzy compactness, J. of Fuzzy Mathematics 12(4) (2004) 827–844.
- [12] A. A. Ramadan, S. E. Abbas and Y. C. Kim, Fuzzy irresolute mappings in smooth fuzzy topological spaces, J. of Fuzzy Mathematics 9(4) (2001) 865-977.
- [13] A. A. Ramadan, Y. C. Kim and M. K. El-Gayyar, Smooth ideals, J. of Korean Institute of intelligent systems 12(1) (2002) 90 - 95.
- [14] A. P. Sostak, On a fuzzy topological structure, Suppl Rend. Circ. Math. Palermo Ser.II 11 (1985) 89 - 103.