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Abstract

This paper proves the Hyers�Ulam stability and Hyers�Ulam�Rassias
stability of �rst�order non�linear delay di�erential equations with frac-
tional integrable impulses. Our approach uses abstract Grönwall lemma
together with integral inequality of Grönwall type for piecewise contin-
uous functions.
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1. Introduction

Ulam, in 1940, queried [31] regarding the stability of functional equation for homomor-
phism in front of a Mathematical Colloquium: The question was �When an approximate
homomorphism from a group G1 to a metric group G2 can be approximated by an exact
homomorphism?�.

Within the next two years, Hyers [10] brilliantly gave a partial answer to this question
for the case when G1 and G2 are assumed to be Banach spaces by using direct method.
In 1978, Rassias [25] provided an extension of the Hyers�Ulam stability by introducing
new function variables. As a result, another new stability concept, Hyers�Ulam�Rassias
stability, was named by mathematicians. In fact, the most exciting result was of Rassias
[25] that weakens the condition for the bound of the norm of Cauchy di�erence f(x +
y) − f(x) − f(y). For further details and discussions, we recommend the book by Jung
[12].

∗Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan, Email:
zadababo@yahoo.com
†Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan, Email:

omarshah89@yahoo.com
‡Corresponding Author.



1197

Many researchers paid attention to the stability properties of all kinds of equations
since the work of Obªoza [21, 22]. We emphasize that Ulam's type stability problems
have been taken up by a huge amount of mathematicians and the study of this region
has grown�up to be one of the vital subjects in mathematical analysis. For more details
on Hyers�Ulam stability, we recommend [3, 6, 7, 8, 9, 11, 13, 14, 15, 16, 19, 24, 26, 30,
34, 36, 37, 38, 39, 40, 41, 42, 29].

Many real world phenomenons are represented by smooth di�erential equations. How-
ever, the situation becomes quite di�erent in the case when a physical phenomena has
sudden changes in its state such as mechanical systems with impact, biological systems
with heart beats, blood �ows, population dynamics [1, 20], theoretical physics, radio
physics, pharmacokinetics, mathematical economy, chemical technology, electric tech-
nology, metallurgy, ecology, industrial robotics, biotechnology processes, chemistry [2],
engineering [4], control theory, medicine and so on. Adequate mathematical models of
such processes are systems of di�erential equations with impulses i.e impulsive di�erential
equations.

An impulsive di�erential equation is described by three components: a continuous-
time di�erential equation, which governs the state of the system between impulses; an
impulse equation, which models an impulsive jump de�ned by a jump function at the
instant an impulse occurs; and a jump criterion, which de�nes a set of jump events in
which the impulse equation is active.

Fractional di�erential and integral equations plays a key role not only in mathematics
but also in the modeling of various physical phenomena in physics, control systems and
dynamical systems. In fact, fractional order derivatives and integrals are assumed to be
more realistic and practical than derivatives and integrals of integral order. These are
excellent tools to modeled memory and hereditary properties of several materials and
processes.

To the best of our knowledge, the �rst mathematicians who investigated the Ulam's
type stability of impulsive ordinary di�erential equations are Wang et al. [32]. Following
their own work, in 2014, they proved the Hyers�Ulam�Rassias stability and generalized
Hyers�Ulam�Rassias stability for impulsive evolution equations on a compact interval
[33] which then they extended for in�nite impulses in the same paper. Wang and Zhang
[35] introduced a new class of di�erential equations; nonlinear di�erential equations with
fractional integrable impulses which are more interesting. They presented four Bielecki�
Ulam's type stabilities for this class of di�erential equations.

However, despite the situations where only impulsive factor is involved or delay e�ects
happened we have a wide variety of evolutionary processes together delay and impulsive
e�ects exists in their state. To modeled such phenomena which are subject to impulsive
perturbations as the time delays an impulsive delay di�erential equation is used. In
2016, Zada et al. [39] using �xed point method discussed Hyers�Ulam stability and
Hyers�Ulam�Rassias stability of �rst order impulsive delay di�erential equations. For
more details on impulsive di�erential equations, we recommend [5, 17, 18, 23].

After studying the work done by Wang and Zhang [35] and Zada et al. [39], we are
motivated to obtain the Hyers�Ulam stability and Hyers�Ulam�Rassias stability of �rst�
order non�linear delay di�erential equations with fractional integrable impulses of the
form

(1.1)


z
′
(t) = F (t, z(t), z(h(t))), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

z(t) = Iαti,tgi(t, z(t), z(h(t))), t ∈ (ti, si], i = 1, 2, . . . ,m, α ∈ (0, 1),

z(t) = φ(t), t ∈ [s0 − λ, s0],
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where λ > 0, 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < . . . tm ≤ sm ≤ tm ≤ tm+1 = tf are
pre��xed numbers, F : (si, ti+1] × R2 → R, i = 0, 1, 2, . . . ,m is a continuous function,
gi : (ti, si] × R2 → R, i = 1, 2, . . . ,m are continuous functions, φ : [s0 − λ, s0] → R is
history function and Iαti,tgi are so called Riemann�Liouville fractional integrals of order
α and are given as:

Iαti,tgi(t, z(t), z(h(t))) =
1

Γ(α)

∫ t

ti

(t− s)α−1gi(s, z(s), z(h(s)))ds.

Moreover, h : [s0 − λ, tf ]→ (si, ti+1] is a continuous delay function such that h(t) ≤ t.

2. Preliminaries

In this section we list some important notations, de�nitions and lemmas that would
be used in our main results. Through out this paper, the following spaces appear mostly.
a) C(J,R) is the Banach space of all continuous real valued functions from J with norm
‖x‖C = max{|x(t)| : t ∈ J}, where J = [s0 − λ, tf ] and R represents the set of real
numbers.
b) PC(J,R) denotes the Banach space of all functions x : J → R such that x ∈
C((tk, tk+1], R], k = 0, 1, 2, . . . ,m and there exists x(t−k ) and x(t+k ), k = 1, 2, . . . ,m

such that x(t−k ) = x(tk) with norm ‖x‖PC = max{|x(t)| : t ∈ J}.
c) We set PC1(J,R) ={x ∈ PC(J,R) : x

′
∈ PC(J,R)} is Banach space with norm

‖x‖PC1 = max{‖x‖PC , ‖x
′
‖PC}.

Consider the following inequalities,

(2.1)

{∣∣y′
(t)− F (t, y(t), y(h(t)))

∣∣ ≤ ε, t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,∣∣y(t)− Iαti,tgi(t, y(t), y(h(t)))
∣∣ ≤ ε, t ∈ (ti, si], i = 1, 2, . . . ,m, α ∈ (0, 1),

(2.2)

{∣∣y′(t)− F (t, y(t), y(h(t)))
∣∣ ≤ ϕ(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,∣∣y(t)− Iαti,tgi(t, y(t), y(h(t)))
∣∣ ≤ κ, t ∈ (ti, si], i = 1, 2, . . . ,m, α ∈ (0, 1),

where ε > 0, κ ≥ 0 and ϕ ∈ PC(J,R+) is an increasing function.

2.1. De�nition. Equation (1.1) is Hyers�Ulam stable on J if for every y ∈ PC1(J,R)
satisfying (2.1), there exists a solution y0 ∈ PC1(J,R) of (1.1) with |y0(t)− y(t)| ≤ Kε,
K > 0, for all t ∈ J .

2.2. De�nition. Equation (1.1) is Hyers�Ulam�Rassias stable on J with respect to
(ϕ, κ), if for every y ∈ PC1(J,R) satisfying (2.2), there exists a solution y0 ∈ PC1(J,R)
of (1.1) with |y0(t)− y(t)| ≤Mϕ(t), M > 0, for all t ∈ J .

2.3. De�nition. Let (X; d) be a metric space. An operator Λ : X → X is a Picard
operator if it has a unique �xed point x∗ ∈ X such that for every x ∈ X, the sequence
{Λ(n)(x)}n∈N converges to x∗.

2.4. Lemma. (Grönwall Lemma[28]): If for t ≥ t0 ≥ 0 we have,

x(t) ≤ a(t) +

∫ t

t0

b(s)x(s)ds+
∑

t0<tk<t

ξkx(t−k ),

where x, a, b ∈ PC[[t0,∞), R+], a is non�decreasing and b(t), ξk > 0. Then for t ≥ t0
the following inequality works:

x(t) ≤ a(t)
∏

t0<tk<t

(1 + ξk) exp

(∫ t

t0

b(s)ds

)
.
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2.5. Lemma. (Abstract Grönwall Lemma [27]): Let (X, d,≤) be an ordered metric
space and Λ : X → X be an increasing Picard operator with �xed point x∗. Then for any
x ∈ X, x ≤ Λ(x) implies x ≤ x∗ and x ≥ Λ(x) implies x ≥ x∗, where x∗ is the �xed
point of Λ in X.

2.6. Remark. A function y ∈ PC1(J,R) satis�es (2.1) if and only if there is a function
f ∈ PC(J,R) and a sequence fk (which depends on y) such that |f(t)| ≤ ε for all t ∈ J ,
|fi| ≤ ε for all i = 1, 2, . . . ,m, and;

(2.3)

{
y
′
(t) = F (t, y(t), y(h(t))) + f(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

y(t) = Iαti,tgi(t, y(t), y(h(t))) + fi, t ∈ (ti, si], i = 1, 2, . . . ,m, α ∈ (0, 1).

We do similar remark for (2.2).

2.7. Lemma. Every y ∈ PC1(J,R) that satis�es (2.1) also comes out perfect on the
following inequality;

∣∣∣∣y(t)− φ(t0)−
∫ t

si

F (s, y(s), y(h(s)))ds− Iαti,tgi(t, y(t), y(h(t)))

∣∣∣∣ ≤ (tf − si +m)ε,

t ∈ (si, ti+1], i = 1, 2, . . . ,m,∣∣∣∣y(t)− Iαti,tgi(t, y(t), y(h(t)))

∣∣∣∣ ≤ mε, t ∈ (ti, si], i = 1, 2, . . . ,m, α ∈ (0, 1).

Proof. If y ∈ PC1(J,R) satis�es (2.1), then by Remark 2.6 we have

(2.4)


y
′
(t) = F (t, y(t), y(h(t))) + f(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

y(t) = Iαti,tgi(t, y(t), y(h(t))) + fi, t ∈ (ti, si], i = 1, 2, . . . ,m, α ∈ (0, 1),

y(t) = φ(t), t ∈ [s0 − λ, s0].

Clearly the solution of (2.4) is given as

y(t) =


φ(t0) +

∫ t

si

(
F (s, y(s), y(h(s))) + f(s)

)
ds+ Iαti,tgi(t, y(t), y(h(t))) + fi,

t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

Iαti,tgi(t, y(t), y(h(t))) + fi, t ∈ (ti, si], i = 1, 2, . . . ,m, α ∈ (0, 1).

For t ∈ (si, ti+1], i = 1, 2, . . . ,m, α ∈ (0, 1), we get∣∣∣∣y(t)− φ(t0)−
∫ t

si

F (s, y(s), y(h(s)))ds− Iαti,tgi(t, y(t), y(h(t)))

∣∣∣∣ ≤ ∫ t

si

|f(s)|ds+

m∑
i=1

|fi|

≤ (t− si +m)ε

≤ (tf − si +m)ε.

Proceeding as above we derive∣∣∣∣y(t)− Iαti,tgi(t, y(t), y(h(t)))

∣∣∣∣ ≤ mε, t ∈ (ti, si], i = 1, 2, . . . ,m, α ∈ (0, 1).

We have similar remarks for (2.2). �

3. Main results

Now we are in the position to state our main results. First we are going to give our
result on Hyers�Ulam stability.
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3.1. Theorem. If
a) F : (si, ti+1]×R2 → R is continuous with the Lipschitz condition:∣∣F (t, x1, x2)−F (t, y1, y2)

∣∣ ≤∑2
k=1 L|xk−yk|, L > 0, for all t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m

and xk, yk ∈ R, k ∈ {1, 2},

b) gi : (ti, si] × R2 → R satis�es the Lipschitz condition |gi(t, u1, u2) − gi(t, v1, v2)| ≤∑2
k=1 Lgi |uk − vk|, Lgi > 0, for all t ∈ (ti, si], i = 1, 2, . . . ,m and u1, u2, v1, v2 ∈ R and

c)

(
2Lgi
Γ(α)

∫ si
ti

(si − s)α−1ds+ 2L(tf − si)
)
< 1,

then equation (1.1) has
i) a unique solution in PC1(J,R);
ii) Hyers�Ulam stability on J .

Proof. i) De�ne an operator Λ : PC(J,R)→ PC(J,R) by

(3.1) (Λz)(t) =



φ(t), t ∈ [s0 − λ, s0],

Iαti,sigi(si, z(si), z(h(si))), t ∈ (ti, si], i = 1, 2, . . . ,m, α ∈ (0, 1),

φ(t0) + Iαti,sigi(si, z(si), z(h(si))) +

∫ t

si

F (s, z(s), z(h(s)))ds,

t ∈ (si, ti+1], i = 1, 2, . . . ,m, α ∈ (0, 1).

For any z1, z2 ∈ PC(J,R), t ∈ (si, ti+1], i = 1, 2, . . . ,m, we have∣∣∣∣(Λz1)(t)− (Λz2)(t)

∣∣∣∣ ≤ ∣∣∣∣Iαti,sigi(si, z1(si), z1(h(si)))− Iαti,sigi(si, z2(si), z2(h(si)))

∣∣∣∣
+

∫ t

si

∣∣∣∣F (s, z1(s), z1(h(s)))− F (s, z2(s), z2(h(s)))

∣∣∣∣ds
≤ 1

Γ(α)

∫ si

ti

(si − s)α−1

∣∣∣∣gi(s, z1(s), z1(h(s)))− gi(s, z2(s), z2(h(s)))

∣∣∣∣ds
+L

∫ t

si

∣∣∣∣z1(s)− z2(s)

∣∣∣∣ds+ L

∫ t

si

∣∣∣∣z1(h(s))− z2(h(s))

∣∣∣∣ds
≤ Lgi

Γ(α)

∫ si

ti

(si − s)α−1

∣∣∣∣z1(s)− z2(s)

∣∣∣∣ds
+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1

∣∣∣∣z1(h(s))− z2(h(s))

∣∣∣∣ds
+2L

∫ t

si

max
si≤s≤ti+1

|z1(s)− z2(s)|ds

≤ 2Lgi
Γ(α)

∫ si

ti

(si − s)α−1 max
ti≤s≤si

|z1(s)− z2(s)|ds+

2L

∫ t

si

max
si≤s≤ti+1

|z1(s)− z2(s)|ds

≤
(

2Lgi
Γ(α)

∫ si

ti

(si − s)α−1ds+ 2L(t− si)
)
‖z1 − z2‖

≤
(

2Lgi
Γ(α)

∫ si

ti

(si − s)α−1ds+ 2L(tf − si)
)
‖z1 − z2‖.
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Following from (c), the operator is strictly contractive on (si, ti+1], i = 1, 2, . . . ,m, and
hence a Picard operator on PC(J,R). From (3.1), it follows that the unique �xed point
of this operator is in fact the unique solution of (1.1) in PC1(J,R).

ii) Next, let y ∈ PC1(J,R) be a solution to (2.1). The unique solution z ∈ PC1(J,R)
of the di�erential equation (1.1) is given by

z(t) =



φ(t), t ∈ [s0 − λ, s0],

Iαti,sigi(si, z(si), z(h(si))), t ∈ (ti, si], i = 1, 2, . . . ,m, α ∈ (0, 1),

φ(t0) + Iαti,sigi(si, z(si), z(h(si))) +

∫ t

si

F (s, z(s), z(h(s)))ds, t ∈ (si, ti+1],

i = 1, 2, . . . ,m, α ∈ (0, 1).

We observe that for all t ∈ (si, ti+1], i = 1, 2, . . . ,m, using 2.7 Lemma, we have

∣∣∣∣y(t)− z(t)
∣∣∣∣ ≤ ∣∣∣∣y(t)− φ(t0)−

∫ t

si

F (s, y(s), y(h(s)))ds− Iαti,tgi(t, y(t), y(h(t)))

∣∣∣∣
+

∣∣∣∣Iαti,sigi(si, z1(si), z1(h(si)))− Iαti,sigi(si, z2(si), z2(h(si)))

∣∣∣∣
+

∫ t

si

∣∣∣∣F (s, z1(s), z1(h(s)))− F (s, z2(s), z2(h(s)))

∣∣∣∣ds
≤ (m+ tf − si)ε+

Lgi
Γ(α)

∫ si

ti

(si − s)α−1

∣∣∣∣z1(s)− z2(s)

∣∣∣∣ds
+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1

∣∣∣∣z1(h(s))− z2(h(s))

∣∣∣∣ds+ L

∫ t

si

∣∣∣∣z1(s)− z2(s)

∣∣∣∣ds
+L

∫ t

si

∣∣∣∣z1(h(s))− z2(h(s))

∣∣∣∣ds.

Next, we show that the operator T : PC(J,R+)→ PC(J,R+) given below is an increas-
ing Picard operator:

(Tg)(t) = (m+ tf − si)ε+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g(s)ds

+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g(h(s))ds+ L

∫ t

si

g(s)ds+ L

∫ t

si

g(h(s))ds.
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For any g1, g2 ∈ PC(J,R+), t ∈ (si, ti+1], i = 1, 2, . . . ,m, we have∣∣∣∣(Tg1)(t)− (Tg2)(t)

∣∣∣∣ ≤ Lgi
Γ(α)

∫ si

ti

(si − s)α−1

∣∣∣∣g1(s)− g2(s)

∣∣∣∣ds
+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1

∣∣∣∣g1(h(s))− g2(h(s))

∣∣∣∣ds
+L

∫ t

si

∣∣∣∣g1(s)− g2(s)

∣∣∣∣ds+ L

∫ t

si

∣∣∣∣g1(h(s))− g2(h(s))

∣∣∣∣ds
≤ 2Lgi

Γ(α)

∫ si

ti

(si − s)α−1 max
ti≤s≤si

|g1(s)− g2(s)|ds

+2L

∫ t

si

max
si≤s≤ti+1

|g1(s)− g2(s)|ds

≤
(

2Lgi
Γ(α)

∫ si

ti

(si − s)α−1ds+ 2L(t− si)
)
‖g1 − g2‖

≤
(

2Lgi
Γ(α)

∫ si

ti

(si − s)α−1ds+ 2L(tf − si)
)
‖g1 − g2‖.

Again from (c), the operator is strictly contractive on (si, ti+1], i = 1, 2, . . . ,m, and hence
a Picard operator on PC(J,R+). Applying Banach contraction principle, T is Picard
operator with unique �xed point g∗ ∈ PC(J,R+) i.e.

g∗(t) = (m+ tf − si)ε+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g∗(s)ds

+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g∗(h(s))ds+ L

∫ t

si

g∗(s)ds+ L

∫ t

si

g∗(h(s))ds.

Since g∗ is increasing, so g∗(h(t)) ≤ g∗(t) and hence we can write,

g∗(t) ≤ (m+ tf − si)ε+
2Lgi
Γ(α)

∫ si

ti

(si − s)α−1g∗(s)ds+ 2L

∫ t

si

g∗(s)ds

≤ (m+ tf − si)ε+
∑

0<si<t

(
2Lgi
mΓ(α)

∫ si

ti

(si − s)α−1g∗(s)ds

)
+ 2L

∫ t

si

g∗(s)ds.

Using 2.4 Lemma, we get

g∗(t) ≤ (m+ tf − si)ε
∏

0<si<t

(
1 +

2Lgi
mΓ(α)

∫ si

ti

(si− s)α−1ds

)
exp

(
2L(tf − si)

)
.

If we set g = |y − z|, then g(t) ≤ (Tg)(t) from which by using abstract Grönwall lemma,
it follows that g(t) ≤ g∗, thus

|y(t)−z(t)| ≤ (m+tf−si)ε
∏

0<si<t

(
1+

2Lgi
mΓ(α)

∫ si

ti

(si−s)α−1ds

)
exp

(
2L(tf−si)

)
.

�

In the following theorem, we state about the Hyers�Ulam�Rassias stability of (1.1) on
J . The proof follows the same steps as that of above theorem. The remarked 2.7 Lemma
for inequality (2.2) is consumed in the proof.

3.2. Theorem. If
a) F : (si, ti+1]×R2 → R is continuous with the Lipschitz condition:∣∣F (t, x1, x2)−F (t, y1, y2)

∣∣ ≤∑2
k=1 L|xk−yk|, L > 0, for all t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m

and xk, yk ∈ R, k ∈ {1, 2},
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b) gi : (ti, si] × R2 → R satis�es the Lipschitz condition |gi(t, u1, u2) − gi(t, v1, v2)| ≤∑2
k=1 Lgi |uk − vk|, Lgi > 0, for all t ∈ (ti, si], i = 1, 2, . . . ,m and u1, u2, v1, v2 ∈ R and

c)

(
2Lgi
Γ(α)

∫ si
ti

(si − s)α−1ds+ 2L(tf − si)
)
< 1 and

d) ϕ ∈ PC(J,R+) is increasing such that for some ρ > 0,∫ t

t0

ϕ(r)dr ≤ ρϕ(t),

then equation (1.1) has
i) a unique solution in PC1(J,R);
ii) Hyers�Ulam�Rassias stability on J .

4. Conclusion

In this paper, we have proved the Hyers�Ulam stability and Hyers�Ulam�Rassias
stability of equation (1.1) using Grönwall lemma and 2.7 Lemma. Also we have proved
the unique solution of (1.1) in PC1(J,R). Our results guarantee that there is an exact
solution y(t) of (1.1) which is close to the approximate solution. In fact, our results
are important when �nding exact solution is quite di�cult and hence are important in
approximation theory etc.
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