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Increase in cost of chemical fertilizers encourages the use of soil amendments such as 
biochar and zeolites to improve soil fertility. In this study, biochar produced from empty 
fruit bunch-palm oil mill effluent (EFB-POME) and clinoptilolite zeolite were used as soil 
amendments to improve soil fertility. The field experiment was carried out for two 
planting cycles to determine the effects of different rates of EFB POME biochar (0, 10, and 
20 t ha-1), clinoptilolite zeolite (0, 1.25, and 2.5 t ha-1), and urea (60 and 120 kg ha-1) on 
selected soil chemical properties of Tanjung Lipat (Typic Paleudults). Biochar produced 
from EFB-POME increase soil total N, P, K, Ca, and Mg. The higher soil total N, P, K, Ca, and 
Mg could be related to the increase in soil pH, cation exchange capacity, and total organic 
carbon in soil with EFB-POME biochar but not with clinoptilolite zeolite. Thus, EFB-POME 
biochar was more suitable to be used in a tropical soil (Typic Paleudults) compared to 
clinoptilolite zeolite for improving the selected soil pH, CEC, TOC and available P, K, Ca and 
Mg. 
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Introduction 
Soils in the tropics are considered to be acidic, strongly weathered, low in nutrient reserves, and depend on 
their soil organic matter (SOM) for efficient nutrient recycling (Sanchez and Logan, 1992). Oxisols and 
Ultisols, which are acidic in their nature, are two major soil types in Malaysia and cover about 72% of the 
land (Anda et al., 2008). Generally, Oxisols and Ultisols are high Fe and Al oxides which contribute to the soil 
acidity (Schlesinger, 1997), low in effective cation capacity and nutrient reserves (Sanchez and Logan, 1992). 
In addition, these soils are degraded physically, chemically, and biologically due to human activities such as 
intensive farming, continuous and over usage of fertilizers and pesticides, removal of soil organic matter, as 
well as the topsoil layer (Scherr and Yadav, 1996). The conventional and most popular way to effectively 
increase soil fertility is to apply chemical fertilizers. This has led to increase in demand for fertilizers 
worldwide (IFA, 2014). Although chemical fertilizers are effective in increasing soil nutrient status and crop 
yield, their adverse effect in the long term and the harm to the environment is worth attention as fertilizers 
can be one of the sources of pollutants to soil and water.  

For sustainable agriculture, biochar and zeolites can be used as soil amendments or conditioners to improve 
soil fertility. Biochar is a carbon rich organic material which originated from the terra-preta of Brazillian 
Amazon that has undergone pyrolysis process at relatively high temperature (300 – 700°C) (Lehmann and 
Joseph, 2009). One of biochar’s unique properties is high porosity, which can be favourable for improving 
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soil water holding capacity and soil structure (Karhu et al., 2011; Vaccari et al., 2011). Crop productivity is 
positively affected by biochar addition as the amendment can increase and retain nutrients in the soil due to 
its high CEC (Cornelissen et al., 2013; Liang et al., 2006). Some types of biochar also possess high pH, a 
property which is favourable especially in acidic soils as biochar helps to buffer soil pH, substituting the use 
of liming to increase soil pH, and indirectly increasing nutrient availability for crop nutrient uptake (Novak 
et al., 2009; van Zwieten et al., 2010; Nigussie et al., 2012). Biochar also improves soil quality by increasing 
soil biota as biochar is a suitable habitat for soil micro and macro organisms due to its high surface area and 
organic matter (Lehmann et al., 2011). In this study, biochar produced from empty fruit bunch and palm oil 
mill effluent (EFB-POME) was used. In 2010, Malaysia exported a total of 14.7 million tonnes of palm oil and 
palm oil products, contributing US$ 4500 million revenue to the country (Bazmi et al., 2011). However, the 
biomass left from the palm oil production is as high as 90% because the oil extraction rate is only about 10% 
(Basiron and Weng, 2004). Due to the abundance of EFB and POME wastes in the oil palm industry, charring 
of these waste materials (to produce biochar) is one of the effective ways to return the biomass into the soil. 

Clinoptilolite zeolite was also used in this study in combination with EFB-POME biochar for maize 
cultivation. Zeolites are hydrated aluminosilicates of alkaline and alkaline-earth minerals and their structure 
is made up of a framework of [SiO4]−4 and [AlO4]−5 tetrahedron linked to each other's corners by sharing 
oxygen atoms forming a 3-dimensional framework (Akbar et al., 1999). The 3-dimensional pore structures of 
zeolites are interconnected and form long wide channels for easy movement of ions and molecules into and 
out of the structures (Polat et al., 2004). The silicate (SiO4) tetrahedron is a compromise between electrical 
neutrality and packing efficiency. To be electrically neutral, stable minerals require other positively charged 
accessory cations. This need for electrical neutrality and accessory cations leads to the important property of 
cation exchange capacity. Zeolites in natural conditions are combined with cations such as Na+, K+, Ca2+ and 
others (Navrotsky et al., 1995). In agriculture, zeolites are used as slow release fertilizer, soil amendment for 
pH buffering, increase CEC and fertilizer use efficiency, serve as water reservoir in the soil due to their high 
porosity and water filter in aquaculture systems (Polat et al., 2004).  

Maize (Zea mays L.) is one of the important crops in the world, which serves as livestock’s feed, food, and oil 
source for human consumption, and raw material for many agro-based industries. In 2014, Malaysia 
imported 3.2 billion tonnes of maize mainly from Argentina, Brazil, and India whereas domestic production 
was only 56,000 tonnes (Wahab and Rittgers, 2014). This study was carried out to determine the effects of 
biochar from empty fruit bunches and palm oil mill effluent (EFB-POME) and clinoptilolite zeolite on 
selected chemical properties of soil cultivated with maize. 

Material and Methods 

Study site and selected soil chemical properties 

The field study was conducted in Faculty of Sustainable Agriculture, Universiti Malaysia Sabah (5°55’48.1’’N, 
118°00’29.8’’E). The soil in the research plot belongs to Tanjung Lipat series which is equivalent to Typic 
Paleudults of the USDA system of soil classification. The soil is derived from sandstone and mudstone parent 
materials (Acres et al., 1975). The soil texture was classified as clay loam with clay content of 35%. The soil 
chemical properties are presented in Table 1.  

Table 1. Selected soil chemical properties of Tanjung Lipat (Typic Paleudults) 

pH 4.50 
Cation exchange capacity (cmol+ kg-1) 2.10 
Total organic carbon (%) 3.15 
Total N (%) 0.65 
NH4

+ (mg kg-1) 1.09 

NO3
- (mg kg-1) 0.02 

Available P (mg kg-1) 1.56 
Exchangeable K   (mg kg-1) 15.20 
Exchangeable Ca (mg kg-1) 87.00 
Exchangeable Mg (mg kg-1) 132.80 

Field layout and site description 

The field experiment arranged in a randomized complete block design (RCBD) with three factors involved; 
EFB POME biochar (0, 10 and 20 t ha-1), clinoptilolite zeolite (0, 1.25 and 2.5 t ha-1) and urea (60 and 120 kg 
ha-1), replicated four times. The rates of biochar and zeolite were based on preliminary study pot study done 
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previously and the properties of biochar and zeolite used in this study is presented in Table 2. Thai Super 
Sweet maize was used as a test crop in the field study. Each plot was 1.5 m x 2.5 m in size with planting 
distance of 75 x 25 cm.  The maize plants were harvested after reaching maturity, at 10 weeks after planting 
and planted for two cropping cycles. Fertilizers were applied in four splits.  Triple Super Phosphate (TSP) 
and Muriate of Potash (MOP) fertilizers were applied at 60 kg ha-1 of P and K, respectively. Rainfall data was 
collected throughout the field trial from a weather station located approximately 5 m from the field trial 
plots (Figure 1). 

Table 2. Properties of biochar and zeolite used in the study 

Properties EFB-POME biochar Clinoptilolite zeolite 
pH (KCl) 7.45 8.56 
Cation exchange capacity (cmol+ kg-1) 35.11 160.00 
Total C (%) 17.98 9.51 
Total N (%) 0.56 1.37 
NH4

+ (mg kg-1) 0.44 0.58 
NO3

- (mg kg-1) 173.05 0.03 
Available P (%) 0.01 ND 
Available K (%) 0.27 2.26 
Available Ca (%) 0.08 2.56 
Available Mg (%) 0.01 1.50 

 

  

Figure 1. Monthly total rainfall distribution during the first and second cycles of maize cultivation 

Soil sampling and analysis 

Soil samples were randomly taken using an auger in the middle of each experimental plot up to 15 cm depth 
after every harvest.  Soils were analyzed for total N, NH4+, NO3-, total organic C, pH, CEC, available P, 
exchangeable K, Ca, and Mg. The soil samples were air dried at room temperature, ground, and sieved to 
pass a 2 mm sieve. Soil available P was extracted using the Mehlich 1 method and the concentration was 
determined by colourimetry method (Pansu and Gauthevrou, 2006) using continuous flow auto analyser 
(SEAL Analytical AA3). Exchangeable K, Ca, and Mg were extracted using ammonium saturation method 
(Tan, 1995) and the concentrations determined with Inductively Coupled Plasma (Perkin Elmer ICP-OES 
model Optima 5300 DV).  

Statistical Analysis  

Analysis of variance (ANOVA) on all data at 5% significant level was done using Statistical Package for Social 
Science (SPSS) version 21. Least Significant Different test was used to separate the means for variables that 
showed significant difference between the treatments for main effects.  

Results and Discussion 

Soil pH, cation exchange capacity, and total organic carbon for the first and second planting cycles  

The main treatment effects on soil pH, total CEC, and TOC are presented in Table 3. In the first planting cycle, 
there was a significant interaction effect between all the three factors on soil pH and also a significant 
interaction effect between biochar and clinoptilolite zeolite on soil TOC. There was no significant interaction 
in the second planting cycle between all the factors for all the variables. However, biochar resulted in 
significant main effects on all the three variables (soil pH, CEC, and TOC) (Table 3). 
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Table 3. The effects of biochar, clinoptilolite zeolite, and urea on soil properties for the first and second planting cycles 

First planting cycle Second planting cycle 
 pH Total CEC 

(cmol+kg-1) 

TOC 
(%) 

pH Total CEC 
(cmol+kg-1) 

TOC (%) 

Biochar (t ha-1) 
0 
10 
20 
P 
Std. Error 

 
4.02c  

4.15b  

4.26a  

<0.01 
± 0.03 

 
5.16b  

5.68b  

7.85a  

0.01 
± 0.63 

 
2.09b  
2.41b  

2.95a  

<0.01 
± 0.13 

 
3.77a  

3.78a  

3.98b  

0.02 
± 0.06 

 
7.43a  

9.40a  

12.36b  

0.02 
± 0.92 

 
3.32b  

4.15b  

4.81a  

0.05 
± 0.41 

Clinoptilolite zeolite (t ha-1) 
0 
1.25 
2.5 
P 
Std. Error 

 
4.02b 

4.18a  

4.20a 

<0.01 
± 0.03 

 
5.45a  

7.09a  

6.15a  

0.20 
± 0.63 

 
2.11b  

2.24b  

3.09a  

<0.01 
± 0.13 

 
3.79a  

3.88a  

3.86a  

0.53 
± 0.06 

 
9.10a  

9.80a  

10.30a  

0.65 
± 0.92 

 
3.59a  

4.71a  

3.98a  

0.16 
± 0.41 

Urea N (kg ha-1) 
60 
120  
P 
Std. Error 

 
4.16a  

4.12a  

0.14 
± 0.02 

 
6.22a  

6.25a 

0.97 
± 0.51 

 
2.48a  

2.49a  

0.91 
± 0.10 

 
3.80a  

3.88a  

0.25 
± 0.05 

 
9.63a  

9.83a  

0.85 
± 0.75 

 
4.20a  

3.98a  

0.65 
± 0.33 

P (interaction) 
B*Z 
B*U 
Z*U 
B*Z*U 

 
0.37 
0.19 
0.03 
0.02 

 
0.73 
0.95 
0.77 
0.40 

 
0.02 
0.31 
0.63 
0.13 

 
0.15 
0.90 
0.59 
0.38 

 
0.15 
0.59 
0.88 
0.82 

 
0.49 
0.72 
0.38 
0.84 

Means with the same letter within the columns are not significantly different (P<0.05) using LSD test. P = probability value from 
ANOVA. B*Z = biochar and zeolite interaction. B*U = biochar and urea interaction. Z*U = zeolite and urea interaction. B*Z*U = 
biochar, clinoptilolite zeolite, and urea interaction  

The results of the treatments interaction on soil pH in the first planting cycles are shown in Figure 2.  The 
plots with 60 kg ha-1 urea and 1.25 t ha-1 clinoptilolite zeolite resulted in higher soil pH (4.05) compared 
with that of the unamended soil (3.93). However, increase in clinoptilolite zeolite rate (2.5 t ha-1) did not 
further increase soil pH (4.05).  The soil pH was 3.98 in the plots with 10 t ha-1 biochar and the combined 10 
t ha-1 biochar and 1.25 t ha-1 clinoptilolite zeolite treatment resulted in an increase in soil pH to 4.26. 
However, in the plots with the same rate of biochar combined with 2.5 t ha-1 zeolite, soil pH was lower 
(4.19). For the plots with 20 t ha-1 biochar, soil pH showed a value of 4.07. The combination treatment of 20 t 
ha-1 biochar and 1.25 t ha-1 zeolite increased soil pH to 4.3 and combining the same rate of biochar with 
higher rate of zeolite (2.5 t ha-1) resulted in the highest value of soil pH (4.55) (Figure 2). 

The 120 kg ha-1 of urea, soil without biochar, and clinoptilolite zeolite amendments resulted in lowest soil pH 
(3.89) and treating the soil with 1.25 and 2.5 t ha-1 resulted in increased soil pH (4.07 and 4.09, respectively). 
Soil pH was 4.12 when treated with 10 t ha-1 biochar and combining the 10 t ha-1 biochar with 1.25 and 2.5 t 
ha-1 zeolite did not show significant changes in soil pH (4.13 and 4.12, respectively). Soil pH was 4.15 for the 
20 t ha-1 biochar alone, but combining 20 t ha-1 biochar and 1.25 t ha-1 increased soil pH to 4.26. However, 
the soil pH decreased (4.19) for the combination treatment of 20 t ha-1 biochar and 2.5 t ha-1 clinoptilolite 
zeolite. 

 
Figure 2. Soil pH for interaction between biochar, clinoptilolite zeolite, and urea in the first planting cycle. Error bars 

indicate standard error. 



 S.W. Zaidun et al. / Eurasian J Soil Sci 2019, 8 (1) 1 - 10 

5 

 

 

The soil pH was higher with biochar and zeolite application at low N rate. Previous studies had reported the 
influence of biochar and zeolite in increasing soil pH due to liming effect. According to Polat et al. (2004) 
zeolites are marginally alkaline and fusing them with fertilizer helps in buffering soil pH levels, thus 
reducing the need for liming. van Zwieten et al. (2010) reported an increase in soil pH with biochar 
application. In this study, N fertilizer applied to the soil was in the form of urea. Upon hydrolysis, urea is 
converted to NH4

+, however, plants favour N in the form of NO3
- and the oxidation of NH4

+ to produce NO3
- 

results in the released of H+ which is a potential source of the increase in soil acidity (Magdoff et al., 1997). 
This explains the lower soil pH observed in the higher rates of urea. Muhammad Zaid et al. (2014) reported a 
lower soil pH in oil palm plantations due to acidifying effects of ammonium compared to non-cultivated 
areas. The findings of this study is congruent with that of Chan et al. (2007) who reported that 100 t ha-1 
biochar application to Alfisols resulted in an increase in soil pH by 1.22 units in the absence of N fertilizer 
but the corresponding increase was only 0.61 units with the application of N fertilizer.   

In the second planting cycle (Table 3), biochar main treatment effects on soil pH showed that soil applied 
with 20 t ha-1 biochar resulted in significantly higher soil pH (4.28). Adding 10 t ha- biochar did not 
significantly increase soil pH and soil without biochar treatments resulted in the lowest soil pH (4.07).  

The effects of clinoptilolite zeolite diminished in the second planting cycle as biochar main effects alone 
showed significant increase in soil pH. This indicates that the effects of biochar sustains longer compared 
with zeolite. Increase in soil pH observed in biochar treated soil may be due to the high ash content of 
biochar which has the ability to neutralize acidic soils (Nigussie et al., 2012). Increase in soil pH from 4-6 to 
6-7 was reported by Cornelissen et al. (2013) with 5% wood biochar application in Ultisols. An increase in 
soil pH by 0.52 units with 12 t ha-1 biochar treatment in a moderately acidic Ultisols Kandiudults in Ethiopia 
was documented by Abewa et al. (2014). Novak et al. (2009) reported an increase in soil pH up to 64% with 
poultry litter biochar applied at 40 t ha-1 in Norfolk Typic Kandiudults. The rise in pH was attributed to the 
alkaline oxides or carbonates formed during biochar pyrolysis, that released into the soil and reacted with 
H+ and Al3+, thus reducing the exchangeable acidity. 

The decrease in soil acidity when biochar is applied may also be the result of decrease in exchangeable 
aluminium ions in the soil. Aluminium ions (Al3+) are the dominant cations in majority of soils with pH less 
than 5 (Coleman and Thomas, 1967).  Nigussie et al. (2012) recorded an increase by 9% in soil pH with 10 t 
ha-1 maize stalk biochar amendment and the increase was attributed to the high surface area and porous 
characteristics of biochar that elevates cation exchange capacity thus, resulting in a possibility for Al and Fe 
to bind with the exchange sites of soils thus decreasing the exchangeable Al and Fe in biochar treated soil.  
Chan et al. (2007) reported an increase in soil pH by 1.22 units when biochar is applied and the increase in 
pH was accompanied by a decrease in exchangeable Al by more than 50% at 50 and 100 t ha-1 biochar 
treatments.  

In the first planting cycle, higher soil total CEC was observed in soil treated with 20 t ha-1 biochar (7.85 cmol+ 
kg-1) (Table 3). The increase in CEC with 10 t ha-1 biochar was not significant (5.68 cmol+ kg-1) compared to 
that of the unamended soil. Cation exchange capacity was lowest in the unamended soil (5.16 cmol+ kg-1). In 
the second planting cycle, amending soil with 20 t ha-1 biochar resulted in significantly higher CEC (12.36 
cmol+ kg-1) and untreated soil resulted in the lowest CEC (7.43 cmol+ kg-1). Cation exchange capacity of the 
soil treated with 10 t ha-1 biochar was 9.40 cmol+ kg-1.  

The increase in cation exchange capacity in the biochar treated soil was possibly due to the increase of net 
negative charges at the surface of biochar which attracts the positive cations, thus increasing the soil CEC. 
Glaser et al. (2003) attributed the higher net negative charge of the anthropogenic soils rich in black carbon 
from Brazillian Amazon (the origin of biochar) to oxidation of the aromatic C and formation of carboxyl 
group at biochar surface. Lehmann et al. (2005) suggested that such formation of carboxyl groups or other 
functional groups with net negative charge might be from the outcome of two varied processes which were 
surface oxidation of the biochar particles themselves and/or adsorption of highly oxidised organic matter 
onto the biochar surface. Liang et al. (2006) concluded that oxidation increased from the biochar’s core to 
the surface and non-biochar particles may be adsorbed on the surface of biochar particles creating highly 
oxidised surface. As a result of both oxidations, the charge density or potential CEC per unit surface area was 
increased.  

The increase in pH in biochar treated soil may also related to the soil CEC. Soil pH influenced variable 
charges of soil minerals of Oxisols and Ultisols. As pH increased, the minerals became net-negatively charge 
which results in increase in soil CEC as the net-negative charges attract positively charged cations minerals 



 S.W. Zaidun et al. / Eurasian J Soil Sci 2019, 8 (1) 1 - 10 

6 

 

 

(Shamshuddin and Daud, 2011). The increase in CEC with the increase of pH was also reported by 
Shamshuddin and Ishak (2010). 

Unlike in the first planting cycle, soil CEC was higher in the second planting cycle (Table 3). This could be due 
to heavy rain in the first planting cycle which may have leached out the cations compared to minimal rain in 
the second planting cycle. There is also a possibility that the higher CEC in the second planting cycle could be 
partly due to the aging of biochar. The CEC of biochar has been shown to increase as biochar ages (Cheng et 
al., 2008) because of an increase in some oxygenated functional groups on the surface of the biochar (Cheng 
et al., 2006). The increase in CEC in this study due to biochar application is similar to the results of previous 
researches such as Nigussie et al. (2012) who observed a significant increase in soil CEC by 30% with 
biochar application in the soil. Cornelissen et al. (2013) also reported a significant improvement in soil CEC 
in soil treated with biochar in maize farming sites in Zambia. Sukartono et al. (2011) documented an 
increase in soil CEC by 13% for the application of 15 t ha-1 coconut shell biochar in a sandy soil of Lombok, 
Indonesia. Chan et al. (2007) reported an increase in CEC by 26% with green waste biochar soil amendment.  

Figure 3 represents the significant interaction effects (P<0.05) of biochar and clinoptilolite zeolite on soil 
TOC for the first planting cycle. Soil without amendment resulted in lowest soil TOC (1.76%). The 10 and 20 
t ha-1 biochar increased TOC to 1.99 and 2.59%, respectively. Total organic C for soil treated with 1.25 t ha-1 
zeolite was 2.23% and TOC increased to 2.23 and 2.28% when treated with a combination of 1.25 t ha-1 
clinoptilolite zeolite with 10 and 1.25 t ha-1 clinoptilolite zeolite with 20 t ha-1 biochar, respectively. The TOC 
for 2.5 t ha-1 clinoptilolite zeolite treatment was 2.28%. A combination of 2.5 t ha-1 zeolite with 10 t ha-1 
biochar increased soil TOC to 3.02% and soil TOC was the highest (3.98%) when the same rate of 
clinoptilolite zeolite combined with higher rate of biochar (20 t ha-1). In the second planting cycle, the 
biochar main treatment effects on soil TOC (Table 2) showed that soil treated with 20 t ha-1 bicohar resulted 
in significantly higher TOC (4.81%) whereas, soil without biochar resulted in the lowest TOC (3.32%). The 
TOC for soil treated with 10 t ha-1 biochar was 4.15% but the result was not significantly different from no 
biochar treatment.  

 
Figure 3. Interaction effect between biochar and clinoptilolite zeolite for soil total organic C for the first planting cycle. 

Error bars indicates standard error. 

For the first planting cycle, soil TOC increased linearly with increasing rates of both biochar and clinoptilolite 
zeolite amendments. The increase in soil pH with biochar and clinoptilolite zeolite treatments may have 
influenced the increase in soil organic C by favouring microbial decomposition activities, thus resulting in 
increased total organic C. However, for the second planting cycle only biochar showed significant main 
effects on soil TOC (Table 3). This could be due to the recalcitrant effects of biochar over time compared with 
clinoptilolite zeolite. The organic C in the soil was also influenced by the quality and quantity of organic 
matter input into the soil (FAO, 2005). The higher soil TOC in plots amended with biochar could be due to 
the high inherent content of carbon in the biochar, as biochar itself is a term reserved for biomass derived 
materials contained within the black carbon (BC) continuum (Lehmann et al., 2006). Higher organic C was 
observed in a Terra Preta soil in Brazillian Amazon which is rich in black carbon or biochar compared to the 
adjacent soil (Liang et al., 2006). Novak et al. (2009) also reported higher soil organic C in biochar treated 
soils. These findings are also supported by the results of Sukartono et al. (2011) who reported an increase of 
soil organic C by 27% with 15 t ha-1 biochar treatment. Zhang et al. (2011) reported an increase of soil 
organic C by 25 and 42% with 20 and 40 t ha-1 biochar amendments compared with no biochar treatment 
with urea. Without urea addition, soil organic C was reported to increase by 44  and 58% with 20 and 40 t 
ha-1 biochar treatments, respectively.  

Kimetu et al. (2008) also reported that the application of biochar increased the SOC by 45%. The addition of 
biochar increased the soil organic matter as the biochar itself is a component of soil organic matter (Kimetu 
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et al., 2008). Sinclair et al. (1994) observed an increase in soil C by 0.5% with 10 t ha-1 biochar application. 
Soil total C was increased from 3.57% to 4.50% in Oxisols with 10 t ha-1 papermill waste biochar amendment 
in a study conducted by van Zwieten et al. (2010). An increase of soil TOC by 11% was also reported by 
Abewa et al., (2014) with 12 t ha-1 amendment in a Northwestern Ethiopia Ultisols and Prabha et al. (2013) 
observed an increase in soil organic C by 13% with biochar treatment under rice cultivation.  

Soil available phosphorus, exchangeable potassium, calcium, and magnesium  

There were no significant interaction effects between all the three factors on soil available P, K Ca and Mg 
irrespective of planting cycle (Table 4). In the first planting cycle, only biochar showed significant on main 
treatment effects for soil available P, so was exchangeable K and Mg. In the second planting cycle, soil 
available P and exchangeable K was affected by biochar main treatment effects whereas the biochar and 
zeolite main treatment effects significantly affected soil exchangeable Mg. All the treatments showed no 
significant effects on soil exchangeable Ca in the second planting cycle.  

In the first planting cycle, soil treated with 20 t ha-1 biochar resulted in significantly higher soil available P 
(8.10 mg kg-1). Soil available P was the lowest in untreated soil (1.38 mg kg-1). Applying 10 t ha-1 biochar 
increased soil available P to 3.90 mg kg-1 but the increase was not significant compared to untreated soil. 
After the second crop, mean separation using LSD test resulted in no significance different in soil available P 
between 10 and 20 t ha-1 biochar treatments but both were significantly higher than the 0 t ha-1 biochar 
treatment by 135.00% and 111.67%, respectively.  

For soil exchangeable K, 10 t ha-1 and 20 t ha-1 biochar treatments significantly increased the soil 
exchangeable K by 64.30% and 111.57 %, respectively compared with 0 t ha-1 biochar treatment. Soil 
without biochar treatment resulted in the lowest soil K (10.98 mg kg-1). In the second planting cycle, soil 
exchangeable K was the highest in 20 t ha-1 biochar treatment (35.74 mg kg-1) while 0 t ha-1 biochar 
treatment resulted in the lowest soil available K (23.65 mg kg-1). Soil exchangeable K for 10 t ha-1 biochar 
treatment (25.24 mg kg-1) was not significantly different than soil available K in 0 t ha-1 biochar treatment. 

Soil exchangeable Mg was higher in soil treated with 10 and 20 t ha-1 compared with soil without biochar 
application. Unamended soil resulted in the lowest soil Mg (74.06 mg kg-1). In the second planting cycle, 
biochar main treatment effects on soil exchangeable Mg showed that the 10 and 20 t ha-1 biochar 
amendments resulted in no significant difference in soil exchangeable Mg but both were significantly higher 
by 9.49 and 14.12%, respectively, compared to 0 t ha-1 biochar treatment. For clinoptilolite zeolite main 
treatment effects, soil exchangeable Mg in soil treated with zeolite at 1.25 and 2.5 t ha-1 did not show 
significant difference but both were significantly higher by 6.06% and 6.02%, respectively, compared with  
the 0 t ha-1 zeolite treatment.  

Soil available P was increased with biochar application after both crops. Given the low pH of the field, 
increase in soil P availability may also be the result of increasing pH in biochar treated soil. At low soil pH, Al 
concentration in soil solution is higher which may lead to the formation of Al phosphate that can be 
precipitated or strongly adsorbed in the soil causing a reduction in P availability (von Uexkull, 1986). 
Shamshuddin and Ishak (2010) reported a decrease in exchangeable Al with increasing soil pH. The increase 
in pH may reduce the activity of Al, thus contributing to increase in P availability (Shamshuddin et al., 2011).  

In a related study, Widowati et al. (2012) reported an increase in soil available P by 28% with biochar 
treatment in maize field trials. Liang et al. (2006) observed a higher P concentration at all four sites of 
carbon-rich Anthrosols of the Brazillian Amazon compared to non carbon-rich adjacent soils. Nigussie et al. 
(2012) reported an increase in P availability with the application of 10 t ha-1 maize stalk biochar in soil 
planted with lettuce. Fellet et al. (2011) reported an increase in soil P concentration in main tailing soil from 
81.8 mg kg-1 to 445 mg kg-1 with 10% biochar addition to the soil and remarkably higher P concentration by 
179-208% in biochar treated soil was observed by Widowati and Asnah (2014).  

In the second planting cycle biochar treatments resulted in significant effects on soil available K and Mg. 
Available K and Mg occur in the form of cations (K+ and Mg2+) in the soil solution. The increase of both 
cations can be explained by the increase of pH and CEC with biochar application. As pH increases, the net 
negative charge of variable clay in Oxisols and Ultisols increase (Sanchez and Logan, 1992; Shamshuddin and 
Daud, 2011). This in turn will increase the soil CEC and adsorption of cations. Biochar also possess the ability 
to adsorb cations due to its high net negative surface charge and adsorption affinity of cations (Liang et al., 
2006). This will result in cations flush on the surface of biochar thus increasing the availability of cationic 
species in biochar treated soil.  
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Increase in soil K by up to 189% with biochar treatment was reported by Widowati et al. (2012) and in a 
study by Widowati and Asnah (2014), soil available K was observed to be higher (69-89%) as a result of 
biochar treatment. Soil K was observed to be higher by up to 14% with biochar treatment in an experiment 
conducted by Nigussie et al. (2012). In an experiment conducted by Sukartono et al. (2011), 15 t ha-1 biochar 
treatment increased soil K by 11% and an increase in soil K with biochar application in Colombian Savanna 
Oxisols was observed by Major et al. (2010).  Fellet et al. (2011) also observed an increase in soil K from 38.2 
mg kg-1 in nutrient poor mine tailing soil to 2398 mg kg-1 K with 10% biochar addition. Prabha et al. (2013) 
recorded a higher soil available K by 29% with biochar application under rice cultivation.  

Major et al. (2010) reported an increment of soil Mg by 64 to 217% in a Colombian Savanna Oxisols with 20 t 
ha-1 biochar treatment compared to soil without biochar treatment. Nigussie et al. (2012) however reported 
a lower percentage of soil Mg increment (by 8%) with 10 t ha-1 biochar in a Southwest Ethiopia Ultisols.  An 
increase by 17% of soil Mg was documented by Sukartono et al. (2011) with 15 t ha-1 coconut shell biochar 
application. After the second crop, zeolite showed significant main effects on soil Mg. Zeolite is manufactured 
made from alkaline earth mineral possessing net negative surface charge, high cation exchange capacity and 
high cations adsorption ability (Sand and Mumpton, 1978). Zeolite also has the ability to trap small cations 
and inhibiting the cations from being leached out. The increase in exchangeable Mg in the soil with zeolite 
application may be the result of these features of zeolite. This result is supported by the finding of Rădulescu 
(2013) who also reported an increase of soil mg by up to 72.8% with zeolite application under oat 
cultivation.  

Conclusion 
Biochar produced from EFB-POME increased soil total N, P, K, Ca and Mg contents compared with 
clinoptilolite zeolite. The higher of soil total N, P, K, Ca and Mg could be related to the increase in soil pH, 
cation exchange capacity, and total organic carbon in biochar treated soil. EFB-POME biochar was more 
suitable to be used in a tropical soil (Typic Paleudults) compared with clinoptilolite zeolite for improving the 
selected soil chemical properties. Over time, only biochar treatments showing improvement on soil 
properties as it can be seen in the results of second cycle planting where contrary to biochar, soil treated 
with zeolite did not show any significant different on soil properties.  
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