S.Ü. FEN FAKÜLTESİ FEN DERGİSİ

Research Article

An Inequality on M-Matrices

Ali ÖZDEMİR

Manisa Celal Bayar University, Faculty of Science and Arts, Department of Mathematics, MANISA
e-mail: acaozdemir@gmail.com

Abstract

Let A_{0} be a nonsingular symmetric M-matrix. For a sufficiently large $t, A_{t}=t I+A_{0}$ is a new nonsingular symmetric M-matrix and the following inequalities hold for the sum of the principal minors of new matrix A_{t} : $$
\sum_{C_{n}^{1}}|A(1)|<\sum_{C_{n}^{2}}|A(1,2)|<\cdots<\sum_{C_{n}^{n}}|A(1,2, \ldots, n)| .
$$

Keywords: Non-negative matrix, Nonsingular symmetric matrix

M-Matrisleri Üzerine Bir Eşitsizlik

Öz: A_{0} tekil olmayan simetrik bir M- matrisi olsun. Yeteri kadar büyük bir t değeri için $A_{t}=t I+A_{0}$ şeklinde oluşturulan M- matrisinin esas minörlerinin toplamları arasında

$$
\sum_{C_{n}^{1}}|A(1)|<\sum_{C_{n}^{2}}|A(1,2)|<\cdots<\sum_{C_{n}^{n}}|A(1,2, \ldots, n)|
$$

eşitsizliği vardır.
Anahtar Kelimeler: Negatif olmayan matris, Tekil olmayan simetrik matris

1. Introduction

Definition 1: Let $A=\left(a_{i j}\right)$ be a real valued matrix for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$. If $a_{i j} \geq 0$ then matrix A is said to be a non-negative matrix (Gantmacher, 1956).

Definition 2: Let $B=\left(b_{i j}\right)$ be a nonnegative an n dimensional square matrix and I be a n dimensional unit matrix. Further let $\rho(B)$ be the spectral radius of B. Then let A be defined by
$A=s I-B$
A is called a M-matrix for $s \geq \rho(B)$. If $s=\rho(B)$ then A is a singular M-matrix, and conversely, if $s>\rho(B)$ then A is nonsingular M-matrix (Berman and Plemmons, 1979).
Theorem 1: let A_{0} be a nonsingular symmetric M-matrix

$$
\begin{equation*}
A_{t}=t I+A_{0} \tag{2}
\end{equation*}
$$

is also a nonsingular symmetric M -matrix for sufficiently large positive integer t.

Proof: $\quad A_{0}$ is a nonsingular symmetric M-matrix. Thus, $A_{0}=s I-B$ when $s>\rho(B)$ where s is defined as in equation (1). We can write $A_{0}=s I-B$, and putting this value into equation (2) we have $A_{t}=t I+(s I-B)$. Then it follows that $A_{t}=(s+t) I-B$. This shows that A_{t} is a nonsingular M-matrix (Berman and Plemmons, 1979).

Theorem 2: Let $A_{0}=\left(A_{0_{i j}}\right)$ be an n dimensional nonsingular symmetric M matrix and A_{t} be a matrix defined by $A_{t}=t I+A_{0}$ for $t \geq n$. Then, for new matrix A_{t},
$\sum_{C_{n}^{n}}\left|A_{t}(1)\right|<\sum_{C_{n}^{2}}\left|A_{t}(1,2)\right|<\cdots<\sum_{C_{n}^{n}}\left|A_{t}(1,2, \ldots, n)\right|$,
where $C_{n}^{r}(r=1,2, \ldots, n)$ is a binomial coefficient and
$\left|A_{t}\left(i_{1}, i_{2}, \ldots, i_{n}\right)\right|$ with
$1 \leq \mathrm{i}_{1}<\mathrm{i}_{2}<\cdots<\mathrm{i}_{\mathrm{r}} \leq \mathrm{n} \quad$ is the corresponding principal minor of A_{t}.

Proof: We will prove this theorem by induction using the properties of similar matrices, Since the characteristic polynomials of similar matrices are the same and the eigenvalues of a real symmetric matrix are real numbers (Mirsky, 1955). It is easily seen that A_{t} can be written explicitly in the following form.

$$
A_{t}=\left[\begin{array}{cccc}
t+a_{0_{11}} & a_{0_{12}} & \ldots & a_{0_{1 n}} \\
a_{0_{21}} & t+a_{0_{22}} & \ldots & a_{0_{2 n}} \\
\ldots & \ldots & \ldots & \ldots \\
a_{0_{n 1}} & a_{0_{n 2}} & \ldots & t+a_{0_{n n}}
\end{array}\right]
$$

A_{t} is similar to such a triangular matrix whose elements on the main diagonal equal to the eigenvalues of A_{t}. Thus if the eigenvalues of A_{0} are λ_{i} for $i=1,2, \ldots, n$, then the eigenvalues of A_{t} will be $t+\lambda_{i}$ for $i=1,2, \ldots, n$. In this case, we have a nonsingular n dimensional triangular matrix
$P A_{t} P^{-1}=R_{t}=\left[\begin{array}{ccccc}t+\lambda_{1} & \gamma_{12} & \gamma_{13} & \ldots & \gamma_{1 n} \\ 0 & t+\lambda_{2} & \gamma_{23} & \ldots & \gamma_{2 n} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & t+\lambda_{n}\end{array}\right]$,
where $P=\left(p_{i j}\right)$ is a nonsingular matrix. Now we will prove that equation (3) holds for R_{t} matrix. For $n=2$, equation (4) can be written as

$$
R_{t}=\left[\begin{array}{cc}
t+\lambda_{1} & \gamma_{12} \tag{5}\\
0 & t+\lambda_{2}
\end{array}\right] .
$$

When we evaluate the first and second order sums of principal minors, we get

$$
\begin{align*}
& \sum_{c_{2}^{c}}\left|R_{t}(1)\right|=\left(t+\lambda_{1}\right)+\left(t+\lambda_{2}\right)=2 t+\lambda_{1}+\lambda_{2} \tag{5.1}\\
& \sum_{c_{2}^{2}}\left|R_{t}(1,2)\right|=\left(t+\lambda_{1}\right)\left(t+\lambda_{2}\right)=t^{2}+\left(\lambda_{1}+\lambda_{2}\right) t+\lambda_{1} \lambda_{2}(5.2)
\end{align*}
$$

Supposing $t \geq 2$ and using equations (5.1) and (5.2) we have

$$
\sum_{c_{2}^{1}}\left|R_{t}(1)\right|<\sum_{c_{2}^{2}}\left|R_{t}(1,2)\right| .
$$

It follows by hypothesis that $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ because the eigenvalues of A_{0} are real numbers. Therefore, we have the same values for $\lambda_{i} ;(i=1,2)$. When the result is correct for the smallest λ in equation (5) then it is trivial to proof that the
result is true for larger λ without losing any generality on chosing $\lambda=\min \left(\lambda_{i}\right) ; \quad(i=$ $1,2, \ldots, n$). This will help in improving

Theorem 2. Now, let $n=3$, then the matrix in equation (4) can be written in the following form

$$
R_{t}=\left[\begin{array}{ccc}
t+\lambda & \gamma_{12} & \gamma_{13} \tag{6}\\
0 & t+\lambda & \gamma_{23} \\
0 & 0 & t+\lambda
\end{array}\right]
$$

Evaluating first
second and third order sums of the principal minors we will have

$$
\begin{align*}
& \sum_{c_{3}^{1}}\left|R_{t}(1)\right|=C_{3}^{1} \sum(t+\lambda)=3 t+3 \lambda=3(t+\lambda) \tag{6.1}\\
& \sum_{c_{3}^{2}}\left|R_{t}(1,2)\right|=C_{3}^{2} \sum(t+\lambda)^{2}=3\left(t^{2}+2 \lambda t+\lambda^{2}\right) \tag{6.2}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{c_{3}^{3}}\left|R_{t}(1,2,3)\right|=C_{3}^{3} \sum(t+\lambda)^{3}=t^{3}+3 t^{2} \lambda+3 t \lambda^{2}+t^{3} \tag{6.3}
\end{equation*}
$$

Then for $t \geq 3$, using equations (6.1), (6.2) and (6.3) we obtain

$$
\sum_{c_{3}^{1}}\left|R_{t}(1)\right|<\sum_{c_{3}^{2}} \mid R_{t}\left(1,2\left|<\sum_{c_{3}^{3}}\right| R_{t}(1,2,3 \mid\right.
$$

Now, assuming that the inequality in equation (3) holds for $n-1$, i.e,

$$
\sum_{c_{n-1}^{0}}\left|R_{t}(0)\right|<\sum_{c_{n-1}^{1}}\left|R_{t}(1)\right|<\sum_{c_{n-1}^{2}}\left|R_{t}(1,2)\right|<\cdots<\sum_{c_{n-1}^{n-1}}\left|R_{t}(1,2, \ldots, n-1)\right|
$$

It follows that

$$
C_{n-1}^{0} \sum(t+\lambda)^{0}<C_{n-1}^{1} \sum(t+\lambda)^{1}<C_{n-1}^{2} \sum(t+\lambda)^{2}<\cdots<C_{n-1}^{n-1} \sum(t+\lambda)^{n-1}
$$

replacing $n-1$ by n in the last expression we get

$$
C_{n}^{1} \sum(t+\lambda)^{1}<C_{n}^{2} \sum(t+\lambda)^{2}<C_{n}^{3} \sum(t+\lambda)^{3}<\ldots<C_{n}^{n} \sum(t+\lambda)^{n}
$$

it follows easily that

$$
\sum_{c_{n}^{1}}\left|R_{t}(1)\right|<\sum_{c_{n}^{2}}\left|R_{t}(1,2)\right|<\cdots<\sum_{c_{n}^{n}}\left|R_{t}(1,2, \ldots, n)\right|
$$

Since A_{t} is similar to R_{t}, then

$$
\sum_{c_{n}^{1}}\left|A_{t}(1)\right|<\sum_{c_{n}^{2}}\left|A_{t}(1,2)\right|<\cdots<\sum_{c_{n}^{n}}\left|A_{t}(1,2, \ldots, n)\right|
$$

This completes the proof.

2. Result and Discussion

In this study, some inequalities on M-matrices are examined by using the properties of M - matrices and benefiting from principle minors by taking advantage
of studies on inequality of M- matrices by Ando (1980), Chun-Wei (1988), Furuichi and Lin (2010). As a result an inequality on the sum of the principal minors of M matrices was proved.

References

Ando T (1980). Inequalities for M-matrices. Linear and Multilinear Algebra 8(4): 291-316.
Berman A, Plemmons RJ (1979). Nonnegative matrices in the mathematical sciences. Academic Press, New York.

Chun-Wei H (1988). An inequality for M-matrices. Linear and Multilinear Algebra 23(3): 263-267.

Furuichi S, Lin M (2010). A matrix trace inequality and its application. Linear Algebra and its Applications 433: 1324-1328.
Gantmacher FR (1956). Aplications of the theory of matrices, New York.
Mirsky L (1955). An introduction to linear algebra. Oxford At The Clarendon Press.

