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Averaged modulus of smoothness and two-sided
monotone approximation in Orlicz spaces

Hiiseyin Koc¢*" and Ramazan Akgiin}

Abstract

The paper deals with basic properties of averaged modulus of smooth-
ness in Orlicz spaces L,. Some direct and inverse two-sided approxima-
tion problems in Ly, are proved. In the last section, some inequalities
concerning monotone two sided approximation by trigonometric poly-
nomials in L, are considered.
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1. Introduction

The problems of approximation by trigonometric or algebraic polynomials in classical
Orlicz spaces were investigated by several mathematicians. In 1966, Tsyganok [26] ob-
tained the Jackson type inequality of trigonometric approximation. In 1965, Kokilashvili
[17] obtained inverse theorems of trigonometric approximation. In 1966, Ponomarenko
[20] proved some direct theorem of trigonometric approximation by summation means of
Fourier series. In 1968, Cohen [9] proved some direct theorem of trigonometric approxi-
mation by its partial sum of Fourier series. In Orlicz spaces when the generating Young
function satisfying quasiconvexity condition similar problems were investigated by Akgiin,
Israfilov, Jafarov, Kog, Ramazanov and others [1, 2, 3, 5, 4, 11, 14, 15, 12, 13, 16, 21].

On the other hand, monotone approximation of functions by trigonometric polynomi-
als [23] and Jackson type theorems for monotone approximation of functions by trigono-
metric polynomials in the classical Lebesgue spaces L, [25] were proved by Shadrin.
Ganelius [10], Babenko and Ligun [8], Sadrin [23]| proved theorems about one sided ap-
proximation by trigonometric polynomials for functions in L,-metric.
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In this paper firstly we give basic properties of averaged modulus of smoothness in Or-
licz spaces L. Then we prove some direct and inverse two-sided approximation problems
in Orlicz spaces Lj,. Finally we study monotone two sided approximation by trigonomet-
ric polynomials in Orlicz spaces L.

Firstly we give basic definitions and notations.

We can consider a right continuous, monotone increasing function ¢ : [0, 00) — [0, c0)
with ¢(0) = 0; tliﬁr&cp(t) = oo and ¢(t) > 0 whenever ¢ > 0; then the function defined by

||
N(z) = /O o(t)dt

is called N-function [18]. The class of increasing N-functions will be denoted by ®.
When ¢ is an N-function [18] we always denote by % (u) the mutually complementary
N-function of ¢. Everywhere in this work we suppose that ¢ is an N-function. The class
of real-valued functions which denoted by L, defined on I := [a,b] C R such that;

p(us ) :=/Isonu<m>n dz < oo

are called Orlicz classes. The class of measurable functions f defined on I such that the
product f (z) g(x) is integrable over (a,b) for every measurable function g € Ly, will be
denoted by L, (I) which is called Orlicz space. We put

£l r) 2= 500 ' [ t@gta)as

where the supremum being taken with respect to all g with p(g;¢) < 1. When I =T :=
[0, 2] we set L, := LG (1) and [|fllp- = [/l cry -

1.1. Definition. [25] Let M [a,b] be the set of bounded and measurable functions on
interval [a,b] and M := M [0,2n]. Let ¢ is an N-function, f € M N Ly, and = € T.
Suppose that sequence {t?f}cl)o of trigonometric polynomials satisfy the monotonicity
condition:

\

>t > >t

Wty > >ty >t
The quantity
Ba(f)p = inf { ]|t —

is called the best two sided monotone approximation of the function f € M N Ly, by
polynomials from T, which is consist of all real trigonometric polynomials of degree at
most n.

4 —
Lt €Tt 2 f2 0]

1.2. Definition. If f € M we can define
Tn (f) :={t € Tn : t(z) < f(z) for every z € R},
TH(f) :={T € T : f(z) < T(z) for every = € R}.
In case ¢ is an N-function and f € M N L, we set

Ey(f)e = inf |f=tl,., Ei(fle= _inf |T—f|,.
teTn (f) s T 1) s

n n

The quantities F, (f), and E;(f), are, respectively, called the best lower(upper)
one-sided approximation errors for f € M N Lg,.

En(f), := inf {HT —ty, + 6T € Tn, t(a) < f(w) < T(x) for every € }R} .
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be the error of two-sided approximation for f € MNL,. Similarly, the best trigonometric
approximation error for f € L, is defined as usual by

En(f)«p = infgeg, Hf - SHL; .
We note that
" ~ ~
En(f)e S Ex(f)e < En(f)e, En(f)e  [19].
Let ¢ be a N-function and for arbitrary » = 0, 1,2, ..., there exists an r-times continuously

differentiable function f € M, such that

En(f)e

lim sup ——-2% = 0.
n—oo En(f)e

This gives us the question of the estimation of the value of E,(f), [24].

2. The averaged modulus of smoothness

2.1. Definition. For h > 0, k € N, the expression
k

Ajf(w) =3 (=)™ < . ) fla+mh), Anf(z) = Ajf(z)

m=0

is called k-th difference of the function f with step h at a point x, where

A
m/)  ml(k—m)

is the binomial coefficients.
2.2. Definition. We define the modulus of continuity of the function f € Mla,b] by
(2.1)  w(f;8) =sup{|f(z)— f(a")|: |z —2'| <8 2" €[a,b]}, 6 €[0,b—al.

2.3. Definition. The modulus of smoothness of a function f € M|a,b] of order k is the
following function, § € [0, (b — a)/k]

(2.2)  wi (f;0) :sup{‘A;if(x)‘ LW <8 z,x+kh e [a,b]}.

2.4. Definition. Let C [a,b] be the set of continuous functions on interval [a,b]. The
local modulus of smoothness of function of f of order k € N at a point = € [a, b] is the
following function, § € [0, 23] :

wi (f,23;0) = sup{‘A,ﬁf(t)‘ tt+khe {x— %,H %5} n [a7b]} .
We set

wk (f30) = [lwk (f, 5)||c[a,b] :
2.5. Definition. Let ¢ is an N-function, h > 0 and

[a,b—h] :0<h<b-—a,
Iy = 1%} th>b—a,
[0,27] :I=T.

The integral modulus of the function f € M [a,b]N L, (1) of order k € N is the following
function of § € [0, b*T“] :

wk (f;0), = sup Sup{/
7 o<nss g Uy,

ALl ds 9 € Ly plav) <1}
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2.6. Definition. When ¢ is an N-function, the averaged modulus of smoothness of the
function f € M [a,b] N L}, (I) of order k € N is the following function of § € [0, 3¢] :

7 (f; 5)¢ = [lwk (fs 5)||L2;(I)

g9

:sup{/lwwk (f,2,0)] |9(@)| das g € Ly, plg, ) < 1}.

2.7. Lemma. In Orlicz spaces L, (I) the averaged modulus of smoothness 7y (f;-),, has
the following properties: If ¢ is an N-function, f,g € L}, (I), k,n € N, 0 < ¢ < ¢ and
0, A >0, then

(1.) m (f30"), < 7 (f;07),, 6" < 6",

(2.) T f +9;5)¢ <7 (f30), + 7k (9:6),

(3.) i (f39), < 2me—1(f; £2550)e,

(4-) i (f38), < 671 (f'; §550)e,

(5.) f,né)g, < (20)" ' 7(f30)¢,

(5.) 7 (f;A0), < (20 + 1) 7i(f56)s,

(6.) T (f; 5)¢ <é ‘|f/‘|L¢(I) >

(6. 7(5:0), < e®)s* 7O

(7.) If f is bounded variation on [a,b], then T (f;6),, < SV2f where V2 f is the total
variation of f on [a,b].

AAA,_\

Proof. (1.) Let 6; € [0,b—a] (i =1,2) and §; > 2. Using
Wk (f7x§62) < wg (f,l’;(sl) and
7 (f360), = sup { [l (60l lg(@)] doi g € Lo plo,0) < 1}
g I

we get (1.)
(2.) By the properties

[AL(f+9)| <|AR)] + |Ake)

e (f + 90, :sup{/lwk (f + 9.2 0)|l9(@)| dz; g € Ly, plg,) < 1}

one can find

leon (F + 955ty < Nl (F 500y + o 9550) sy -

This gives (2.)
(3.) By ALf(-) = AR f(-+h) — AR F(-) we have

wi (f,x;9) :sup{’AZf(t)‘ (t,t+ kh € {x— %5,31:—1—%6} ﬂ[mb]}
< sup{‘A’Cl +h)‘ tt+khe[ —&-2}0[@6]}
+sup{‘A§71f(t)’:t,t+kh€ [xf— x+ %} }

Last two terms can be majorized by 7e—1(f; +256), and hence (3.) follows.
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(4.) Since [22]
h
(2.3)  ANf(t) = /A’:jlf’(t +u)du, h >0
0
we obtain

sup{)Aﬁf(t)‘ (t,t+ kh € {xf %6,x+%5] ﬂ[a,b]}

"kt )
(2.4) <sup ‘Ah f(t—f—u)’du:t,t—i—khe x—?,:ﬁ—i—? Nla,b] p.

0
Ift,t+kh e [xf %,er %] Na,b] and h > 0, then the points t +u, t +u+ (k—1)h in
the same interval for 0 < u < h. Then |A} 7' f/(t +u)| < wi—1(f', 2;8") with 6" = 24.
Continuing from (2.4)

anlf,2:0) < dwns (£ 208) . ae
If we take the Orlicz norm of both sides of the last inequality we obtain (4.).
(5.) From [22, p.9 | the identity

(n—1)k

Annf(t) = Y APEALf(E+ih)

i=0
where A" are defined by
(n—1)k
Att+..+t"HE= > A

=0

the inequality

(2n—1)k 2n—1 kS
(25) wi(fmnd) < S AT S (ﬂx—(n—j)?;&)

i=0 x j=1
holds where
(n—1)k

(2.6) > oAt =nt

i=0
and the only terms to appear in the sum Y are those for which z — (n — 5)% € [a,b].

Now taking the Orlicz norm of both sides of (2.5), and by using equation (2.6) we obtain

2.7) 7 (find), < (2n)* (2n = 1)7(f;6),

(5.) Let A > 0. Then Ing € N:ng—1 < X < no. Hence (ng — 1)d < A§ < nod for
5>Oandn0§/\+1.

7 (£308), € (fimod), £ (2n0)* 2no — D(f3),
— O+ D RO+ D) — D38y < 20+ 1)F O+ D)malf30),

= A+ 1) (f6)e
as desired.
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(6.) Let us extend f outside the interval [a,b] by setting f(z) = f(a), x < a and
f(z) = f(b), £ > b. Then for every z € [a, b] we have

w (f,z;0) :Sup{‘f(t,) —f@)]:tt" e [mf é’eré]}

2 2
= sup{/t f@at| ' t" e |:x—g’];+g:|}
z—‘—% %
[ irwla= [ 15erola.

From this inequality, taking the Orlicz norm, we obtain

IA

3

1 (38), = [ty < [

_9s
2

£+ 1)

dt =36 ||f']

Ly(D) Ly

More generally, if the function f has a bounded derivative (of order k), from properties
(4.) and (6.) we obtain the following property of 71 (f;4),
(6.)" Since

4) , k
Te(f;0) < 6me—1 | f §m5
7

we can write

T T LAY S N LA
Ti(f36) < o 10TkE-2 o —
2 k 2 ", k 3
®
- k k—1 o i k—1
<é (7]6—1) 7'1<f A 1
7

© sk N\
<9 (k— 1) Hf ‘L;(]) Ly’
(7.) Let f(z) = f(a), z < a and f(x) = f(b), x > b. Then
w58 SVIEFC).
Therefore

et 1)

n (i), < o0y < VI S

_s
2

L3
ot
s { [V @)ool doi g € Lo plav) <1}
g9 I

< (v sup { / l9(@)] dz; g € Ly, p(g,¥) < 1} <OVLS.
g I
The proof of Lemma 2.7 is completed.
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3. Main results

3.1. Theorem. Let ¢ be an N-function and f € M [a,b] N L (I). For any § > 0,
inequalities

(3.1)  cawkr(f;0), <7k (f;6), < cawk (f36) (b—a)
holds, where the constants c1 depend only on ¢,k and co depend only on .

Proof. We set for h > 0

Amsw{ [ |abs@| s ds g€ Lo, sla.) <1}

9 Iin

b—kh
A < sup /
g

kh
b—"gt

< sup / i (f,2,8)||9(2)  das g € Ly, plg,9) < 1

i

Then

kh
W (f,x+7,5)’|g(m)ldx; g € Ly, p(g,¥) <1

From Definition 2.6, the last expression
< wi (f, 0| < su wik (f, - P 1«
< lwn (f )”Lw(I) oghgé llw (f )|‘L¢(I)

sup 7k (f1h), < 7 (f30),, -
h<s

Now wy (f;6), = oilflbgaA gives the left hand side of (3.1). For the proof of the right hand

0

side of (3.1)

0 (f38), = sup{ [lon (00 lg(@) des g € Ly, plo,0) < 1}

g
< lws (f; '76)||C[a,b] HH‘L;(I) :
Then, from Young inequality, we find ||1{|. ;) < Cy(b— a). Hence from Definition 2.6
®
7 (f;60), < cawr (f396) (b—a).
(]

3.2. Theorem. Let ¢ be a N-function, k € N and f € L;NM. Then there is a constant
¢ > 0, dependent only on k and ¢, such that the inequality

~ 1
E.(f)e < Ck,wTk(fy E)v
holds for n € N.

Proof. We know from [24, Lemma 5] that there exist trigonometric polynomials tht, €
T, with the property

th > f>t,

and

(3.2)  tf(x) —t,(x) <16 /ﬁ Wi (f, 2, 26) I (t)dt
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. 2r
where k,r,meN, n=r(m—1), Lrm(t) =vrm [smmt/ﬂ , and

msint/2
2r
inmt/2
(1/77‘;771) = f’]l‘ [fnsini//2i| dt.
Taking Orlicz norm and changing the order of integration we obtain

(3.3)  En(f), <16 /ﬂ 7. (f, 26) o Lo (£)dit.
0
For any i < 2(r —1)
/Tr Lo ()t dt
0

is equivalent to m™" ([24, p.180]). Choosing r such that k < 2r —3 and m = [2] + 1
with regard to property (5.)’, we have

™

/ rk(f,zt)wlm(t)dtgck,w/ (2mt+2)k+17k(f,%)¢lr,m(t)dt
0 0

(34) < Cuonilfs 7)o < engmhlls L) < CugnilFy e
(3.2), (3.3) and (3.4) gives

Eu(Pe < Cromilf. e

3.3. Theorem. Let k € N. If ¢ is a N-function and f € Ly, N M, then

(35) ™ (f%) <SEEN WD) B W@ f.9)
P v=0

holds for n € N, where

E (0, f,0) {= Eaf)o or = EE(f)s or= En(f)s or =Bu(f), } and
constant cr,, > 0 dependent only on k and .

Proof. It is enough to prove (3.5) for E (v, f,¢) = En(f),- Let n € N and let the
trigonometric polynomial 7, € Ty, be such that Ey (f), = [|f — Tull. . For 6 >0,
©

T (f30), < 76 (f = Tn30), + 70 (T3 0),,

(36) <o [If = Tully, | + 7 (Tns6), = exBu (f), + 7 (Tns ).,
We set n = 2"°. Then from (3.6) we obtain
v0
i (f3 5)¢ < Z [Tr(f36)e + Th(Tos — Tai-1;6),]
i=1
(3.7)  +7e(f;0)p + Th(T1 — To; ) + 25 (kdn + 1) En(f)y.
From property (6'.)
(T 8) < k" H(Tw - TZH)““)'

L
< k"2 | Ty = Tyima |, < K6™2 [Hf = Tyillpy +I1F = Tais ||L:,]

(38) < ho"2* [If = Torllyy + IS = Toima | < 260527 Byecs ()
From (3.7) and (3.8)

"
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T (f30)p < ARSS " [2¥ By (£), + 2K6" Eo (£), + 25 (knd + 1) B (£),,]

i=1

3.9) < 4k+1k5ki [(1} + D) B, (f), + 2" (knd + 1)E, (f)w}

v=0

Let 6 = L. From (3.9)

i)y <4 S [0+ DB (1), + 25k + DB (),

v=0

< 23k+1n_k2(v +1)" B, (-
v=0

If 2v0 < < 290+

! 1

7 (f5 E)g, < 7(f; 500 ) < 23k+1n—vok2(v + 1R, (f)

v=0

©

< 24k+1n7kv2:0(v 1R, ), = nikvz:;)(v +1)"E, (f),-

From last two theorems we have the following two corollaries.
3.4. Corollary. Let k € N. If ¢ is a N-function, f € L, N M, and
En(f)S@:O(nfa),a>0,n€N,

then
0(67) s k>0,
n(f:6)p =4 0007 log(1/8)) k=0,
0(6%) i k<o,

hold.

3.5. Definition. Let k € N and ¢ be an N-function. For 0 < o < k we set Lipo (k, p) :=
{feLlynM:m(f;0),=0(67), &>0}.

3.6. Corollary. Let k € N, ¢ be an N-function, 0 < o <k and let f € L, N M. Then
the following conditions are equivalent:

(a) [ € Lipo (k,¢).
(b) En(f)v:(f)(n"’), n € N.

Our monotone approximation estimate is given in the following.

3.7. Theorem. Suppose that r € N, ¢ be an N-function and f,f e Ly N M. Then
there exists sequences {ti};}o, {t;}(;o, tt e Tn, such that

>t > 2t > >t > >t >t
f("")

for n € N, where ¢, is an constant dependent only on r and ¢.

[t =t

< cron "
S Cre
Ly Ly
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To proof this theorem we need the following lemmas. Let

1 ™
fro= g [ =gt
denote the convolution of f and g.

3.8. Lemma. [23] Suppose Di(u) =u—m, u € [0,27), D1(4+2n) = Di(u). Then there
erist sequences {U,f};)o, {U{};}O, UZF € T, such that

Urf>uf>.>Ur>.>Di>..>U, >..>U; >U;,
ot = val, < <,
n
forn € N.

3.9. Lemma. Suppose that f is absolutely continuous on T, f' € L, M and there exist
a sequence {Tn}7°, T € T such that Ty > T > ... > T, > ... > f'. Then there exist
sequences {RI}TO, {R;};’O, Rf e T, so that

RF>Rf>.>Rf>.>f>..>R,>..>R;, >Ry, and

|RY — R, | neN.

c
L < EHTnfﬂ

* )
Lo

Proof of Lemma 8.9. Let Ty, (z) = ao + nil(ak cos kx + by sinkxz) and T, (z) = T (z) —
ao, h(z) = f(x)— [ Ty, (t)dt. Then fronI::[iO]

h(@)=A—Dyxh' =A—Dyx(f —Tn)=A+ Dy (Tn — f'),
where A = A(f) is a constant. By using U," and U,; of Lemma 3.8 we put

QF =A+US «(Tu—f), Qn = A+ U, =(Tn — '),
R} (z) = / T ()dt + Qi (x), Ry () = / Fo(t)dt + Qx ().
0 0
By using the fact that ao [ D1(u)du = 0, we have

(R:L—_f) - (RZH—f)
= (Ud = D1) (T = f') = (Ugsa = D1) # (Tnsa — ')
= (UF UL * (T = f)+ (Utiy = D1) % (T — Tga) > 0.

+ —+
Rn - Rn+1

Monotonicity of {R;}T) can be established analogously. Finally
HR: B Riﬂ Ly H(U;lL - U;) *(Tn - fl)‘

«
Lo

1 _
Lot~ vzl 17 - 1)

c
L:,SEHT”_JN”L:"

d

Proof. For f, f' € L, we set f (x) = max {0, f'(z)} and f_ (z) = max {0, —f'(x)}. Then
f=A—-Dixf =A—DixfL +Dixf.. Putting t;] = A~ U, = fL + Ul * f.,
tn = A—U} = fi + U, * f_, we can show by exactly the same argument as in Lemma
3.9 that

>t >. >th>. . >f>..>t;>..>t; >t],

il - bn —
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and we have

_ - ’ 1 - !
6=ty < I =) = (7= ), < o= N =D)L 1
C ’
T
Applying Lemma 3.9 (r — 1) times, the proof of the Theorem 3.7 is obtained. (]

Acknowledgements Authors are indepted to referees for his/her valuable suggestions
and remarks.
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