
∗ onder.turk@yandex.com

Süleyman Demirel Üniversitesi Süleyman Demirel University
Fen Bilimleri Enstitüsü Dergisi Journal of Natural and Applied Sciences
Cilt 22, Özel Sayı, 355-366, 2018 Volume 22, Special Issue, 355-366, 2018

DOI: 10.19113/sdufbed.69108

Chebyshev Spectral Collocation Method Approximation to Thermally Coupled MHD
Equations

Önder TÜRK∗1

1Gebze Technical University, Gebze/Kocaeli, Turkey
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Abstract: In this study, a Chebyshev spectral collocation method (CSCM) approxima-
tion is proposed for solving the full magnetohydrodynamics (MHD) equations coupled
with energy equation. The MHD flow is two-dimensional, unsteady, laminar and incom-
pressible, and the heat transfer is considered using the Boussinesq approximation for
thermal coupling. The flow takes place in a square cavity which is subjected to a vertically
applied external magnetic field, and the presence of the induced magnetic field is also
taken into account due to the electrical conductivity of the fluid. The governing equations
given in terms of stream function, vorticity, temperature, magnetic stream function, and
current density, are solved iteratively using CSCM for the spatial discretisation, and an
unconditionally stable backward difference scheme for the time integration. The induced
magnetic field is obtained by means of its relation to the magnetic stream function. The
behaviours of the flow and the heat transfer are investigated for varying values of Reynolds
(Re), magnetic Reynolds (Rem), Rayleigh (Ra) and Hartmann (Ha) numbers.

Isı Aktarımı ile Birleştirilmiş MHD Denklemlerinin Chebyshev Spektral Kollokasyon Yöntemi
ile Yaklaşımı

Anahtar Kelimeler
MHD,
CSCM,
Isı transferi

Özet: Bu çalışmada, enerji denklemi ile birleştirilmiş tam manyetohidrodinamik (MHD)
denklemlerinin yaklaşık çözümleri için Chebyshev spektral kollokasyon yöntemi (CSCM)
önerilmektedir. İki boyutlu, zamana bağlı laminer ve sıkıştırılamaz MHD akışı, ısı
transferi Boussinesq yaklaşımı kullanılarak termal etki ile birleştirilerek ele alınmaktadır.
MHD akışı, dikey olarak uygulanan manyetik alan etkisi altında olan kare kesitli bir
kanalda gerçekleşmekte, ayrıca akan sıvının elektriksel iletken olması nedeniyle manyetik
indüksiyon göz önünde bulundurulmaktadır. Akım fonksiyonu, girdap (vortisite), sıcaklık,
manyetik akım fonksiyonu ve akım yoğunluğu türünden verilen temel denklemlerin
uzaysal ayrıklaştırılması CSCM kullanılarak, zaman integrasyonu ise koşulsuz kararlı
geri farklar yöntemi kullanılarak çözüm elde edilmiştir. Değişen Reynolds (Re), manyetik
Reynolds (Rem), Rayleigh (Ra) ve Hartmann (Ha) sayıları değerlerinin MHD akışı ve ısı
transferi üzerindeki etkileri araştırılmaktadır.

1. Introduction

Magnetohydrodynamic (MHD) flow and heat transfer of
electrically conducting fluids in enclosures has been the
subject of a great number of investigations due to the wide
range of significant applications in various fields such as
nuclear reactors, MHD generators, and metallurgical in-
dustries. The physical models that describe MHD flow and
heat transfer consist of coupling the hydrodynamic prob-
lem by means of the convective term in the magnetic field
equation, coupling the magnetic field problem in Navier-
Stokes equations with Lorentz’s force, and the thermal
coupling through Boussinesq’s assumption. Extensive re-
search is ongoing in the direction of designing numerical
techniques applicable to the MHD flow and heat transfer

models, the reason being that analytical solutions apply
only under very restrictive conditions. In majority of the
studies, the aim is to determine the influence of the char-
acteristic problem parameters such as Reynolds, Rayleigh,
and Hartmann numbers on the flow and heat transfer. In
particular, the influence of an externally applied magnetic
field on the flow and heat transfer is of primary importance.
Many different numerical methods have been introduced
for approximating solutions to MHD flow and heat transfer
problems.

Ece and Büyük [1], presented differential quadrature so-
lutions of natural convection flow under a magnetic field
in an inclined rectangular enclosure heated or cooled on
adjacent walls, and with isothermal vertical or adiabatic
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horizontal walls. The radial basis function formulation
has been used by Colaço et al., in [2], to approximate a
steady MHD problem with heat transfer in a square cavity
whose horizontal walls are kept at different and constant
temperatures. In addition, a meshless method based on lo-
cal radial basis function collocation method and fractional
step method for pressure-velocity coupling, is proposed by
Mramor et al. for solving MHD convection in a square cav-
ity [3]. Oztop et al. [4], have analysed a mixed convection
flow in the presence of a magnetic field in a top sided lid
driven cavity heated by a corner heater using finite volume
method in combination with SIMPLE algorithm. Another
finite volume application is the work of Al-Salem et al. [5],
where the MHD mixed convection in a non-isothermally
heated square enclosure is considered. The finite element
method has been implemented for the approximation to
steady, laminar, natural convection flow in inclined enclo-
sures in the presence of an oblique magnetic field in the
work of Türk and Tezer-Sezgin [6].

The majority of the above listed studies have assumed a
very low magnetic Reynolds number that represents the
ratio of advection to diffusion in the magnetic field, and
have simplified the equation of magnetic induction. This
assumption reduces the number of equations in the system
to be solved and hence significantly lowers the compu-
tational cost. On the other hand, Sarris et al. [7] have
examined the MHD natural convection model and investi-
gated the limitations in predicting the flow and heat trans-
fer characteristics by the hypothesis that Lorentz’s force
is suppressed into a damping term resisting the motion
of the fluid. Their results set forth that for large values
of Hartmann number, the magnetic induction equations
should be taken into consideration in the mathematical
model. There are several studies, implementing different
numerical methods, where the full model for liquid metal
flows is considered, and the existence of external and in-
ternal magnetic fields is taken into account. Şentürk et
al. proposed a two-dimensional scheme in [8] to simulate
the natural convection with internal heat generation and
absorption in addition to non-linear time dependent evo-
lution of heated and magnetized liquid metals exposed to
external fields. The algorithm consists of a Lax-Wendrof-
type matrix distribution together with a dual time-stepping
scheme employing third-order Runge-Kutta steps. The
solution of the incompressible MHD flow equations using
a dual reciprocity boundary element method formulation
is considered by Bozkaya and Tezer-Sezgin in [9]. The
full MHD model applicable to three-dimensional problems
with thermal coupling have been considered numerically
by a stabilized finite element method in the work of Codina
and Hernández [10]. Pekmen and Tezer-Sezgin, have pro-
posed a dual reciprocity boundary element solution for full
MHD equations in a lid driven square cavity in [11]. The
full MHD equations in an alternative formulation has been
considered by Sivakumar et al. [12] to study the influence
of an induced magnetic field on the forced convective heat
transfer from an isothermal sphere in the presence of an
external magnetic field. The equations are expressed in
stream function, vorticity and magnetic stream function,
and are solved using finite difference methods combined

with multi-grid techniques. In a recent study [13], Selimli
and Recebli investigated the cooling period of a liquid
metal flowing under the effect of an externally applied
magnetic field with the use of a commercial software, AN-
SYS.
The Chebyshev spectral collocation method (CSCM) is a
well developed and widely used technique based on ex-
panding the unknown fields in tensor product of Chebyshev
polynomials. The polynomials are differentiated analyti-
cally on the abscissae of the extreme points of the Cheby-
shev polynomials with the construction of differentiation
matrices, where higher order derivatives can easily be ob-
tained by multiplying these matrices. Therefore, a high
order accuracy is achieved in combination with computa-
tional efficiency. The method is also being successfully
implemented in the models of computational fluid dynam-
ics. An application of CSCM enriched with a multi-domain
technique to the approximation of unsteady natural convec-
tion heat transfer (without the magnetic field effect) in an
enclosure with a square body has been presented in [14].
The objective of the current study is to present a numerical
approach based on CSCM for the approximation of ther-
mally coupled MHD problems. The unsteady regularised
driven cavity flow is considered where the fluid is incom-
pressible and assumed to be electrically conducting. The
external magnetic field is applied in the vertical direction.
The governing equations are given in stream function, vor-
ticity, temperature, magnetic stream function, and current
density. A novel iterative scheme is designed based on
CSCM for the spatial discretisation in combination with
an implicit backward finite difference for the time integra-
tion. The mechanism additionally provides a means of
approximating the unknown vorticity and current density
boundary conditions from the velocity and magnetic field,
respectively, with the use of differentiation matrices. In
essence, this study extends the CSCM applicability to full
MHD equations with heat transfer and magnetic induction
taking place on a regularised lid driven cavity, for the first
time, to the best of the author’s knowledge. The effects of
the characteristic flow parameters on the MHD flow and
heat transfer are investigated, and the results obtained from
the simulations are presented in terms of the contours of
the unknowns.

2. Mathematical Model

The two-dimensional, transient, laminar, incompressible
MHD flow and heat transfer taking place in a square cav-
ity is considered. The flow is subjected to an externally
applied magnetic field of a constant intensity B0 in the
positive vertical direction. The fluid is taken to be electri-
cally conducting and hence, the induced magnetic field is
also included in the model. It is assumed that the Joule
heating and Hall effects, as well as the influence of the vis-
cous dissipation, displacement and convection currents are
negligible. Under these assumptions, the MHD equations
can be obtained by coupling the Navier-Stokes equations
with Maxwell’s equations by means of Ohm’s law. If
the thermal coupling is modelled through Boussinesq’s
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assumption, the governing equations are given as [15, 16]

∂ ū
∂ x̄

+
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∂ ȳ
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)
,

∂ v̄
∂ t̄

= ν∆v̄− ū
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)
+gβ (T̄ −Tc),

∂ B̄x

∂ t̄
=

1
σ µm

∆B̄x +
∂

∂ ȳ
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∂ T̄
∂ t̄

= α∆T̄ − ū
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.

(1)
In these equations, the unknowns are; ū and v̄, the respec-

tive x̄− and ȳ− components of the velocity of the fluid, p̄,
the pressure, B̄x and B̄y, the induced magnetic field com-
ponents, and T̄ , the temperature of the fluid. Tc represents
the reference temperature (of the cold boundary), ν is the
kinematic viscosity, ρ is the reference density of the fluid,
µm is the magnetic permeability, β is the thermal expan-
sion coefficient, σ is the electrical conductivity, and α is
the thermal diffusivity of the fluid.
The direct solution strategies applied to system (1) have tra-
ditional difficulties due to existence of the pressure terms.
Therefore, alternative formulations have been introduced to
represent these equations and have been very successfully
adopted by many researchers. For the two-dimensional
flows, the most consistently used one is the well estab-
lished stream function-vorticity formulation. The pressure
terms in the momentum equations in system (1) can be
eliminated by subtracting the derivative of the second equa-
tion of (1) with respect to ȳ from the derivative of the third
equation of (1) with respect to x̄. If the stream function ψ̄ is
defined so that ū = ∂ψ̄/∂ ȳ and v̄ =−∂ψ̄/∂ x̄, then the con-
tinuity equation is automatically satisfied. Now, the only
non-zero component of the vorticity field is introduced as
w̄ = ∂ v̄/∂ x̄−∂ ū/∂ ȳ, yielding the relation between ψ̄ and
w̄ as w̄ =−∆ψ̄ .
The divergence-free condition for the magnetic field in
(1), that is, ∂ B̄x/∂ x̄+∂ B̄y/∂ ȳ = 0, could be considered as
redundant. In numerical point of view, the system can be
solved without the use of this equation. In the continuous
level, this condition is implied in combination of Ampere’s
and Ohm’s laws to reduce the Maxwell equations. In other
words, the divergence-free condition of the magnetic field
is automatically satisfied through the domain of the prob-
lem provided that the initial field is solenoidal. However,
at the discrete level, this condition may not be satisfied,
and it is well known that violation of it in the numeri-

cal computations, results in a non-physical force (see, e.g.
[16–18]).
The previous argument sets another restriction on the ap-
plicability of direct solution strategies. There are several
remedies successfully applied by many researchers (see
[10, 16, 19] and the references therein). A natural ap-
proach in analogy to the stream function vorticity formu-
lation, is to introduce the magnetic stream function Ā,
relating to the magnetic field components as B̄x = ∂ Ā/∂ ȳ
and B̄y = −∂ Ā/∂ x̄, and the current density j̄ defined by
j̄ = ∂ B̄y/∂ x̄−∂ B̄x/∂ ȳ (see e.g. [16] for the details).
Further, the following dimensionless variables are defined

t =
t̄u0

`
, x =

x̄
`
, y =

ȳ
`
, u =

ū
u0

, v =
v̄
u0
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T̄ −Tc

δT
,
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ρu2
0
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B0
, By =

B̄y

B0
, ψ =
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u0`
, w =

w̄`
u0

,

A =
Ā

B0`
, j =

j̄`
B0

,

where ` is a characteristic length, u0 is a characteristic
velocity of the fluid, δT is the temperature difference
between hot and cold walls. Consequently, the govern-
ing equations given in system (1), can be written in non-
dimensional form in terms of ψ , w, T , A, and j as
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∂ j
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)
,

∂T
∂ t
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1

PrRe
∆T − ∂ψ

∂y
∂T
∂x

+
∂ψ

∂x
∂T
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,

∆A =− j,

∂ j
∂ t

=
1

Rem
∆ j+∆(

∂ψ

∂y
∂A
∂x
− ∂ψ

∂x
∂A
∂y

).

(2)

In the equations above, dimensionless parameters, namely,
Reynolds number (Re), Prandtl number (Pr), magnetic
Reynolds number (Rem), Rayleigh number (Ra), and Hart-
mann number (Ha), have been introduced as follows

Re =
`u0

ν
, Pr =

ν

α
, Rem = µmσ`u0,

Ra =
gβ`3δT

αν
, Ha = B0`

√
σ/µ,

where µ is the dynamic viscosity.
Homogeneous initial conditions all holding in the spatial
domain at time t = 0 accompany the equations in the given
model. The boundary conditions are imposed as follows.
The velocity at the top wall of the cavity is given by (û,0)
for a prescribed û, whereas the (0,0) condition is imposed
on the other walls. Accordingly, the value of the stream
function on boundary is known, as the walls are natural
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streamlines, hence the condition ψ = 0 is considered. In
the given configuration, the induced magnetic field bound-
ary conditions are Bx = 0 and By = 1, accordingly the
condition A = −x is imposed on all of the walls. The
vertical walls are considered to be adiabatic, while the hor-
izontal walls are kept at constant temperatures which are
given as Th = 0.5 at the upper wall and Tc = −0.5 at the
lower wall (see Figure 1). The vorticity and current density
boundary conditions are not known, and they are calcu-
lated numerically with the use of stream function values
for the former, and magnetic stream function values for the
latter as described in the next section.

x

y

B

O 1

1

ψ = 0, A =−x, T = Tc

ψ = 0
A =−1
∂T
∂x = 0

ψ = 0, A =−x, T = Th

ψ = 0

A = 0
∂T
∂x = 0

Figure 1. The problem configuration and the boundary
conditions.

2.1. CSCM Application and the Time Integration

System (2) consists of coupled equations which are com-
plicated not only by the non-linearity but also by the lack
of the vorticity and current density boundary conditions.
Therefore, it is compulsory to devise a solution methodol-
ogy that is capable of handling these complications. The
approach implemented in the present study is an iterative
procedure based on space and time discretisation of the
equations in the given system as described in the sequel.
The spatial discretisation of the equations in (2) is based on
requiring the numerical approximation of each unknown to
be exactly satisfied on the abscissae of the extreme points
of the Chebyshev polynomials. Therefore, the technique is
referred as Chebyshev spectral collocation method. In this
method, each function spans the whole domain under con-
sideration and thus, the derivatives of the function depend
on the entire discretisation.
A function Φ(x) defined in [−1,1] is interpolated by the
polynomial Φ̃(x) of degree at most N, of the form [20–22]

Φ̃(x) =
N

∑
j=0

C j(x)Φ(x j) (3)

with Φ̃(x j) = Φ(x j), and C j(x) is a Cardinal function (or
Lagrange basis) of degree N defined using the Chebyshev
polynomials of the first kind (Tn(x) = cos(narccosx), n =
0,1, . . . ,N) by

C j(x) = (−1)1+ j (1− x2)T ′N(x)
c jN2(x− x j)

, j = 0,1, ...,N, (4)

where c0 = cN = 2, and c j = 1, for 1, . . . ,N−1.
The collocation points are given as

xi = cos(
iπ
N
) for i = 0,1, . . . ,N.

They possess the desired property of being clustered
through the end points of the interval, consequently in
a two-dimensional domain, having a concentration of grid
lines near the boundaries (see Figure 2).

Figure 2. A sample node distribution for N = 16.

The n−th derivative of Φ(x) is then approximated by

Φ̃
(n)(x) =

N

∑
j=0

C(n)
j (x)Φ(x j).

The first derivative at these nodes satisfy C(1)
j (xi) = di j

where

di j =
ci

c j

(−1)i+ j

xi− x j
, i 6= j, i, j = 0, . . . ,N,

dii =
−xi

2(1− x2
i )
, i = 1, . . . ,N−1, (5)

d00 =−dNN =
2N2 +1

6
.

Now, the discrete values of the first derivative of the func-
tion Φ can be obtained as

Φ̃
(1)(xi) =

N

∑
j=0

di jΦ̃(xi). (6)

This equation can be written in a matrix-vector form as

d
dx

(Φ̃) = D(1)
N Φ̃ (7)

where D(1)
N = [di j] is called the first order Chebyshev spec-

tral differentiation matrix which is of size (N +1)× (N +
1).
In order to minimise the round-off errors for the calculation
of the first derivatives, the diagonal entries dii are computed
as [22]

dii =−
N

∑
j=0, j 6=i

di j . (8)
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The approximation to the n−th order derivative of the
function Φ(x) now becomes

dn

dxn (Φ̃) = D(n)
Φ̃ (9)

where D(n) = [D(1)]n, that is, the n-times matrix multipli-
cation of D(1). In general, D(n) is referred as the n-th order
Chebyshev spectral differentiation matrix. The use of ma-
trix multiplication for higher order derivatives and the use
of Equation (8) for obtaining the diagonal entries, lead to a
significantly greater accuracy in the computation of second
and higher order derivatives for a wide range of functions.
The Chebyshev spectral differentiation matrix for functions
defined on an arbitrary interval [a,b] can be constructed by
a linear transformation η = (b−a)/2x+(a+b)/2, which
maps the standard interval [−1,1] to any finite interval
[a,b]. A distribution of the so-called Chebyshev-Gauss-
Lobatto points used as collocation points in the problem
domain where N = 16 is illustrated in Figure 2.
In an analogous way, the first order differentiation matrix
in the y- direction, denoted by E(1) = [e(1)i j ], is computed.
The second order Chebyshev differentiation matrix in this
direction, E(2), is calculated by simply squaring E(1).
For the time integration, the unconditionally stable back-
ward difference scheme is implemented which is defined
by ∂φ/∂ t

∣∣s+1
= (φ s+1−φ

s)/δ t, s and δ t being the time
level and the time step, respectively.
Having constructed all the necessary ingredients, one can
obtain the fully space-and-time discretised equations by
substituting the respective approximations ψ̃ , w̃, T̃ , Ã and
j̃, and to ψ , w, T , A, and j, into the equations of system
(2). The approximation vectors are of order (N +1)2 and
computed in the following pattern

φ̂ = [φ(x0,y0), . . . ,φ(xN ,y0), . . . ,φ(x0,yN), . . . ,φ(xN ,yN)]
T.

Let D(φ̂) denote the diagonal matrix with the entries of
a vector φ̂ on its diagonal, and introduce the Kronecker
product of an m1×n1 matrix P and an m2×n2 matrix Q
that is defined as the m1m2×n1n2 matrix P⊗Q, which is
the m1×n1 block matrix whose i j-th block is the m2×n2
matrix pi jQ. Then, the CSCM-and-time discretised form
of the equations in (2) can be written as

K̂ψ̃
s+1 =−w̃s,

K̂Ãs+1 =− j̃s,[
I− δ t

Rem
K̂
]

j̃s+1 = j̃s−δ tK̂P(ψ̃s+1, Ãs+1),

[
I +δ t

(
P(ψ̃s+1, ι)− 1

PrRa
K̂
)]

T̃ s+1 = T̃ s,

[
I +δ t

(
P(ψ̃s+1, ι)− 1

Re
K̂
)]

w̃s+1 =

w̃s +δ t
Ra

PrRe2 D̂(1)T̃ s+1 +δ t
Ha2

ReRem
P(Ãs+1, j̃s+1).

(10)

In these equations, the (N + 1)2× (N + 1)2 matrix K̂ is
defined as

K̂ = D̂(2)+ Ê(2),

where D̂(i) = I ⊗D(i) and Ê(i) = E(i)⊗ I, D(i) and E(i),
i = 1,2, being the order, are the Chebyshev differentia-
tion matrices in x− and y− directions, respectively. I is
the identity matrix of order (N +1)2. Moreover, P(φ̂ , ϕ̂)
denotes the vector formed by multiplication of the ap-
proximations to the first partial derivatives of its argument
vectors, and is defined as

P(φ̂ , ϕ̂) = D(Ê(1)
φ̂)D̂(1)

ϕ̂−D(D̂(1)
φ̂)Ê(1)

ϕ̂.

In (10), ι is the vector of order (N +1)2 whose all entries
are 1.

2.2. The iterative solution procedure

As already noted, there are critical difficulties in character-
ising a flow using the stream function vorticity formulation.
One of the causes of these difficulties is the existence of
an infinite sequence of eddies in the corners where no-slip
boundary conditions are imposed. In such instances, the
second order derivatives of the vorticity are unbounded in
the vicinity of the corners. The derivation of boundary con-
ditions for the vorticity is another cause when the specified
boundary conditions are discontinuous at the corners (see,
e.g., [23]). These irregularities significantly affect the high
accuracy of spectral methods as the contamination created
by the corner singularities is extended to the whole solution
due to the global nature possessed by the methods. The
primary interest of the present study is the investigation of
characteristic flow parameters on the MHD flow and heat
transfer with the use of CSCM, therefore, the regularised
driven cavity flow is considered. This is a setting widely
used in incompressible flow models where the boundary
conditions are smoothed in such a way that the velocity
and its derivatives vanish at the corners (see, [24], [25],
[26], and the references therein).

Remark 2.1. The cases of more practical interests on ac-
count of fluid flow mechanism such as the singular lid
driven cavity flow, could be handled by several methodolo-
gies alternatively, (see [23] and [27] for a detailed descrip-
tion).

The essential feature of the approach followed in this study
is its iterative nature derived to handle the non-linearity of
the equations, additionally providing a means of approxi-
mating the vorticity and current density boundary condi-
tions based on differentiation matrices. In accordance with
this, the equations in system (10) are solved in the writ-
ten order starting with the given initial conditions. First,
the stream function equation is solved. Next, the velocity
components are updated by the relation

ũs+1 = D̂(1)
ψ̃

s+1, ṽs+1 =−Ê(1)
ψ̃

s+1,

and, the vorticity boundary values are calculated as[
w̃s+1]∣∣

l =
[
D̂(1)ṽs+1− Ê(1)ũs+1

]∣∣∣
l
, (11)
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where l denotes the l-th boundary node. Next, the equation
for the magnetic stream function is solved. A similar
approach as in the case of vorticity is followed for the
computation of the current density boundary values. The
magnetic field components are obtained at the time level
s+1,

B̃x
s+1

= D̂(1)Ãs+1, B̃y
s+1

=−Ê(1)Ãs+1,

and, these value are used to calculate the current density
boundary values as[

j̃s+1
]∣∣∣

l
=
[
D̂(1)B̃y

s+1− Ê(1)B̃x
s+1
]∣∣∣

l
. (12)

Having obtained its boundary values, the current density
equation is solved. This is followed by the solution of the
energy equation. The vorticity equation is solved at the
last step of each cycle with the imposition of the bound-
ary values approximated by using the updated velocity
approximations at the time level s+1. This iterative proce-
dure continues until a preassigned convergence tolerance
between two successive iterations is reached for all the
unknowns on the whole problem region.

3. Results

The numerical simulations for the MHD flow and heat
transfer in a square cavity under the influence of externally
applied magnetic field are presented in this section. The
solution procedure described in Section 2.2 has been im-
plemented. The Prandtl number is taken as 0.1 throughout
the study, and the influence of different combinations of
Re, Ra, Ha, and Rem on the flow and heat transfer is in-
vestigated. The time integration has been carried out by
using a constant time step δ t = 0.25. The stopping criteria
of the iterative scheme has been set to be 10−5 for all the
unknowns, and the solutions in regard to this criteria are
referred as the steady-state solutions.
The present work is mainly concerned with the assessment
of the effectiveness of CSCM applied to MHD flow and
heat transfer. Thus, the regularised driven cavity flow in
which the horizontal component of the velocity at the upper
wall is specified by û = 4x2(1− x2), has been considered
in all the numerical simulations presented in the sequel
(see Section 2.2).
First, the mesh dependency of the solution is investigated
in terms of the maximum absolute values of the stream
function, vorticity, and the current density when Ra = 105,
Ha = 100, Re = 1000, and Rem = 100. The results are
illustrated in Figure 3. It is observed that the numerical
solutions do not show a significant difference for N values
that are larger than 50, and hence, the case N = 50 is
considered in all the simulations.
Next, the regularised lid-driven cavity flow studied in
[9, 16] is considered in order to validate the computa-
tional mechanism designed in the present study. In this
setting, the flow takes place in a square duct subjected to a
transverse magnetic field in the absence of heat sources or
sinks. The magnetic field distribution for Rem = 0.1 and
Rem = 100, where Ha = 10 and Re = 100, are depicted
in Figure 4. The streamlines of the magnetic field can be

compared to the ones given in [9] and [16] revealing a
good agreement.
Further, to allow a quantitative comparison, the results in
terms of the primary vortex and the magnetic field intensity
for the case of higher magnetic Reynolds number, are
tabulated in Table 1. These results agree reasonably well
with the ones given in [16].
The results presented below, concern cases in which the
iterative solution procedure applied to thermally coupled
MHD equations given in (10). The numerical results in
terms of the contours of the unknowns, namely, stream
function, vorticity, temperature, magnetic stream function,
and current density, are presented.
The time evolution of the flow and heat transfer is de-
picted in Figure 5, for the values of Ra = 104, Re = 400,
Ha = 50, and Rem = 100. It is observed that the vortex
in the flow formed along the upper wall due to the mov-
ing boundary, is transferred through the central region of
the cavity with the time advance. The vorticity contours
evolve accordingly with an increase in magnitude, and
a formation of boundary layers in the upper-right corner
is observed. The linear initial profile in the isotherms is
distorted through the steady-state at which there exists a
small curvature indicating a slight influence of convection
due to a moderate value of Ra. The initial linear distri-
bution of the magnetic streamlines following the external
magnetic field is reformed as time advances, and a circu-
lation near the right wall of the cavity is observed due to
the convection effect. Following the flow behaviour, the
current density contours form a vortex in the upper corner
which is spreading through the central region as time ad-
vances, with boundary layers near the upper wall. The flow
and heat transfer as well as the magnetic field and current
density distributions inside the enclosure settle down at
approximately t = 2136, where the steady-state is reached
according to the given time-convergence tolerance.
In the rest of the study, the steady-state results are pre-
sented for several combinations of characteristic param-
eters, and hence, the time asymptotic behaviours of the
solutions are investigated.
Figure 6 exhibits the influence of the variation of Reynolds
number, for moderate values of the parameters that are
Ra = 104, Ha = 25, and Rem = 1. Even though the lid
is moving with a regularised velocity, it can be observed
that the increase in Re causes the vortex of the streamlines
to shift through the centre of the cavity. Vorticity is also
transported through the central region with an increase in
the intensity of the boundary layers formed near the upper-
right corner. The strong temperature gradients observed in
the isotherms indicate that the convection is the dominant
heat transfer mechanism for larger Re values.
In order to investigate the effect of the magnetic Reynolds
number on the distribution of magnitude of the magnetic
perturbations and electric current, the magnetic streamlines
and the contours of the current density, when Ra = 104,
Ha = 25, and Re = 100, are depicted in Figure 7. The
magnetic field distribution is in the same direction as the
externally applied field for low values of Rem. A promi-
nent circulation takes place close to the upper-right corner
of the cavity for the highest value of Rem = 100. In spite
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Figure 3. Mesh dependency when Ra = 105, Ha = 100, Re = 1000, and Rem = 100.

Figure 4. Magnetic field with Ha = 10 and Re = 100; (L) Rem = 0.1, (R) Rem = 100.

of the similarity in their pattern, the magnitude of the cur-
rent density differs significantly, rising with an increase
in Rem. The simulation is repeated for Ha = 100, and the
corresponding results are plotted in Figure 8. A compari-
son with Figure 7 shows that the effect of increasing Ha
is prominent when Rem = 100 for the corresponding flow
parameters. The retarding effect of the externally applied
magnetic field is responsible for the circulation of the mag-
netic streamlines near the upper-right corner of the cavity.
In the same way as the lower Ha case, the distribution of
the current density has a similar profile with increasing
magnitude as Rem increases.

Figure 9 depicts the variation in the streamlines with
respect to the Rayleigh and Hartmann numbers, where
Re = 1000 and Rem = 1. As Rayleigh number increases,
the flow is separated following the formation of a sec-
ondary eddy in the opposite direction. This phenomenon
occurs at Ra = 105 when Ha = 25, however, it is observed
for the higher value of Ra when Ha = 100, since higher
intensity of the magnetic field reduces the effect of the
Rayleigh number. As Hartmann number is increased from
25 to 100, the flow intensity caused by the motion of the
upper lid moves towards the centre of the cavity.

The effect of the Rayleigh and Hartmann numbers on the
heat transfer inside the enclosure when Re = 1000 and
Rem = 1, is demonstrated by considering the isotherms
presented in Figure 10. As Ra increases, for a fixed value
of Hartmann number, the dominance of the buoyancy force
results in a convective flow. The higher value of Ha in-
creases the resistance to the fluid motion, resulting in an

enhancement of conductive heat transfer.

4. Discussion and Conclusion

In this paper, a numerical approximation for solving the
thermally coupled full MHD equations is presented. The
formulation is based on the Chebyshev spectral colloca-
tion method for the spatial derivatives, and a backward
difference scheme for temporal derivatives. The essential
feature of the solution procedure is its iterative nature that
allows handling the non-linearity and providing a means of
approximating the unknown vorticity and current density
boundary conditions. The effect of the variation in several
characteristic flow parameters on the flow and heat transfer
is studied. The analysis of the results obtained shows that
the flow field is influenced appreciably by the variation of
the characteristic parameters tested.
As Reynolds number increases, the flow concentrates
through the upper and right walls with an increase in the
intensity of the boundary layers. The existence of strong
gradients clustered through the top-left and bottom-right
regions indicates the dominance of convection over con-
duction for larger Re values.
The magnetic field distribution in the cavity is not affected
much by increasing the magnetic Reynolds number to
moderate values. However, for large Rem, such as 100, a
strong circulation takes place near the upper-right region
of the cavity, due to the dominance of convection when the
Hartmann number is fixed. The distribution of the current
density has a similar form for all tested magnetic Reynolds
number values, even though the magnitude increases in
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Figure 5. The time evolution of the unknowns, where Ra = 104, Re = 400, Ha = 50, and Rem = 100.
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Figure 6. Streamlines (left), vorticity contours (middle), and isotherms (right) for Ra = 104, Ha = 25, and Rem = 1.
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Table 1. The characteristics of the primary vortex and the magnetic field intensity.
Primary vortex Magnetic field intensity

ψ x y min(Bx) max(Bx) min(By) max(By)
-0.0732 0.6545 0.7679 -0.8988 1.9093 -0.1120 2.0751

proportion to Rem. When Hartmann number is increased,
the effects of the magnetic Reynolds number on the mag-
netic field and current density are reduced, especially for
the case of the highest Rem value tested.
The increase in Rayleigh number causes a separation in the
flow and a formation of a secondary vortex in the opposite
direction. This behaviour is more pronounced for lower
Hartmann number values, as an increase in Hartman num-
ber that amounts to a higher intensity of the magnetic field,
reduces this effect. The convection dominated flow due
to the buoyancy force can be observed for high Rayleigh
number values when Hartmann number is fixed. On the
other hand, an increase in Hartmann number, causes a rise
in the resistance to the fluid motion where the conductive
heat transfer is enhanced.
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Figure 7. Distribution of the magnitude of the magnetic
perturbations (left) and electric current (right) for Ra =
104, Ha = 25, and Re = 100.
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Figure 8. Distribution of the magnitude of the magnetic
perturbations (left) and electric current (right) for Ra =
104, Ha = 100, and Re = 100.
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Figure 9. The effect of the Rayleigh number and Hart-
mann number on the streamlines when Re = 1000 and
Rem = 1.
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Figure 10. The effect of the Rayleigh number and Hart-
mann number on the isotherms when Re = 1000 and
Rem = 1.
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