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Abstract

We have developed a rigorous computational technique to compute ex-
act analytic expressions for a number of distance-based topological in-
dices of chemical graphs. There are two main advantages of our tech-
nique over existing techniques of similar nature: �rst, our technique is
signi�cantly diverse as it also covers the Wiener index and eccentricity-
based topological indices besides Szeged-like indices, and secondly we
have considerably reduced the algorithmic and computational complex-
ity in comparison to previous techniques. Our proposed technique gen-
erates certain vertex and edge partitions of a graph which are essen-
tial in computing the exact analytical formulas of distance-based and
eccentricity-based indices. To ensure the applicability of our technique,
we have computed various distance-based and eccentricity-based topo-
logical indices for certain in�nite families of polyomino chain system.
Moreover, we �nd analytical exact expressions of certain degree-based
topological indices for these polyomino chains. These topological in-
dices can be obtained as a by-product of our technique.
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1. Introduction

Graph theory, especially distance-based metrics has been applied to several wide-
ranging physico-chemical applications particularly in the characterization and modeling
of chemical structures. Graph-theoretical applications to chemistry and drug research
originate from the fact that the properties and activities of molecules are intimately
related to their underlying connectivities. As graph theory is concerned with topologi-
cal connectivity of a chemical structure and its characterization, a number of research
papers have been devoted for exploring the relationships between chemical properties
and graph-theoretical based topological indices over the years, see [4] and references
therein. Cheminformatics is an emerging �eld of research which integrates the concepts
from chemistry, mathematics and information science. The research in this �eld is con-
cerned with the quantitative structure-activity (QSAR) and structure-property (QSPR)
relationships, as the properties of molecules are derivable from their chemical structures.
The most important step in QSAR/QSPR is to quantify the molecular structures so as to
build a correlation model between the chemical structures of various chemical compounds
and the corresponding chemical and biological properties [7, 22].

Arockiaraj et al. [4] proposed a rigorous mathematical and computational technique to
compute exact analytical expressions of a number of distance-degree related topological
indices of partial cubes. The partial cubes are a reasonably big class of graphs which are
actually isometrically embeddable on `1-space or more precisely, on hypercubes. Note
that the partial cubes have a non-empty intersection with the class of chemical graphs.
For example, the polyomino chains which are considered in this paper, belong to the
intersection of these two classes of graphs. Ashra� et al. [2] developed a computational
technique to compute Szeged, PI and revised Szeged indices of chemical graphs and
computed these indices for an in�nite family of fullerenes. In this paper, we generalize the
work by Arockiaraj et al. and Ashra� et al. in the sense that our computational technique
is valid for chemical graphs and covers various distance-based, eccentricity-based and
degree-based topological indices. We reduce the computational complexity signi�cantly
as well of the work by Ashra� et al. The motivation to consider the polyomino chains
comes from Imran et al. [6] where they studied the counting related polynomials and
indices of these chains.

Polyominoes are the combinatorial and geometric shapes made by connecting cer-
tain numbers of squares (4-cycles), each joined together with at least one other square
along an edge. In enumerative combinatorics, they might call this connected a �rookwise
connection". Polyomino patterns are actually examples of combinatorial geometry, that
branch of mathematics dealing with the ways in which geometrical shapes can be com-
bined. It is a frequently neglected aspect of mathematics because it seems to have few
general methods, and because in it systematic rules have not replaced ingenuity as the
key to discovery. Many of the design problems in practical engineering are combinatorial
in nature, especially when standard components or shapes are to be �tted together in
some optimal fashion [13].

A k-polyomino system is a �nite 2-connected plane graph such that each interior face
(also called cell) is surrounded by a regular 4k-cycle of length one. In other words, it
is an edge-connected union of cells [24]. This polyomino system divides the plane into
one in�nite external region and a number of �nite internal, all internal region must be
squares. Polyominoes have a long and rich history, we convey for the origin polyominoes.
A polyomino chain is a polyomino system, in which the joining of the centers of its
adjacent regular forms a path c1, c2, ..., cn, where ci is the center of the i-th square. A
square of a polyomino chain has either one or two neighboring squares. If a square has
one neighboring square, it is called terminal, if it has two neighboring squares having no
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Figure 1. The simpler polyominoes.

vertex of degree 2, it is called medial, and if it has two neighboring squares such that
it has a vertex of degree 2, it is called kink. Every polyomino chain of dimension n has
a unit such that it contains n number of units [43]. We denote the polyomino chain
system by P kn , and k = k′ +m+ t, where k′ is the number of kinks, m is the number of
medials and t is the number of terminals in a unit of polyomino chain. Figure 3 depicts
the di�erent polyomino chains with their units as dotted part. In Figure 2, a general
representation of polyomino chain system P kn is depicted.

Figure 2. A general representation of polyomino chain system P kn .

In chemical graph theory, a topological index/descritptor is a numerical quantity which
is evaluated globally based on the chemical structure of underlying chemical compound.
The corresponding chemical structures are reported in the literature to be named as the
chemical/molecular graphs of underlying compounds. Thus topological indices provide
for quantitative characterization of a graph that is topologically invariant to labeling
and at the same time di�erentiating properties of isomers. There are a wide range
of topological indices which have been de�ned and investigated so far. Among them,
distance-based and degree-based indices play a vital in chemical sciences and computing
these topological indices is one of the recent areas of research in chemical graph theory
and reticular chemistry.

2. Preliminaries

In this paper, by graph/network we mean a connected, simple and �nite graph. For a
graph G, we denote by V (G) and E(G) the set of vertices and set of edges respectively.
A graph is said to be a chemical graph, if its vertices represent the atoms and edges
represent the bonds between them. Note that a vertex can not have degree more than
four in a chemical graph. A vertex is called a cut vertex, if its deletion makes the graph
disconnected. A bi-connected graph is a connected graph which has no cut vertex. In a
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Figure 3. Di�erent polyomino chains with dotted parts as their units.

bi-connected graph, if we remove any vertex, the resulting graph will remain connected.
A cubic graph is a graph in which every vertex has degree three.

For a graph G, a function σ from G to itself is an automorphism if and only if σ is
one-to-one and both σ and its inverse are adjacency preservers in G. If a property p is
preserved under every automorphism, its is called a topological property. A topological
index is a numerical quantity which describes a topological property and should have
signi�cant application in chemistry. The topological distance between two vertices u
and v in a chemical graph G is the length of the shortest distance between u and v. A
distance-based topological index is a topological index which is de�ned by some distance
function dG.

In 1947, an American chemist Harold Wiener [41] discovered a �rst topological index
while investigating the boiling points of Alkanes. He named this topological index path
number which later on became the Wiener index. For a graph G, the Wiener indexW (G)
is de�ned as

W (G) =
∑

{u,v}⊂E(G)

d(u, v).
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The transmission Tr(v) of a vertex v in G is the sum of the distances from v to all other
vertices in G, i.e.,

Tr(v) =
∑
u∈V

d(u, v).

Note that W (G) = 1
2

∑
1≤i≤n

Tr(vi). After Wiener, many topological indices where pro-

posed by chemist and also by mathematicians.
The �rst degree based topological index is the Randi¢ index [34] introduced by Milan

Randi¢ in 1975. The Randi¢ index is de�ned as

χ(G) =
∑

uv∈E(G)

1√
dudv

.

The Randi¢ index has been closely correlated with many chemical properties and found
to parallel the boiling point and Kovats constants.

The widely used connectivity topological index is the Atom-Bond Connectivity (ABC)
index introduced by Estrada et. al [11] and is de�ned as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

The ABC index provides a good model for the stability of linear and branched alkanes
as well as the strain energy of cycloalkanes.

The fourth version of ABC index (ABC4) is introduced by Ghorbani et. al [15] and
is de�ned as

ABC4(G) =
∑

uv∈E(G)

√
Su + Sv − 2

SuSv
.

The Geometric-Arithmetic (GA) index which is introduced by Vuki£evi¢ et. al [38]
and de�ned as

GA(G) =
∑

uv∈E(G)

2
√
dudv

(du + dv)
.

For certain physico-chemical properties, the predictive power of GA index is somewhat
better than predictive power of the Randi¢ connectivity index.

Recently �fth version of GA index (GA5) is proposed by Graovac et. al [14] and
de�ned as

GA5(G) =
∑

uv∈E(G)

2
√
SuSv

(Su + Sv)
.

For a graph G, the space (V (G), dG) is a metric space and therefore the topological
indices de�ned based on distance function dG reveal signi�cant topological/structural
information about the under considered chemical compound. Padmakar-Khadiakar [23]
introduced the Padmakar-Ivan (PI) index. To better understand the de�nition of the PI
index, we �rst de�ne the quantities ν(e|u), ν(e|v) and ν(e|0) for an edge e = uv of a
graph G. They are de�ned as follows:

ν(e|u) = | {x ∈ V (G) | d(x, u) < d(x, v)} |
ν(e|v) = | {x ∈ V (G) | d(x, v) < d(x, u)} |
ν(e|0) = | {x ∈ V (G) | d(x, v) = d(x, u)} | .

We denote the triplet (ν(e|u), ν(e|v), ν(e|0)) by N(e), for an edge e = uv ∈ E(G).
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The PI index is de�ned as PI(G) =
∑

e=uv∈E(G)

[ν(e|u)+ν(e|v)]. The Wiener index was

�rst de�ned only for trees as Harold Wiener was working with alkanes and the chemical
graphs corresponding to them are trees. For a tree T , the Wiener index W (T ) can be
de�ned as W (T ) =

∑
e=uv∈E(G)

ν(e|u)ν(e|u). To extend this concept for general graphs,

Ivan Gutman [17] de�ned a similar topological index for a general graph with signi�cantly
better correlation for non-cyclic chemical compounds. The Szeged index of a graph G,
is de�ned as Sz(G) =

∑
e=uv∈E(G)

ν(e|u)ν(e|v). For more mathematical information, we

consult the reader to paper [18].
There is a modi�cation of Szeged index to �nd better correlation in chemistry, discov-

ered by Milan Randi¢ [35]. Later, this modi�cation was named the revised Szeged index.

It is de�ned as RSz(G) =
∑

e=uv∈E(G)

[
ν(e|u)+ ν(e|0)

2

][
ν(e|v)+ ν(e|0)

2

]
. For mathematical

as well as chemical meaning and signi�cance of these topological indices, we refer the
reader to papers [3, 33, 42]. For application of the Szeged and the revised Szeged indices
for carbon nanotubes, see for example, [10].

Now we de�ne the eccentricity-based topological indices of a graph G. The eccentricity
of a vertex v denoted by ε(u), is the maximum distance between v and any other vertex
of G. The largest eccentricity of a vertex in a graph is called its diameter d(G), whereas
the minimum eccentricity among all is called the radius r(G) of a graph. The eccentric-
connectivity index [36] ξ(G) of G is de�ned as ξ(G) =

∑
u∈V (G)

duε(u). When the valencies

of a vertex is not considered, the total eccentricity index ζ(G) =
∑

u∈V (G)

ε(u). We encour-

age the reader to consult papers [9] and [44] for the chemical meaning and the mathe-
matical properties of these topological indices. We also refer the papers [1, 19, 21] and
references therein. For mathematical and extremal properties of other related topological
indices for di�erent families of graphs, we refer the work by Liu et al. [25, 26, 27, 28, 29].

3. Proposed computational technique

In this section, we present our rigorous mathematical and computational techniques
to obtain exact analytical expressions of a number of distance-based topological indices.
Our proposed techniques are based on certain mathematical and chemical computer soft-
wares like Hyperchem [20], Topocluj [8] and MATLAB [30]. There are some computa-
tional techniques developed for chemical graphs in the literature proposed by Mehranian
[31] and Mottaghi et al. [32] which uses GAP [12] to compute Szeged, PI and revised
Szeged indices for chemical graphs. In this paper, we extend the previous techniques
by enhancing its applicability to various eccentricity-based topological indices such as
eccentric connectivity index, total eccentricity index and eccentricity-based Zagreb in-
dices. Moreover, we reduce the computational complexity of the previous techniques by
introducing the MATLAB instead of GAP whose user interface is not much user-friendly.

Before we proceed further to present the step-by-step procedure of our method, we
give some necessary de�nitions which are subsequently used in the later sections. The
adjacency matrix of graph G, denoted by AG, is the n× n symmetric matrix de�ned as

AG(i, j) =

{
1, ij ∈ E(G);
0, Otherwise.

Note that the adjacency matrices of two isomorphic graphs are similar. Another naturally
arising graph related matrix is the distance matrix of a connected graph G, DG, de�ned
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as

DG(i, j) =

{
k, d(i, j) = k;
0, i = j.

Let G[n] be a chemical graph on n vertices with underlying molecule L. We explain
our computational method in the following easy steps.
Step (i): Draw the chemical graph G in Hyperchem, where we obtain an hin �le as an
output.
Step (ii): Input the hin �le to Topocluj by M. V. Diudea and his team and compute
the adjacency and distance matrices of G.
Step (iii): Insert the adjacency and distance matrices of G[n] in our programs developed
in MATLAB. Our programs will compute certain distance-based topological indices such
as the Szeged, revised Szeged, PI and eccentric-connectivity indices. More precisely, we
obtain certain edge partitions for the Szeged, PI and revised Szeged indices for certain
vertex partitions for eccentricity-based topological indices. The �nal computational val-
ues of these topological indices are obtained by using the aforementioned edge and vertex
partitions. Our programs in MATLAB are accessible from the authors upon request.

4. Distance-based topological indices

4.1. Szeged, PI and revised Szeged indices. This section is devoted to the ap-
plications of our proposed technique developed in Section 3 to certain distance-based
topological indices such as the Szeged index, the PI index and the revised Szeged index.
The computation of exact analytical expressions for these topological indices for di�erent
classes of chemical graphs like fullerenes, carbon nanotubes etc. has been investigated in
the literature. Mottaghi et al. [32] and Mehranian et al. [31] studied these distance-based
topological indices for fullerenes. Ashra� et al. [2] studied the PI and edge version of the
Szeged index for certain in�nite family of fullerenes. The extremal properties of the PI
index with respect to di�erent families of graph are studied in [40] and [39]. In Section 2,
other related known results on these indices from both mathematical and chemical point
of view are reported.

Now we turn our attention to further compute the Szeged, PI and revised Szeged
indices for di�erent families of polyominoes introduced in Section 2. In Step (iii) from
Section 4, our proposed technique gives certain edge partitions of a chemical graph under
consideration. For this class of topological indices, the corresponding edge partition is
based on the triplet N(e) for any e = uv ∈ E(G), where G is the underlying graph. Our
primary goal is to obtain these edge partitions for the polyomino chains zn, cn, kn and
rn. By using the MATLAB program we have developed we �nd the edge partition for
these classes of chemical graphs. Tables 1, 2, 3 and 4 exhibit these edge partitions for
zn, cn, kn and rn, respectively. A graphical description of these types of vertices in
di�erent chains is depicted in Figure 4. We do not consider the polyomino chain ln as
it has already been studied in terms of its alternative form i.e. Pn2P2, where Pn is the
path of length n and 2 is the Cartesian product operation of graphs.

The 2-parametric polyomino chain system P kn introduced in Section 1 is the gener-
alization of all the polyomino chains we have introduced. The following lemma shows
an important structural information about P kn which helps us to show that the revised
Szeged index and Szeged index coincide for the polyomino chains zn, cn, kn and rn.

4.1. Lemma. Let P kn be the 2-parametric polyomino chain system with n, k ≥ 1. Then

P kn is a bipartite graph.
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Proof. Let G be the graphs of 2-parametric polyomino chain system. It is known that a
graph is bipartite graph if and only if it has no cycle of odd length. It is clear that there
is no cycle of odd length in G. Thus G is bipartite. �

Type (ν(e|u), ν(e|v), ν(e|0)) where uv ∈ E(zn) No.

1 (4n, 2, 0) 4

2 (2n+ 1, 2n+ 1, 0) 3

3 (4n− 2i+ 1, 2i+ 1, 0), n ≥ 1 + i, i = 1, 2, 3, . . . 6

Table 1. The values of N(e) for e ∈ E(zn) and n ≥ 2.

Type (ν(e|u), ν(e|v), ν(e|0)) where uv ∈ E(cn) No.

2 (6n, 2, 0) 4

2 (6n− 1, 3, 0) 6

3 (6n− 6i+ 9, 6i− 7, 0), n ≥ i, i = 2, 3, . . . 3

4 (6n− 6i+ 8, 6i− 6, 0), n ≥ i, i = 2, 3, . . . 6

Table 2. The values of N(e) for e ∈ E(cn).

Type (ν(e|u), ν(e|v), ν(e|0)) where uv ∈ E(kn) No.

1 (8n, 2, 0) 4

2 (8n− 1, 3, 0) 3

3 (4, 8n− 2, 0) 6

4 (8i− 6, 8n− 8i+ 8, 0), n ≥ i, i = 2, 3, 4, . . . 2

5 (8i− 5, 8n− 8i+ 7, 0), n ≥ i, i = 2, 3, 4, . . . 8

6 (8i− 4, 8n− 8i+ 6, 0), n ≥ i, i = 2, 3, 4, . . . 2

Table 3. The values of N(e) for e ∈ E(kn).

Type (ν(e|u), ν(e|v), ν(e|0)) where uv ∈ E(rn) No.

1 (10n− 4i+ 4, 4i− 2, 0), i = 1, 2 4

2 (10n− 2i+ 1, 2i+ 1, 0), i = 1, 2 2i+ 1

3 (10i− 1, 10n− 10i+ 3, 0), n ≥ i+ 1, i = 1, 2, 3, . . . 3

4 (10i− 4, 10n− 10i+ 6, 0), n ≥ i+ 1, i = 2, 3, . . . 2

5 (10i+ 2, 10n− 10i, 0), n ≥ i+ 1, i = 1, 2, 3, . . . 2

6 (10i+ 4, 10n− 10i− 2, 0), n ≥ i+ 1, i = 1, 2, 3, . . . 8

Table 4. The values of N(e) for e ∈ E(rn).



1079

Figure 4. A description of di�erent types of edges in polyomino chains.

The following well-known summations of polynomials functions are used to evaluate
our exact analytical formulas:

n∑
i=m

1 = n+ 1−m,
n∑

i=m

i =
n(n+ 1)

2
− m(m− 1)

2
=

(n+ 1−m)(n+m)

2
.

4.2. Theorem. The Szeged index of di�erent polyomino chains are computed as follows:

Sz(zn) = 48n3 − 168n2 + 374n− 195,

Sz(cn) = 54n3 + 54n2 + 39n− 9,

Sz(kn) = 128n3 + 96n2 + 64n− 17,

Sz(rn) = 250n3 + 150n2 + 99n− 27.

Proof. Let G be the chemical graph of polyomino chains zn. Note that the number of
edges in G are 6n+1. Now we use the edge partition of G in terms of N(e) for any edge
e = uv ∈ E(G). Table 1 shows this aforementioned edge partition of G. By de�nition of
the Szeged index we have

Sz(G) =
∑

e=uv∈E(G)

ν(e|u)ν(e|v).

By using edge partition of G from Table 1, we obtain

Sz(zn) = 4(6n× 2) + 3
(
(2n+ 1)× (2n+ 1)

)
+ 6

∑
i∈N

n≥1+i

(
(4n− 2i+ 1)× (2i+ 1)

)
.
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By using the sequences of partial sums of certain series in above equation, we obtain

Sz(zn) = 48n3 − 168n2 + 374n− 195.

Now assume G to be the graph of the polyomino chain cn. The edge cardinality of G is
9n + 1. The edge partition for G, we need, is given in Table 2. By using this partition
and the de�nition of Szeged index, we obtain

Sz(cn) = 4(4n× 2) + 6
(
(6n− 1)× 3

)
+ 3

∑
1<i∈N
n≥i

(
(6n− 6i+ 9)× (6i− 7)

)
+

6
∑

1<i∈N
n≥i

(
(6n− 6i+ 8)× (6i− 6)

)
.

A mechanical simpli�cation of series in above equation yields,

Sz(cn) = 54n3 + 54n2 + 39n− 9.

Next we assume G to be the polyomino chain kn. The number of edges in this chain are
12n+ 1. By using the same argument as above and using the edge partition from Table
3 we obtain,

Sz(kn) = 4(8n× 2) + 3
(
(8n− 1)× 3

)
+ 6
(
4× (8n− 2)

)
+ 2

∑
1<i∈N
n≥i

(
(8i− 6)×

(8n− 8i+ 8)
)
+ 8

∑
1<i∈N
n≥i

(
(8i− 5)× (8n− 8i+ 7)

)
+

2
∑

1<i∈N
n≥i

(
(8i− 4)× (8n− 8i+ 6)

)
.

By using the sequences of partial sums of certain series in above equation, we obtain

Sz(kn) = 128n3 + 96n2 + 64n− 17.

Finally, we assume G to be the graph of polyomino chain rn. The edge set cardinality of
G is 15n+ 1. By de�nition of the Szeged index and Table 4, we obtain

Sz(rn) = 4
∑
i=1,2

(
(10n− 4i+ 4)× (4i− 2)

)
+
∑
i=1,2

(2i+ 1)
(
(10n− 4i+ 4)×

(4i− 2)
)
+ 3

∑
i∈N

n≥i+1

(
(10i− 1)× (10n− 10i+ 3)

)
+ 2

∑
i∈N

n≥i+1

(
(10i− 4)× (10n− 10i+ 6)

)
+ 2

∑
i∈N

n≥i+1

(
(10i+ 2)× (10n− 10i)

)
+

8
∑
i∈N

n≥i+1

(
(10i+ 4)× (10n− 10i− 2)

)
.

By further simplifying the above equation, we obtain

Sz(rn) = 250n3 + 150n2 + 99n− 27.

Which completes the proof. �

4.3. Corollary. The revised Szeged index of a 2-parametric polyomino chain system is

equal to its Szeged index.
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Proof. It is known that the Szeged and revised Szeged indices of a bipartite graph coin-
cide. By Lemma 4.1, polyomino chain system is a bipartite graph which completes the
proof. �

4.4. Theorem. The PI index of di�erent polyomino chains are computed as follows:

PI(zn) = 24n2 + 16n+ 2,

P I(cn) = 54n2 + 24n+ 2,

P I(kn) = 96n2 + 32n+ 2,

P I(rn) = 150n2 + 40n+ 2.

Proof. The proof is similar to the proof of Theorem 4.2. We, therefore, skip the proof of
this result. �

4.2. Wiener index. This short subsection focuses on computing Wiener index of poly-
omino chains. Graovac et al. [16] presented an algebraic way to compute the Wiener
index of fullerene graph and computed it for fullerene graph on 10n vertices. In what
follows, the result by Graovac et al. for the Wiener index of C10n fullerene graph is
reported.

4.5. Theorem. [16] The Wiener index of C10n fullerene graph is computed as follows:

W (C10n) =
100

3
n3 +

1175

3
n− 670.

In this subsection, we use our technique to generate the vertex partition of a chemical
graph based on the transmission of any vertex and then compute its Wiener index.

Type Tr(v) where v ∈ V (zn) No.

1 4n2 + 4n+ 1 2

2 4n2 − (4i− 8)n+ (2i2 − 6i+ 11), n ≥ i, i = 1, 3, 5, . . . 2

3 4n2 − (4i− 4)n+ (2i2 − 2i+ 3), n ≥ i, i = 2, 4, 6, . . . 2

4 4n2 − (4i− 4)n+ (2i2 − 2i+ 3), n ≥ i, i = 1, 3, 5, . . . 2

5 4n2 − (4i)n+ (2i2 + 2i+ 7), n ≥ i, i = 2, 4, 6, . . . 2

Table 5. The values of Tr(v) for v ∈ V (zn).

Our technique from Section 3 gives us a vertex partition of any chemical graph based
on transmission of any vertex. By using this vertex partition and the modi�ed de�nition
of the Wiener index of any graph, i.e. W (G) = 1

2

∑
1≤i≤n

Tr(vi), we �nd analytical exact

formulas of the Wiener index of aforementioned polyomino chains. Since the proof struc-
ture is same for all the chains, we only provide a proof for polyomino chain zn. Table 5
presents the edge partition of zn based on the transmission of any vertex.

In the following theorem, the Wiener index of polyomino chains is calculated. We
only prove it for zn as other chains share similar structure of proof.
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4.6. Theorem. The Wiener index of di�erent certain polyomino chains are computed

as follows:

W (zn) =
16

3
n3 + 8n2 +

38

3
n− 1,

W (cn) = 18n3 + 18n2 + 21n− 3,

W (kn) =
128

3
n3 + 32n2 +

94

3
n− 5,

W (rn) =
250

3
n3 + 50n2 +

131

3
n− 7.

Proof. Let G be the graph of polyomino chain zn. The number of vertices in G are 4n+2.
We can write the Wiener index of any graph G as follows:

W (G) =
1

2

∑
1≤i≤n

Tr(vi).

By using this equation and the vertex partition of zn bases on transmission of any vertex
from Table 5, we obtain

W (zn) =
1

2

[
2(4n2 + 4n+ 1) + 2

∑
i∈N−
n≥i

(
4n2 − (4i− 8)n+ (2i2 − 6i+ 11)

)
+

2
∑
i∈N+

n≥i

(
4n2 − (4i− 4)n+ (2i2 − 2i+ 3)

)
+ 2

∑
i∈N−
n≥i

(
4n2 − (4i− 4)n+

(2i2 − 2i+ 3)
)
+ 2

∑
i∈N+

n≥i

(
4n2 − (4i)n+ (2i2 + 2i+ 7)

)]
,

where N+ (resp. N−) is the set of even (resp. odd) numbers. By using the sequences of
partial sums of certain series, we obtain

W (zn) =
16

3
n3 + 8n2 +

38

3
n− 1.

�

5. Eccentricity-based topological indices

In this section we apply our computational technique to �nd exact analytical expres-
sions of a number of eccentricity-based topological indices of chemical graphs. More pre-
cisely, we compute two eccentricity-based indices called the eccentric-connectivity index
and the total eccentricity index of certain polyomino chains. The correlation coe�cients
of the eccentric-connectivity index for various physico-chemical properties of chemical
compounds range from 95% to 99% [36]. In most of the cases observed in [36], the per-
formance of the eccentric-connectivity index is far better than the Wiener and distance
related topological descriptors. Researchers from theoretical and physical chemistry and
mathematical chemistry have investigated various chemically and mathematically inter-
esting properties of the eccentric-connectivity and the total eccentricity indices. We refer
the reader to [1, 9] and references therein, for their applications in chemistry and nan-
otechnology. We further refer the reader to [44] for various mathematical properties of
these eccentricity-based topological indices.

It is worthy to mention here that the previous techniques of similar nature for com-
puting distance-based topological of chemical graphs are restricted to the Szeged, PI and
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revised Szeged indices. Our technique is more general in this sense that besides com-
puting aforementioned distance-based indices, one can compute the Wiener index and
eccentricity related indices of chemical graphs.

Type ε(v) dv No.

1 2n+ 1 2 2

2 2n 3 2

3 n+ i, 1 ≤ i ≤ n− 1 4 2

4 n+ i, 1 ≤ i ≤ n 2 2

Table 6. The vertex partition of zn for n ≥ 2, based on ε(v) and dv
of any vertex v ∈ V (zn).

Type ε(v) dv No.

1 4n+ 1 2 2

2 4n 2 2

3 n+ i, n+ 1 ≤ i ≤ 3n 3 2

4 n+ i, n+ 1 ≤ i ≤ 3n− 1 2 1

5 n+ i, n+ 1 ≤ i ≤ 3n− 1 4 1

Table 7. The vertex partition of kn for n ≥ 2, based on ε(v) and dv
of any vertex v ∈ V (kn).

Figure 5. A description of vertex set partition with respect to eccen-
tricities in polyomino chains z3 and k3.

In view of the de�nitions of the eccentric-connectivity and the total eccentricity indices,
it is worth noticing that they are based on the vertex set partition based on eccentricity
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and degrees of any vertex of a graph. Our proposed technique in Section 3 yields us
the related vertex partition of any graph. In our case, those partitions for di�erent
polyomino chains are presented in Tables 6, 8, 9, 7, 10 and 11. These partitions are
useful to compute the eccentric-connectivity index and the total eccentricity index of
certain polyomino chains. We notice that there are two di�erent cases i.e. n is even and
n is odd, for cn and rn whereas zn and kn can be managed in a single cases.

Type ε(v) dv No.

1 3n+ 1 2 2

2 3n 2 2

3 3n 3 2

4 3n+2
2

4 1

5 3n+2
2

3 2

6 3n+2
2

2 1

7 3n+4
2

2 2

8 3n+4
2

4 2

9 n+ i, n
2
+ 3 ≤ i ≤ 2n− 1, i 6= 3c

(
n
2
+ 3
)
where c ∈ N 4 1

10 n+ i, n
2
+ 3 ≤ i ≤ 2n− 1, i 6= 3c

(
n
2
+ 3
)
where c ∈ N 3 2

11 n+ i, n
2
+ 3 ≤ i ≤ 2n− 1, i 6= 3c

(
n
2
+ 3
)
where c ∈ N 2 1

12 n+ 3i
(
n+6
2

)
, 1 ≤ i ≤ 4n−4

n+6
2 2

13 n+ 3i
(
n+6
2

)
, 1 ≤ i ≤ 4n−4

n+6
4 2

Table 8. The vertex partition of cn for n|2, based on ε(v) and dv of
any vertex v ∈ V (cn).

Type ε(v) dv No.

1 3n+ 1 2 2

2 3n 2 2

3 3n 3 2

4 3n+1
2

2 1

5 3n+1
2

4 1

6 n+ i, n+3
2
≤ i ≤ 2n− 1, i 6= 3c

(
n+3
2

)
where c ∈ N 4 1

7 n+ i, n+3
2
≤ i ≤ 2n− 1, i 6= 3c

(
n+3
2

)
where c ∈ N 3 2

8 n+ i, n+3
2
≤ i ≤ 2n− 1, i 6= 3c

(
n+3
2

)
where c ∈ N 2 1

9 n+ 3i
(
n+3
2

)
, 1 ≤ i ≤ 4n−2

n+3
2 2

10 n+ 3i
(
n+3
2

)
, 1 ≤ i ≤ 4n−2

n+3
4 2

Table 9. The vertex partition of cn for n - 2, based on ε(v) and dv of
any vertex v ∈ V (cn).

Now we focus on computing the eccentric-connectivity and total eccentricity indices for
aforementioned polyomino chains. We obtain the vertex partitions for these polyomino
chains based on eccentricity and degree of a vertex. Tables 6 and 7 exhibited these
vertex partitions for zn and kn respectively. In the similar spirit, Tables 8 and 9 show
the required partitions for cn for n|2 and n - 2 respectively and Tables 10 and 11 show the
required partition for cn for n|2 and n - 2 respectively. We use these partitions and the
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Type ε(v) dv No.

1 5n+ 1 2 2

2 5n 2 2

3 5n 3 2

4 3n+6
2

3 4

5 n+ i, 3n
2

+ 1 ≤ i ≤ 3n
2

+ 2 2 1

6 n+ i, 3n
2

+ 1 ≤ i ≤ 3n
2

+ 2 3 2

7 n+ i, 3n
2

+ 1 ≤ i ≤ 3n
2

+ 2 4 1

8 n+ i, 3n
2

+ 4 ≤ i ≤ 4n− 1, i 6= 5c
(
3n
2

+ 4
)
where c ∈ N 2 1

9 n+ i, 3n
2

+ 4 ≤ i ≤ 4n− 1, i 6= 5c
(
3n
2

+ 4
)
where c ∈ N 3 2

10 n+ i, 3n
2

+ 4 ≤ i ≤ 4n− 1, i 6= 5c
(
3n
2

+ 4
)
where c ∈ N 4 1

11 n+ 5i
(
3n
2

+ 4
)
, 1 ≤ i ≤ 8n−4

3n+8
3 4

Table 10. The vertex partition of rn for n|2, based on ε(v) and dv of
any vertex v ∈ V (rn).

Type ε(v) dv No.

1 5n+ 1 2 2

2 5n 2 2

3 5n 3 2

4 5n+1
2

3 2

5 n+ i, 3n+1
2
≤ i ≤ 4n− 1, i 6= 5c

(
3n+1

2

)
where c ∈ N 2 1

6 n+ i, 3n+1
2
≤ i ≤ 4n− 1, i 6= 5c

(
3n+1

2

)
where c ∈ N 3 2

7 n+ i, 3n+1
2
≤ i ≤ 4n− 1, i 6= 5c

(
3n+1

2

)
where c ∈ N 4 1

8 n+ 5i
(
3n+1

2

)
, 1 ≤ i ≤ 8n−2

3n+1
3 4

Table 11. The vertex partition of rn for n - 2, based on ε(v) and dv
of any vertex v ∈ V (rn).

de�nitions of the eccentric-connectivity and total eccentricity indices to compute their
exact analytical expressions for certain polyomino chains.

We record our calculations in the following theorems. We do not include the proofs
of these results, as they are of similar nature as of results in the previous sections.

5.1. Theorem. The eccentric-connectivity index of di�erent polyomino chains are com-

puted as:

ξ(zn) = 48n2 − 20n+ 4,

ξ(kn) = 72n2 + 20n+ 16,

ξ(cn) =

{
1
2
(81n2 + 30n+ 8), n|2;

1
2
(81n2 + 30n+ 5), n - 2,

ξ(rn) =

{
1
2
(225n2 + 26n+ 8), n|2;

1
2
(225n2 + 110n+ 17), n - 2.
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5.2. Theorem. The total eccentricity index of certain polyomino chains can be calculated

by the following formulas.

ζ(zn) = 6n2 + 6n+ 2,

ζ(kn) = 16n2 + 20n+ 2,

ζ(cn) =

{
1
2
(35n2 + 22n+ 20), n|2;

1
2
(27n2 + 18n+ 3), n - 2,

ζ(rn) =

{
1
2
(43n2 + 30n+ 4), n|2;

1
2
(75n2 + 30n+ 3), n - 2.

6. Degree-based topological indices

This section is devoted to the study of certain degree-based topological indices of
polyomino chains introduced in Section 2. We focus on computing the exact formulas of
the ABC index, the GA index, the ABC4 index and the GA5 index of these polyomino
chains. To study combinatorial and topological properties of certain graphs of speci�c
interest, by computing their degree-based topological indices, is not new. In fact Hayat et
al. [19] studied the degree-based topological indices of certain classes of silicate networks
which have shown certain combinatorial interpretation of these class of networks. Imran
et al. [21] considered certain interconnection networks and studied their degree-based
topological indices. Moreover, degree-based indices of certain graphs of chemical interest
are studied by Ba£a et al. [5] and Siddiqui et al. [37]. In the same spirit, we consider
here various classes of polyominoes to calculate the analytically close formulas of four
important degree-based topological indices of these classes of graphs.

To compute these topological indices of these in�nite families of graphs, we derive two
di�erent partitions of the edge set of these graphs: one is based on degree of end vertices
of any edge, and other is based on sum of degrees of neighbors of end vertices of each
edge. Note that it is important to derive also the vertex and edge cardinalities of these
polyomino chains. In Table 12, these cardinalities are presented.

Polyomino chain #V #E

zn 4n+ 2 6n+ 1

cn 6n+ 2 9n+ 1

kn 8n+ 2 12n+ 1

rn 10n+ 2 15n+ 1

Table 12. The vertex and edge set cardinalities of di�erent polyomino
chains.

In the following tables, two important edge partitions are derived to compute the
mentioned topological indices of polyomino chains. In Tables 13 and 14, these partition
are derived for n-dimensional chain zn. The similar calculations for other polyomino
chains are presented in the frequent tables. It is important to note that these edge
partitions are used to prove the results derived on these topological indices. We provide
the proofs of combinatorial meaning for our results.

Now we are in a good position to calculate these topological indices of di�erent poly-
omino chains. In the following theorem, the ABC index of certain polyomino chains are
evaluated.
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(du, dv) (2,2) (2,4) (2,3) (3,4) (4,4)

No. 2 4n− 4 4 2 2n− 3

Table 13. The edge partition of zn based on degrees of end vertices.

(Su, Sv) (5,6) (6,11) (7,8) (8,5) (8,11) (8,12) (7,12) (11,12) (12,12)

No. 2 2 2 2 4 4n− 10 2 2 2n− 5

Table 14. The edge partition of zn based on sum of degrees of neigh-
bors of end vertices.

6.1. Theorem. The ABC index of di�erent polyomino chains can be calculated by the

following formulas.

ABC(zn) =

(√
6

2
+ 2
√
2

)
n− 3

√
6

4
+

√
15

3
+
√
2,

ABC(cn) =

(
2
√
15

3
+

√
6

4
+ 2
√
2

)
n−
√
15

3
−
√
6

4
+ 2
√
2,

ABC(kn) =

(
2
√
15

3
+

√
6

4
+ 2
√
2 + 2

)
n−
√
15

6
−
√
2

2
+

3
√
2

2
−
√
6

4
− 2

3
+
√
2,

ABC(rn) =

(
2
√
15

3
+

√
6

4
+

2

3
+ 2
√
2

)
n+

3
√
2

2
+

√
2

2
−
√
15

6
−
√
6

4
+

2

3
+
√
2.

Proof. Let G denote the polyomino chain zn. From Table 12, we know that the number
of vertices and the number of edges in zn are 4n+2 and 6n+1 respectively. By de�nition
of the ABC index, we have

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

du × dv
.

Now we use the edge partition of zn from Table 13 to further perform the necessary
calculations. By using the de�nition of the ABC index and the edge partition of zn we
obtain.

ABC(zn) = 2

√
2 + 2− 2

2× 2
+ (4n− 4)

√
2 + 4− 2

2× 4
+ 4

√
2 + 3− 2

2× 3
+

2

√
3 + 4− 2

3× 4
+ (2n− 3)

√
4 + 4− 2

4× 4
.

By simplifying the radical expressions, we obtain

ABC(zn) =

(√
6

2
+ 2
√
2

)
n− 3

√
6

4
+

√
15

3
+
√
2.

Note that the proofs for other polyomino chains are of similar structure, therefore, we
skip them. �

In the following result, without proof, we give exact analytical expressions for the GA
index of certain under-considered polyomino chains.
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(du, dv) (2,2) (2,4) (2,3) (3,4) (4,4)

No. 2 2n 2n+ 2 4n− 2 n− 1

Table 15. The edge partition of cn based on degrees of end vertices.

(Su, Sv) No.

(5,8) 2

(7,8) 1

(7,12) 2n− 3

(10,12) 4n− 6

(6,10) 1

(6,8) 1

(8,11) 2

(11,12) 1

(5,6) 2

(6,11) 2

(10,11) 2

(7,11) 1

(7,10) 2n− 3

(12,12) n− 1

Table 16. The edge partition of cn based on sum of degrees of neigh-
bors of end vertices.

6.2. Theorem. The GA index of di�erent polyomino chains are calculated by the fol-

lowing formulas.

GA(zn) =

(
8
√
2

3
+ 2

)
n− 8

√
2

3
+

8
√
6

5
+

8
√
3

7
− 1,

GA(cn) =

(
16
√
3

7
+

4
√
2

3
+

4
√
6

5
+ 1

)
n− 8

√
3

7
+

4
√
6

5
+ 1,

GA(kn) =

(
4
√
2

3
+

4
√
6

5
+

12
√
3

7
+ 4

)
n− 2

√
2

3
− 4
√
3

7
+

6
√
6

5
,

GA(rn) =

(
4
√
2

3
+

4
√
6

5
+

16
√
3

7
+ 7

)
n− 2

√
2

3
− 4
√
3

7
+

6
√
6

5
.

(du, dv) (2,2) (2,4) (2,3) (3,3) (3,4) (4,4)

No. 2 2n− 1 2n+ 3 3n− 1 4n− 1 n− 1

Table 17. The edge partition of kn based on degrees of end vertices.

Now we use the edge partitions based on the sum of degrees of end vertices of each
edge. The following result presents the exact expressions for the ABC4 index of certain
polyomino chains. We do not give a proof of this result.
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(Su, Sv) No.

(5,5) 1

(5,6) 1

(5,8) 2

(5,9) 1

(6,8) 1

(6,9) 1

(6,11) 1

(7,9) 2n− 2

(7,12) 2n− 2

(8,9) 2

(8,11) 1

(9,10) 2n− 3

(9,11) 1

(9,12) 2n− 2

(10,10) n− 1

(10,11) 1

(10,12) 2n− 3

(12,12) n− 1

Table 18. The edge partition of kn based on sum of degrees of neigh-
bors of end vertices.

6.3. Theorem. The ABC4 index of di�erent polyomino chains are computed as follows.

ABC4(zn) =

(√
22

6
+ 2

)
n− 5

√
3

2
+

5
√
22

12
+

√
30

15
+

√
110

11
+

√
374

11
+

√
357

21
+

√
77

11
+

√
182

14
+

√
110

10
,

ABC4(cn) =

(
2
√
6

3
+

√
357

21
+

√
42

7
+

√
22

12

)
n+

2
√
110

10
+

√
182

28
−
√
357

14
+

√
210

30
+

√
374

22
+

√
77

22
+

√
30

5
+

4
√
77

77
− 3
√
42

14
−
√
22

12
+

2

√
19

110
+

1

2
−
√
6,

ABC4(kn) =

(
4
√
323

19
+

2
√
399

21
+

3
√
10

10
+

2
√
110

11
+

√
14

2
+

√
33

6

)
n+

2
√
5

5
+

3
√
11

11
+

2
√
143

13
+

2
√
42

7
+

√
195

15
+

√
255

17
−
√
14

2
−

4
√
323

19
+

2
√
255

17
−
√
399

21
− 3
√
110

11
−
√
33

6
,

ABC4(rn) =

(
2
√
2

3
+

2
√
357

42
+

4
√
170

30
+

2
√
57

18
+

2
√
6

6
+

√
22

12
+ +

8

9

)
n+

2
√
2

5
+

√
30

10
+

3
√
110

20
+

√
78

18
+

√
110

22
− 2
√
2

3
− 2
√
357

42
+

√
14

8
+

√
30

12
+

√
5

5
+

√
374

44
− 3
√
170

30
+

√
22

11
− 2
√
57

18
− 2
√
6

6
+√

19

110
−
√
22

12
+

1

18
.
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(du, dv) (2,2) (2,4) (2,3) (3,3) (3,4) (4,4)

No. 2 2n− 1 2n+ 3 6n− 1 4n− 1 n− 1

Table 19. The edge partition of rn based on degrees of end vertices.

In the similar spirit, we compute the exact analytical expressions of the GA5 index
for polyomino chains. We skip the proof due to structural similarity to the proofs of
previous results.

6.4. Theorem. The GA5 index of di�erent polyomino chains are computed as follows.

GA5(zn) =

(
8
√
6

2
+ 2

)
n+

4
√
30

11
+

4
√
66

17
+

8
√
14

15
+

8
√
10

13
+ +

16
√
22

19
+

8
√
21

19
+

8
√
33

23
− 4
√
6− 5,

GA5(cn) =

(
16
√
21

19
+

8
√
30

11
+

4
√
70

17
+ 1

)
n+

8
√
10

13
+

4
√
14

15
− 12

√
21

19
−

12
√
30

11
+

√
15

4
+

4
√
3

7
+

8
√
22

19
+

4
√
33

23
+

4
√
30

11
+

4
√
66

17
+

4
√
110

21
+

√
77

9
− 6
√
70

17
− 1,

GA5(kn) =

(
3
√
7

4
+

8
√
21

19
+

12
√
10

19
+

8
√
3

7
+

4
√
30

11
+ 2

)
n++

2
√
30

11
+

8
√
110

13
+

3
√
5

7
+

4
√
3

7
+

2
√
6

5
+

2
√
66

17
− 3
√
7

4
− 8
√
21

19
+

24
√
2

17
+

4
√
22

19
− 18

√
10

19
+

3
√
11

10
− 8
√
3

7
+

2
√
110

21
− 6
√
30

11
− 1,

GA5(rn) =

(
6
√
7

8
+

8
√
21

19
+

24
√
10

19
+

8
√
3

7
+

4
√
30

11
+ 3

)
n+

2
√
30

11
+

12
√
10

13
+

4
√
3

7
+

2
√
6

5
+

2
√
66

17
− 6
√
7

8
− 8
√
21

19
+

12
√
2

17
+

4
√
5

9
+

4
√
22

19
− 18

√
10

19
+

3
√
11

10
− 8
√
3

7
+

2
√
110

21
− 4
√
30

11
.



1091

(Su, Sv) No.

(5,5) 1

(5,6) 1

(5,8) 3

(6,8) 1

(6,9) 1

(6,11) 1

(7,9) 2n− 2

(7,12) 2n− 2

(8,8) 1

(8,9) 1

(8,10) 1

(8,11) 1

(9,9) 2n− 1

(9,10) 4n− 3

(9,11) 1

(9,12) 2n− 2

(10,11) 1

(10,12) 2n− 2

(12,12) n− 1

Table 20. The edge partition of rn based on sum of degrees of neigh-
bors of end vertices.

7. Conclusion and limitation

In this paper, we have developed a computational technique to compute certain topo-
logical indices of chemical graphs. We have applied our technique to compute those
topological indices for certain in�nite families of chemical graphs. Our results show that
our technique is more diverse and possess a comparatively less algorithmic and combina-
torial complexity.

Even though our technique is much general in nature, there are a number distance-
cum-adjacency indices which are not covered by it. These topological indices include
the so-called the Gutman index and the Schultz index. It is still open to design a
computational technique which also covers this class of topological indices. It might be a
di�cult problem for general graphs, but we believe it is possible to solve it for chemical
graphs.
Acknowledgment We would like to thank the anonymous referees for their comments
and suggestions which have considerably improved the quality and presentation of this
paper.
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