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Keywords Abstract: The aim of this paper is to define Backlund transformation between two
M_inO_WSki space-time, timelike curves in four dimensional Minkowski space. For this purpose, we examine
Timelike curves, the transformation depending on the choice of rotation matrix which determines the

Bécklund transformation relations between Frenet frames of timelike Backlund curves. There are three

different cases for rotation matrix; two of them are spherical rotations on the
spacelike hyperplane and one of them is hyperbolical rotation on the timelike
hyperplane. For each case, we get the relations between curvature functions of
timelike Backlund curves. By the way, we prove that timelike Backlund curves must
have equal constant second torsion functions up to sign. This also means that
Backlund transformation is a transformation which maps a timelike curve with
constant second torsion to another timelike curve with constant second torsion.

Minkowski Uzay-Zamanda Timelike Egriler Arasindaki Biacklund Déniisiimii Uzerine

Anahtar Kelimeler Ozet: Bu ¢alismanin amaci, Minkowski uzay-zamanda timelike egriler arasinda
Mink({WSkivU_ZaY'Zaman; Backlund doniisiimiinii tanimlamaktir. Bu amag¢ dogrultusunda, timelike Backlund
Timelike egriler, egrilerin Frenet ¢atilar1 arasinda iliskiyi ortaya koyan donme matrisinin secimine

Backlund déniishmil bagl olarak doniisiimii inceledik. ikisi spacelike hiperdiizlemde kiiresel dsnme ve

biri ise timelike hiperdiizlemde hiperbolik donme olmak {iizere ii¢ farkli dénme
matrisi durumu s6z konusudur. Her durum i¢in, timelike Backlund egrilerinin egrilik
fonksiyonlar1 arasindaki iliski ortaya konmustur. Bu arada, isaret farki gozeterek
timelike Backlund egrilerin esit ikinci burulma fonksiyonuna sahip olmasi gerektigi
ispatlanmistir. Bu ayni zamanda; Backlund déntisiimiin bir sabit ikinci burulmaya
sahip timelike egriyi bir baska sabit ikinci burulmaya sahip timelike egriye tasiyan
doniisiim oldugu anlamima gelir.

1. Introduction from a given surface with use of the solution of a
linear differential equation. Since pseudospherical
In mathematics, Backlund transformation is known surfaces can be considered as solutions of the sine-
as a kind of relation between partial differential Gordon equation, then Backlund transformation of
equations and their solutions, which is named after surfaces is a kind of transformation between
the Swedish mathematician and physicists Albert solutions of the sine-Gordon equation. Therefore,
Victor Backlund. Simply, a Backlund transformation the Backlund transformation has important role in
can be considered as a first order partial differential soliton  theory. For  example; Bécklund
equation system with two functions which depend on transformation and soliton equations for KP
one more parameter. This means that the these equation were investigated in [8] and modern
functions satisfy partial differential equations. Then applications of  Backlund and Darboux
these two functions are called Backlund transformations in soliton theory were deeply
transformation of each other [1-7]. discussed in [9].
Backlund transformations have also origins in In Minkowski 3-space, Backlund transformation is a
differential geometry by means of the new research area. The construction of timelike
transformations between pseudospherical surfaces. surfaces with positive Gaussian curvature and
By the way, it can be considered as a geometrical imaginary principal curvatures was established in
way for generation of a new pseudospherical surface [10] by using Backlund transformation. Then, the
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Béck-lund transformation on surfaces with Gaussian
curvature K = 1 in was given by Tian [11] Backlund
transformation for pseudospherical surfaces can be
restricted to give a transformation on space curves.
Since Backlund transformation maps asymptotic
curves to asymptotic curves and we know that the
torsion of an asymptotic curve is constant, then
Backlund transformation can be considered as a
transformation on space curves that preserves
constant torsion [12, 13]. Nemeth proved that if
there is a correspondence between points of two
unit speed curves a and & having the property that
line joining the corresponding points a(s) and &(s)
is the intersection of the osculating planes of these
curves, then the angle between and tangent vectors
of the curves a(s) and &(s) are the same in [12].
Moreover, Nemeth also proved that two curves a(s)
and @(s) must have the same constant torsion

~ sinf . . . .
kn-1=ky1= in n dimensional Euclidean
space. In four dimensional Euclidean space,
Backlund transformation of two dimensional

surfaces was given in [14].

On the other hand, Bicklund transformations for
nonnull and null curves in Minkowski 3-space have
been also investigated. And the details of Backlund
transformations for nonnull curves in Minkowski 3-
space are explained in [15]. Furthermore, the
Backlund transformation of a null Cartan curve in
Minkowski 3-space is also investigated as a trans-
formation which maps a null Cartan helix to another
null Cartan helix, congruent to the given one in [16].
And the sufficient conditions are stated for a
transformation between two null Cartan curves in
the Minkowski 3-space such that these curves have
equal constant torsions [16]. Furthermore, Backlund
transformation of a pseudo null curve in Minkowski
3-space is investigated as a transformation mapping
a pseudo null helix to another pseudo null helix
congruent to the given one in [16, 17].

In this paper, Minkowski space-time is introduced.
Then, the fundamentals of semi orthogonal matrices
are discussed. Moreover, Frenet frame fields for unit
speed timelike curves are defined and Serret-Frenet
formulas are stated. Before starting to the main
discussion, the definition of osculating hyperplane is
given. Then we construct a Backlund transformation
between two timelike curves in Minkowski space-
time. Since this construction depends on the rotation
between Frenet frames of the curves which occurs
on the plane containing N;, we examine the
transformation with respect to the type of rotations.
As a result, we investigate the relations between
Frenet frames of the curves and their curvature
function in three different cases. Finally, we prove
that timelike Backlund curves must have equal
constant second torsion functions up to sign. This
also means that Backlund transformation is a
transformation which maps a timelike curve with
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constant second torsion to another timelike curve
with constant second torsion.

2. Preliminaries

Euclidean four space with Lorentzian product is
called Minkowski space-time and denoted by Ef.
Here Lorentzian product of x = (x4, x,,x3,x,) and
y = (Y1, V2, V3, V4) € Ef is defined as

(6, ¥ = =191 + X2 + X3Y3 + X4V

This product classifies the vectors in Minkowski
space-time as follows: if (x,x), >0, then x is
spacelike vector; if (x,x), = 0, then x is lightlike or
null vector; if(x,x), <0, thenxis timelike vector.
And we may define the norm of vectors with

Lorentzian product by ||x|| = y/|{x, x),| . On the other
hand, we may also write the Lorentzian product of x
andy in terms of matrix product asx'l,y where
I, = diag(—1,1,1,1). It is really important to note that
the position of the term " — 1" depends on the basis
of Minkowski space-time. The set of semi orthogonal
matrices in Ef can be represented as

0(1,3) = {R € M,(R): RTLR = L},
Forany x,y € Ef and R € 0(1,3), we may write
(Rx,Ry), = xT(RTLR)y = xTLy = (x,y),

which means the semi orthogonal matrices preserve
the Lorentzian product. The Lorentzian rotation
matrices forms a subgroup of semi orthogonal
matrices and defined as

S0(1,3) = {R € 0(1,3): detR = 1}.

The regular curve a:1 —» Ef is named after the
character of its velocity vector. If {a'(s), a’(s)),
for all s € I, then a is called unit speed timelike curve.
T is the unit timelike vector field a’, N; is the
spacelike normalized vector field a” and N, is
spacelike unit normal component of N;’with respect
to the plane {T,N;}. Finally, N3 is the unique unit
spacelike vector field which is perpendicular to T, N;
and N,. Then {T, N;, N,, N3} corresponds to the Frenet
frame field with the same orientation of[E}. The Serre-
Frenet formulas for unit speed timelike curve ¢ can
be given as follows:

[ T'(s) 1 0 K(s) 0 0 T(s)
N;'(s) _ K(s) 0 7(s) 0 ||N.(s) o)
NO[T 0 e 0 e®)||Me)
N3'(s) 0 0 —o(s) 0 1LN;(s)

where k is called curvature, tis called first torsion
and o is called second torsion of a.

Definition 1. Leta:I — Ef be a regular curve. The
hyperplane generating by {a'(s), a”(s), a’”’(s)} at the
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point a(s) is called the osculating hyperplane of the
curve a at a(s) [20].

For a given unit speed timelike a, we know that
a'(s) =T(s),
a’(s) = k(s)N,(s),
a’’(s) = k'(s)Ny(s) + K2(S)T(s) + k(s)T(s)N,(5).

This means that the osculating hyperplane of « at the
point a(s) is the hyperplane generating by Frenet
vectors {T'(s), N;(s), N,(s)} and orthogonal to N;(s).

3. Bicklund Transformation for Timelike Curves

Assume that ¢ is a transformation of timelike curves
a and @ that is ¢(a(s)) = @(s). Now, suppose that
the following properties for corresponding points of
these curves are satisfied:

1. The straight line, which is combining the
corresponding points of these curves, lies on the
intersection of the osculating hyperplanes of the
curves. The line segment a(s) to &(s) has a
constant measurement r, that is ||a(s)6z(s)|| =r.
We will denote the normalized unit vector

a(s)a(s) by F;(s).

The angle between the vector field F; and the
tangent vectors of the curves are the same and F;
is not perpendicular to tangent vectors.

The Frenet frame {T,N,,N,,N;} of & can be
obtained by rotating Frenet frame {T, Ny, N,, N5}
of @ with constant angle 6 on the plane containing
N;. This means that the second binormals N; and
N, forms the constant angle 6.

The equality (T, F;), = —(N,, F;), is for the vector
field F; which is perpendicular to intersection
space of the osculating hyperplanes of the curves
and is not a Frenet vector of «a.

If the above properties are satisfied, then the curves
a and & are called Backlund curves. By first property,
we can define the transformation ¢ as
p(a(s)) = da(s) = a(s) + rFi(s). (2)
By third property, we can write X = ATRAX where
XT ={T,N,,N,,N;} and X" = {T,N,,N,, N;}. Here R
and A = (a;;) are elements of SO(1,3) with the
property a;, = a,; = 6;4 for i =1,2,3,4. Moreover,
first binormal vector components of F; should be
nonzero that is that a3 #0 for j = 1,2,3. Otherwise,
Backlund curves will lie on 3 dimensional subspace of

Ef which means that second torsions o and & are
zero. Timelike Backlund curves in 3-dimensional
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Minkowski space are investigated and similar results
on torsions 7 and ¥ are obtained in [13].

Now, consider the the frame {F}, F,, F5, N3} that is
obtained by F = AX where FT ={F,,F,,F;, N;}.
Therefore, we may write the following equations:

F; = a1 T + apNy + a3N,, (3)
Fy = a3 T + az; Ny + a3y, (4)
F3 = a31T + a32N1 + a33N2. (5)

Moreover, the frame {F,, F,, F5, N3} which is obtained
by F = RF = RAX where FT = {F,,F,,F;,N;}. These
frames will help us to analyze the intersections of
osculating hyperplanes of the curves.

It is time to examine the rotation matrix R with
respect to kind of rotation plane. For rotation
matrices in Minkowski space-time, the readers are
referred to [9, 18, 19].

Therefore there are three different choice for the
rotation matrix R.

Case 1. If the rotation occurs on spacelike plane
spanned by the spacelike vector fields N, and N; with
the constant spherical angle 6, then rotation matrix
will be of the form:

1 0 0 0

R = 0 1 0 0
0 0 cosf -—sinbf
0 0 sin@ cos6

Thus, according to the transformation X = ATRAX,
the relations between Frenet vectors of Backlund
curves can be given as:

T = (a?, + a2, + a2,cosO)T
+(a11a12 + a21a22 + a31a32C059)N1
+(a11a13 + a21a23 + a31a33C059)N2
—az,SinfN;,

1V1 = (ay1a12 + a31a5, + a3,a5,c050)T
+(a?, + a3, + a3,cosO)N,
+(0-12('7'13 + Ay7053 + a32a33C059)N2
—a3,SindN;

Nz = (a11043 + Az1a53 + a31a33¢0560)T
+(a12a13 + A37a,3 + a3,a33c050)N;
+(a?; + a3; + a3;c0s0)N, — a33SinN;

(6)

N3 = Sin@(a31 T+ as; Nl + a33N2) + cos6 N3. [7)

On the other hand, we know that F = RF which
corresponds to the following relations:

Fl = Fl’
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F‘Z = Fz,
F; = cosOF; — sinfNs,
N3 = sinfF; + cosONs.

The osculating hyperplane of the curves a and & are
the hyperplanes spanning {F,,F,, F;} and {F}, F,, F3}
at the corresponding points, respectively. By above
relations, the vectors F;and F, form a frame for the
intersection of osculating hyperplanes of the curves.
It is easily seen thati = 3 and by last property of
Bicklund curves (T, F;), = —(N,, F;), should be
satisfied. By Equations 3 and 5, we get a3; = a,3.

Note that sinf # 0. In the case of sind =0, the
second binormal vector fields of the curves will be
parallel and the osculating hyperplanes will be
coincidence. This is a contradiction to the last
property of Backlund curves, since the only vector
field, which is perpendicular to intersection space of
osculating hyperplanes, is the Frenet frame field N;.

With the use of Equation 2 and 3, we see that
d =a + T(allT + alle + algNz).

Actually, the vector F; and the tangent vectors of the
curves are the same, ie.(F;,T), = (F,T), = —a,;.
By third propery, F; is not perpendicular to tangent
vectors i.e, a4 # 0.

On the other hand, differentiating the equation
(a — & a— @), = Fr?
with respect to arc parameter length of a, we get
(rF, @’ —=T), =08 (F, &), = —a;; = (F, T),.

Considering & = ||@'||T, we obtain @ = T. It means
that, @ is also a unit speed timelike curve.

Theorem 1. Let the curves @ and & = a + rF; be two
timelike unit speed Backlund curves in Ef and 6 be
the constant spherical rotation angle in the spacelike
plane between the Frenet frames of the curves. Then,
the curves @ and & have the same second torsion.

Proof. If we differentiate the Frenet vector N of
curve & in (7) and use the Frenet formulas of « in (1),
then we get

N;' = (as;'sinf + az,ksin)T
+(as;'sind + az,ksinf — az;tsind)N,;
+(—0acos6 + az;'sind + as,1sind)N,
+(az30sin8)Ns.

On the other hand, we have
N:), "= _5-N2
= —0(a11a13 + Az1053 + a31a33€050)T

—06(a12013 + A32053 + A3,033¢050)N;
—6(a?; + a3; + a3;c0s0)N, + Gaz3sindN;.

Equality of above obtained vector equations, we
obtain

a330S8infd = Gas;sing

which means ¢ = o.

Theorem 2. Let the curves @ and & be two timelike
unit speed Biacklund curves in Ef and 6 be the
constant spherical rotation angle in the spacelike
plane between the Frenet frames of the curves. Then
the following relations are satisfied:

1+ray, +rka, = ai, + a3, + a3, cos6,

ra12'+ TKQ 1 — T'TA13=0110417 + Q31 Ay, + A3103,€050,

sinf

g =— .
r

Proof. If we differentiate @ = @ + rF; and use the
Frenet formulas of a in (1), then we obtain

a’'={1+ray +rea )T

+(ray, + rea;; — rragz)N;

+(ra;3"+ rra;)N, + (roa 3)Ns.
Comparing this equality to the tangent vector field
T = (a?, + a%, + a2,cosO)T

+(a;1a12 + az105; + az1a3,c0s6) Ny

+(ay1a43 + az10,3 + a31033c080)N, — az,SindNs,
we obtain

1+ra;, +rka;, =a? + a2, + a3,cos6,

ra12,+ TKa11 - TTa13=a11a12 + a21a22 + a31a32C059,

Tay3 + 1Ta1; = 11043 + Ay10y3 + d31035C0S80,

roa 3 = —asz,Sind.

Since the property a,; = as, is satisfied, then we get

sinf

g =— .
r

Example 1: Consider semi orthogonal matrix
A = (a;;) with the following entries

a;, = sinh(2u),
a,, = cosh(2u)sing,
a3 = a3 = —sinh(2u)cosp,
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a,; = sinh(2u)sing,
Ay, = cosh?yu — sinh?ucos(2p),
a3 = a3, = —sinh?usin(2p),
as; = cosh?u + sinh?ucos(2p),
Qg = Q4 =034 = Qg1 = Qg = Qg3 = 0,044 =1
such that
wl->R—{0}and 5:1 - (0, / 4)

are diffentiable function of parameter s. With the use

of this rotation matrix, we may define the Backlund
transformation as follows:

p(a(s)) = a(s) = a(s) +ray,T(s) +ra N, (s)

+ ray 3N, (s)
a@(s) = a(s) + rsinhRu)T(s) + rcosh(2u)sinf Ny (s)
—rsinh(2u)cosf N, (s)
where r is the constant distance between
corresponding points of @ and @ . This

transformation maps unit speed timelike curves with
constant torsion to another curve with constant
torsion. Now, let us consider the curve a:l — E}
parametrized by

a(s) = (sinh(v/2s), cosh(\/2s), cos(s), sin(s)).
Then we have
a'(s) = (V2cosh(V2s),V2sinh(V2s), —sin(s), cos(s)),
and

(a'(s),a’(s)),, 2cosh?(V2s) + 2sinh?(\/2s) +
sin?(s) + cos?(s) = —1.

Therefore, « is a unit speed timelike curve. Frenet
frame fields of « are found as follows:

T(s) = (V2cosh(V/2s),V2sinh(V2s), —sin(s), cos(s))

Nyi(s) =
(j_g sinh(v/2s), j—g cosh(v2s), — % cos(s),— % sin(s))

Ny(s) = (—cosh(V2s), —sinh(V2s),V2sin(s), —V2cos(s)),

N3(s) = (\/ig sinh(v/2s), \/1—3 cosh(/2s), \/Z_g cos(s), \/Z_g sin(s)).

Moreover, the curvature and torsion functions of «
are obtained as

%1_0 and o(s) =

Kk(s) = V5,7(s) =

BN
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As seen, a has constant second torsion. Thus, we get

a(s) = (sinh(\/fs), cosh(\/fs),cos(s),sin(s))

+rsinh(2u) (V2cosh(V2s), V2sinh(V2s), —sin(s), cos(s))
+rcosh(2u)sinf (\_/E sinh(V2s), E cosh(V2s),— ﬁ E sin(s))
—rsinh(2u)cosB(—cosh(v2s), —sinh(v/2s),V2sin(s), —V2cos(s))

cos(s),—

By choosing the constant distance

then we obtain

sinf = ——

V2

by Theorem 2 where 8 =%ﬂis the constant angle

between the second binormals N; and N;. Morever,
second torsion of the curve &

6(s) =

alS

by Theorem 1.

Case 2. If the rotation occurs on the spacelike plane
spanned by the spacelike vector fields N; and N; with
the constant spherical angle 8, then rotation matrix
will be of the form:

1 0 0 0
R= 0 cosf 0 —sind

0 0 1 0

0 sinf 0 cos6

Similar to above choice of rotation matrix, we obtain
the relations between Frenet vectors of Bicklund
curves are obtained as:

T = (a?, + a%, + a3,cosO)T
+(a11a12 + a31a3; + az1a,,c056) Ny
+(a;1a13 + a31a33 + az1a,3c050)N,
—Qa,1SinON3,

N]_ = (a11a12 + a31a32 + a21a22C059)T
+(az, + a3, + a3,cos0)N,
+(a12a13 + a32a33 + a22a23C059)N2
—a,,SnON;,

Ivz = (a1,a43 + a31a33 + a1a,3c0s0)T
+(a12a13 + a32a33 + a22a23C059)N1
+(a%; + a3; + a3;c0s0)N, — a,35infNs,

IV3 = sinf(ay, T + a,,N; + a,3N,) + cosO Ns. (8)

Similar to the first case, we have

Fl = Fl’
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F, = cosOF, — sinfN,,
F'3 = F3,
N3 = sin@F, + cosONs.

The osculating hyperplane of the curves a and & are
the hyperplanes spanning {F,,F,, F;} and {F}, F,, F3}
at the corresponding points, respectively. By above
relations, the vectors F;and F; form a frame for the
intersection of osculating hyperplanes of the curves.
Therefore,i = 2and by last property of Backlund
curves, we obtain

(T, F2>L = _<N2;F1)L-
This means that
az1 = Ag3.

Theorem 3. Let the curves a and @ be two timelike
unit speed Bicklund curves in Ef and 8 be the
constant spherical rotation angle in the spacelike
plane between the Frenet frames of the curves. Then,
the curves a and @ have the same second torsion.

Proof. Differentiating N; in (8) and using the
relations in (1), we have

N; ' = (ap;'sinf + a,,ksind)T
+(ay,'sind + ay ksind — a,31sind)N,
+(—0cosO + a,3'sind + a,,tsind)N,
+(a,30sin0)N;.

Moreover, we know that

N3 "= _5-N2

—6(a11a13 + A31a33 + Az1023c056)T

—0 (12013 + A32a33 + Az2A23€050)N;
—&(a?; + ad; + ad;cos0)N, + Ga,;sindN;.

Thus, we get
a,30S8inf = Ga,3sind.
This implies & = o.

Theorem 4. Let the curves a and & be two timelike
unit speed Bicklund curves in Ef and 8 be the
constant spherical rotation angle in the spacelike
plane between the Frenet frames of the curves. Then
the following relations are satisfied:

1+ra;; +rka;, = a?; + a?, + a3, cosb,
ra13’+ T, = Q1043 + A310A33 + Ay, 053050,

__ sin6

r
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Proof. If we differentiate & = @ + rF; and use the
Frenet formulas of a in (1), then we obtain

@'={1+ra;; +rra )T
+(rayy’ + reay; — rrag3)Ny
+(ra,;3"+ rra;)N, + (roa 3)Ns.
On the other hand, we have &’ = T which means
1+ ray, '+ rea,, = a?, + a3, + a3, cosé,
a3’ + 701, = A110q3 + A31033 + Ay10,3€0S0,
roa;; = —a,,Sind.
And we know that a,; = a;3 and we get the proof.
Case 3. Last choice of rotation matrix is much more
different from previous cases. In this case, the
rotation occurs on the timelike plane spanned by the
timelike vector field T and the spacelike vector field

N; with the constant hyperbolical angle 8. The
rotation matrix will be of the form:

cosh@ 0 0 sinh@
_ 0 1 0 0
k= 0 0 1 0
sinh®@ 0 0 cosh6

The relations between Frenet vectors of Backlund
curves are stated as:

T = (a3, + a3, + a?,cosh)T
+(az1a22 + a31a3; + A11a1,c05hO)Ny
+(az1a23 + az a3z + a11a13¢0shO)N,
+a,,SinhGN;,

N, = (ay1a5, + a31a3 + a1,0,,c0ShO)T
+(a2, + a3, + a?,cosh)N,
+(az2a;3 + azpa33 + a;,a,3c0shO)N,
+a,,sinh@N;,

Nz = (ay1a,3 + a31033 + a;1a,3c0sh6)T
+(az2053 + A3,033 + A12a,3c0ShO)N;
+(a3; + a3; + a?;coshO)N,
+a,3sinhGN;,

IV3 = Sinh@(all T + aqip Nl + a13N2) + COSh@ N3. (9)

The vectors F, and F; form a frame for the
intersection of osculating hyperplanes of the curves.
Thus, i = 1 and by last property of Backlund curves,
we obtain (T, F;), = —(N,, F;), and a,; = a,3.

Theorem 5. Let the curves @ and & be two timelike
unit speed Bicklund curves in Ef and 6 be the
constant hyperbolical rotation angle in the timelike
plane between the Frenet frames of the curves. Then,
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the curves a and @ have the same second torsion
except for sign, thatis 6 = —o.

Proof. Differentiating N3 in (9) and using Serre-
Frenet formulas, we obtain

N; ' = (a,,'sinh@ + a,,ksinh)T
+(a,,'sinhf + a,,ksinh@ — a,;tsinhf)N;
+(—acoshf + a,3'sinh + a,,tsinhO)N,
+(a,30sinh@)N;.

On the other hand, we have

&N,

—6(ay1a,3 + a31a33 + a1a,3c0shO)T

—06 (22023 + A32033 + A1,0,3c0ShE) Ny
—(a3; + a3; + a?;coshO)N, — Ga,;3sinhONs.

!

N;

Finally, we get
a,30Sinhf = —§a,3sinhf
which implies 6 = —o.

As in above cases, this is not the case that we want.
Thatis, a;3 # 0.

Theorem 6. Let the curves ¢ and & be two timelike
unit speed Bicklund curves in Ef and 8 be the
constant hyperbolical rotation angle in the timelike
plane between the Frenet frames of the curves. Then
the followings are satisfied:

1+ ray '+ rea,, = a3, + a3, + a?,cosho,

a,1a4,C0shé,

Tay3 4+ TTa1; = Ay10,3 + A31033 + A11a,3C0ShB,

__sinhf

r

Proof. The proof can be done similar to proofs of
Theorem 2 and 4 by using the property a;; = a43.

4., Discussion and Conclusion

Backlund transformation between two timelike
curves in [E}is obtained. Moreover, we state the
relations between the second torsion of these two
timelike Backlund curves in three different cases. For
each case, we prove that timelike Backlund curves
must have constant second torsion. It is essential to
note that second torsion functions of timelike
Bécklund curves are equal or equal except from sign
depending on the choice of the rotation matrix. If the
rotation occurs in the spacelike plane, then the
second torsion of the timelike Backlund curves a and
& are exactly equal i.e.
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B sinf
0=0=——
r
In the case of hyperbolical rotation in the timelike
plane, the second torsion of the timelike Backlund
curves have different signs that is

_ sinh@
Ty

6=—0

And it is also seen that the second torsion functions of
timelike Backlund curves depends only on the angle
of rotation and the constant distance r.
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