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Abstract

Inference for the system reliability R is one of the most popular prob-
lems in the areas of engineering, statistics, biostatistics and etc. There-
fore, there exist considerable numbers of studies concerning this prob-
lem. Traditionally, simple random sampling (SRS) is used for estimat-
ing the system reliability. However, in recent years, ranked set sam-
pling (RSS), cost e�ective and e�cient alternative of SRS, is used to
estimate the system reliability. In this study, we consider the interval
estimation of R when both the stress and the strength are independent
Weibull random variables based on RSS. We �rst obtain the asymp-
totic con�dence interval (ACI) of R by using the maximum likelihood
(ML) methodology. The bootstrap con�dence interval (BCI) of R is
also constructed as an alternative to ACI. An extensive Monte-Carlo
simulation study is conducted to compare the performances of ACI and
BCI of R for di�erent settings. Finally, a real data set is analyzed to
demonstrate the implementation of the proposed methods.
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1. Introduction

The estimation of the system reliability R = P (X < Y ) has been considered many
times using both parametric and non-parametric methods [6, 10, 12, 13, 15, 19, 23, 27].
Here, X and Y represent the stress and the strength, respectively. It is clear that if the
stress exceeds the strength, i.e., X > Y the system would fail, otherwise it continues to
work. The basic assumption of this topic is that both X and Y are independent random
variables. For more detailed information, see Kotz et al. [14].

In the statistical literature, estimation of R has been examined by a quite number of
authors under various distributions of X and Y based on simple random sampling (SRS)
data. However, in recent years, the ranked set sampling (RSS) method, originated by
McIntyre [16], was used for estimating R, since it is plausible and e�cient alternative of
SRS [9, 18, 20, 21, 22].

Akgul and Senoglu [3] obtained the point estimators of R when the stress X and
the strength Y are both independent Weibull random variables with common shape and
di�erent scale parameters based on RSS by using the ML and the modi�ed ML (MML)
methodologies. In this paper, we extend their study to the interval estimation of R. We
obtain the asymptotic con�dence interval (ACI) of R by using the asymptotic properties
of ML and MML estimators [2]. We also construct the bootstrap con�dence interval
(BCI) of R by using two di�erent resampling methods proposed by Chen et al. [8] and
Modarres et al. [17]. Di�erent than the ACI, we just use the ML estimator in obtaining
BCI of R similar to the common usage in the literature. The ACI performs well for the
large sample sizes. However, for the small and moderate sample sizes, we prefer the BCI.

This paper is organized as follows: In Section 2, we give brief description of RSS
method. In section 3, we mention the point estimation of R and construct ACI and BCI
of R. In section 4, an extensive Monte-Carlo simulation study is performed. A real data
set is analyzed to demonstrate the implementation of the proposed methods in Section
5. Final comments and conclusions are given in Section 6.

2. Ranked Set Sampling

The RSS is proposed to use when the variable of interest is more easily ranked than
quanti�ed [5, 11]. Steps of the RSS procedure are given below:

i. Select m random sets via SRS each of size m.
ii. Without doing any certain measurements, rank the units with respect to the

variable of interest.
iii. Select the i−th smallest observations from the i−th set, (i = 1, . . . ,m) and

obtain the certain measurements of these observations.
iv. This complete process is called as a cycle. The cycle is repeated r times, therefore

the sample size is obtained as n = mr.

For better understanding this entire process, see the following table:
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Here, X(i)ic, i = 1, . . . ,m and c = 1, . . . , r is called RSS sample. If the ranking is
perfect, i.e. X(1)1c ≤ X(2)2c ≤ · · · ≤ X(m)mc, the probability density function (pdf) of
X(i)ic is the pdf of the i−th order statistics. In this study, all the computations are
performed under the assumption of the perfect ranking. It should be noted that for easy
understanding and simplicity, we use the notations Xic instead of X(i)ic.

3. Estimation of R

In this section, we mention the point estimation of the system reliability R brie�y
since it is considered by Akgul and Senoglu [3] and we construct the ACI and the BCI
of R.

Before starting the estimation procedure, we give some descriptions about the collec-
tion of the RSS samples used in estimation of R.

In the context of stress-strength model, let Xic, i = 1, . . . ,mx, c = 1, . . . , rx denote
the ranked set sample of size n and Yjl, j = 1, . . . ,my, l = 1, . . . , ry denote the ranked
set sample of size m. Here, mx and my are the set sizes and rx and ry are the number of
cycles for X and Y , respectively. It is clear that the sample sizes for the stress and the
strength are n = mxrx and m = myry, respectively.

3.1. Point Estimation of R. Let X ∼Weibull(p, σ1) and Y ∼Weibull(p, σ2) be two
independent random variables, then the system reliability R is obtained as given below

(3.1) R =

∞∫
0

(
1− e−t

p/σ1
) p

σ1
tp−1e−t

p/σ2dt =
σ2

σ1 + σ2
.

It is clear that the estimator of R is obtained by inserting the estimators of σ1 and
σ2 into the equation given in (3.1). Similar to Akgul and Senoglu [3], we use the ML
methodology to obtain the estimators of the parameters p, σ1 and σ2. The log-likelihood
(lnL) function is obtained as shown below

lnL ∝ lnC + (n+m) ln p− n lnσ1 −m lnσ2 +(3.2)

(p− 1)

rx∑
c=1

mx∑
i=1

lnxic +

rx∑
c=1

mx∑
i=1

(i− 1) ln
(

1− e−x
p
ic/σ1

)
−

rx∑
c=1

mx∑
i=1

(mx − i+ 1)

(
xpic
σ1

)
+ (p− 1)

ry∑
l=1

my∑
j=1

ln yjl +

ry∑
l=1

my∑
j=1

(j − 1) ln
(

1− e−y
p
jl
/σ2
)
−

ry∑
l=1

my∑
j=1

(my − j + 1)

(
ypjl
σ2

)
.
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Then, we take the derivatives of lnL with respect to the parameters of interest and equate
them to zero as given in the following equations

∂ lnL

∂p
=

n+m

p

rx∑
c=1

mx∑
i=1

lnxic +
1

σ1

rx∑
c=1

mx∑
i=1

(i− 1)
xpic lnxic

ex
p
ic/σ1 − 1

−

1

σ1

rx∑
c=1

mx∑
i=1

(mx − i+ 1)xpic lnxic +

ry∑
l=1

my∑
j=1

ln yjl +

1

σ2

ry∑
l=1

my∑
j=1

(j − 1)
ypjl ln yjl

e
y
p
jl
/σ2 − 1

− 1

σ2

ry∑
l=1

my∑
j=1

(my − j + 1)ypjl ln yjl = 0,

∂ lnL

∂σ1
= − n

σ1
− 1

σ2
1

rx∑
c=1

mx∑
i=1

(i− 1)
xpic

ex
p
ic/σ1 − 1

+
1

σ2
1

rx∑
c=1

mx∑
i=1

(mx − i+ 1)xpic = 0,

∂ lnL

∂σ2
= −m

σ2
− 1

σ2
2

ry∑
l=1

my∑
j=1

(j − 1)
ypjl

e
y
p
jl
/σ2 − 1

+
1

σ2
2

ry∑
l=1

my∑
j=1

(my − j + 1)ypjl = 0.

Solutions of these equations are called as the ML estimators of the parameters. However,
these equations cannot be solved explicitly. We therefore resort to iterative methods as in
Akgul and Senoglu [3]. For an alternative to ML, they also used the MML methodology
originated by Tiku [24, 25] which gives the explicit solutions for the unknown parameters
rather than the numerical solutions, see also Akgul [1]. Besides providing the close form
estimators, the MML estimators are also asymptotically equivalent to ML estimators
[7, 26]. In this study, we use the ML and MML estimators of R obtained by Akgul and
Senoglu [3] to construct the con�dence interval of R.

3.2. Interval estimation for R. Now, we consider the interval estimation of the sys-
tem reliability R. For this purpose, we construct the ACI and the BCI of R. We use
asymptotic properties of the ML estimators to construct the ACI of R. Then, for small
and moderate sample sizes we constitute the BCI of R.

3.2.1. ACI of R. In this subsection, we construct the ACI of R, by using the asymptotic
distribution of R̂ = σ̂1/(σ̂1+σ̂2). To do this, we �rst obtain the Fisher information matrix
de�ned below

(3.3) IRSS(θ) = −


E
(
∂2 lnL
∂p2

)
E
(
∂2 lnL
∂p∂σ1

)
E
(
∂2 lnL
∂p∂σ2

)
E
(
∂2 lnL
∂σ1∂p

)
E
(
∂2 lnL
∂σ2

1

)
E
(
∂2 lnL
∂σ1∂σ2

)
E
(
∂2 lnL
∂σ2∂p

)
E
(
∂2 lnL
∂σ2∂σ2

)
E
(
∂2 lnL
∂σ2

2

)
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Here, θ represents (p, σ1, σ2). The elements of Fisher information matrix are denoted by
Iij , i, j = 1, 2, 3 and given below

I11 = −E
(
∂2lnL

∂p2

)
=

1

p2

{
(n (mx − 1) +m (my − 1))E1 +

(2n (mx − 1) lnσ1 + 2m (my − 1) lnσ2)E2 +

2ζ (3)
(
n (mx − 1) (lnσ1)2 +m (my − 1) (lnσ2)2

)}
+

1

p2
{

(n+m)
(
1 + Γ′′ (2)

)
+ 2Γ′ (2) (nlnσ1 +mlnσ2) + n(lnσ1)2 +m(lnσ2)2

}
,

I22 = −E
(
∂2lnL

∂σ2
1

)
= n (mx − 1)

2ζ (3)− 2

σ2
1

+
n

σ2
1

,

I33 = −E
(
∂2lnL

∂σ2
2

)
= m (my − 1)

2ζ (3)− 2

σ2
2

+
m

σ2
2

,

I12 = I21 = −E
(
∂2lnL

∂p∂σ1

)
= −n (mx − 1)

pσ1
((2ζ (3)− 2) lnσ1 + E3)− n

pσ1

(
lnσ1 + Γ′ (2)

)
,

I13 = I31 = −E
(
∂2lnL

∂p∂σ2

)
= −m (my − 1)

pσ2
((2ζ (3)− 2) lnσ2 + E3)− m

pσ2

(
lnσ2 + Γ′ (2)

)
,

I23 = I32 = −E
(
∂2lnL

∂σ1∂σ2

)
= 0,

where

E1 = 2ζ (3) + (1/3) ζ (3)π2 − 6ζ (3) γ + 2ζ (3) γ2 + 6ζ (1, 3)− 4ζ (1, 3) γ + 2ζ (2, 3) ,

E2 = −2ζ (3) γ + 3ζ (3) + 2ζ (1, 3) ,

E3 = −2ζ (3) γ + 2γ + 3ζ (3) + 2ζ (1, 3)− 3

and ζ (·) and ζ (·, ·) are the Riemann zeta function, γ is the Euler constant. For more
detailed information, one may refer to Akgul [1] and Chen et al. [8].

We use the following theorems to compute the asymptotic distribution of R̂.

3.1. Theorem. As n→∞ and m→∞, then

(3.4)
(√
m (p̂− p) ,

√
n (σ̂1 − σ1) ,

√
n (σ̂2 − σ2)

) d→N3

(
0, A−1 (p, σ1, σ2)

)
,

where

A =

 a11 a12 a13
a21 a22 0
a31 0 a33

 .
Here,

a11 =
I11
m
,a22 =

I22
n
, a33 =

I33
n
, a12 = a21 =

I12√
nm

, a13 = a31 =
I13√
nm

.

Proof. The proof follows from the asymptotic distribution of the ML estimators under
regularity conditions and the central limit theorem. �
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3.2. Theorem. As n→∞ and m→∞, then

(3.5)
√
n
(
R̂−R

)
d→N (0, B) .

Proof. The proof follows from Theorem 3.1 and delta method. Here,

B =

(
∂R

∂p
,
∂R

∂σ1
,
∂R

∂σ2

)
A−1


∂R
∂p
∂R
∂σ1
∂R
∂σ2

 ,

where (
∂R

∂p
,
∂R

∂σ1
,
∂R

∂σ2

)
=

1

(σ1 + σ2)2
(0,−σ2, σ1)

and

A−1 =
1

u

 a22a33 −a21a33 −a22a31
−a21a33 a11a33 − a213 a12a31
−a22a31 a12a31 a11a22 − a212

 .
In the de�nition of A−1, u is de�ned as u = detA = a11a22a33 − a212a33 − a213a22. �

The estimate of V ar
(
R̂
)
is V̂ ar

(
R̂
)

= B|p=p̂,σ1=σ̂1,σ2=σ̂2
. Thus,

√
n
(
R̂−R

)
/

√
V̂ ar

(
R̂
)
∼ N (0, 1) .

This result yields the asymptotic 100 (1− α) % con�dence interval for R as

(3.6)

R̂− zα/2
√√√√ V̂ ar

(
R̂
)

n
, R̂+ zα/2

√√√√ V̂ ar
(
R̂
)

n

 ,

where, zα/2 denotes the upper α/2 quantile of the standard normal distribution, i.e.,
N (0, 1).

It should be noted that ACI of R can alternatively be constructed by inserting the
MML estimator of R into the equation (3.6), because of the reason given in subsection
3.1.

3.2.2. BCI of R. In this subsection, we construct BCIs for the system reliability of R by
using two di�erent resampling methods. The �rst method is introduced by Chen et al.
[8] and the second method is proposed by Modarres et al. [17]. It should be noted that
the BCI of R based on Resampling Method I and Resampling Method II are represented
by BCI-I and BCI-II, respectively. These methods are de�ned below.
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Resampling Method I: BCI-I

Step 1: Divide the RSS samples xic (i = 1, . . . ,mx, c = 1, . . . , rx) and yjl (j =
1, . . . ,my, l = 1, . . . , ry) into mx and my subgroups each contains rx and ry
observations, respectively.

Step 2: Resample from each subgroups with replacement.
Step 3: Combine all mx and my subgroups each of sizes rx and ry and obtain the

RSS resamples x∗ic (i = 1, . . . ,mx, c = 1, . . . , rx) and y∗jl, (j = 1, . . . ,my, l =
1, . . . , ry), respectively. Here, ∗ notation represents the sample drawn with re-
placement.

Step 4: By using x∗ic and y
∗
jl, compute the bootstrap estimates of R, say R̂∗.

Step 5: Repeat step 1-4, B times to get the bootstrap estimates R̂∗1, . . . , R̂
∗
B of R.

Step 6: Rank them from the smallest the largest (R̂∗(1), . . . , R̂
∗
(B)).

Step 7: The approximate 100(1− α)% BCI of R is constructed as below(
R̂∗((α/2)B), R̂

∗
(1−(α/2)B)

)
(3.7)

It should be stated that we adopt the procedure described by Chen et al. [8] to obtain
the BCI of R, see also Akgul et al. [4].

Resampling Method II: BCI-II

Step 1: Combine all observations for each RSS sample xic (i = 1, . . . ,mx, c =
1, . . . , rx) and yjl (j = 1, . . . ,my, l = 1, . . . , ry), say x�ic and y

�
jl, respectively.

Step 2: Randomly draw mx elements from x�ic, say x
�
1, . . . , x

�
mx

and my elements
from y�jl, say y

�
1 , . . . , y

�
my

, order them from the smallest to largest as x�(1) ≤ · · · ≤
x�(mx) and y

�
(1) ≤ · · · ≤ y�(my)

, and retain x∗i1 = x�(i) and y
∗
j1 = y�(j), respectively.

Step 3: Perform Step 2 for i = 1, . . . ,mx and j = 1, . . . ,my, respectively.
Step 4: Repeat Step 2 and 3 rx and ry times to obtain x∗ic (i = 1, . . . ,mx, c =

1, . . . , rx) and y∗jl (j = 1, . . . ,my, l = 1, . . . , ry), respectively, and compute the

bootstrap estimates of R, say R̂∗.

For BCI-II of R follow Steps 5-7 given in resampling method I. For more detailed infor-
mation, see Modarres et al. [17] and Akgul et al. [4].

4. Simulation Study

In this section, we perform an extensive Monte-Carlo simulation study to compare the
average con�dence lengths (ACL) and the coverage probabilities (CP) of the con�dence
intervals constructed in this study. In our simulation setup, we take the set sizes and
the number of cycles as (mx,my) = (3, 3), (3, 4), (4, 4), (4, 5) and (5,5) and rx = ry = 5
and 10, respectively. Therefore, in the context of RSS, the sample sizes for X and Y are
obtained as n = mxrx and m = myry. It should be noted that the sample sizes of SRS
observation are also denoted as n and m.

The SRS and the RSS observation are generated under the assumption of both densi-
ties have Weibull distribution with the common shape and the di�erent scale parameters.
The parameter settings are taken as p = 1.5, σ1, σ2 =(1,1), (1,2) and (2,1). All the com-
putations are performed in Matlab R2013a based on 1000 Monte-Carlo runs.

The 95% ACIs are constructed by using the asymptotic distributions of the ML es-
timators of p, σ1 and σ2, and replacing them with the corresponding MML estimators
based on SRS and RSS. For the 95% BCIs, we use B=1000 bootstrap resamples. They
are computed based on the ML estimators of R under SRS and RSS. Results are reported
in Table 1.
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Table 1. Average con�dence lengths and CPs based on the ACI of the
ML and the MML estimators of R and the BCI of R under RSS when
p =1.5.

SRS

ACIML ACIMML BCI

rx = ry (mx,my) ACL CP ACL CP ACL CP

σ1 = 1, σ2 = 1

5

(3,3) 0.3502 0.91 0.3502 0.91 0.3675 0.92
(3,4) 0.3289 0.94 0.3288 0.93 0.3409 0.93
(4,4) 0.3051 0.92 0.3051 0.92 0.3158 0.92
(4,5) 0.2901 0.92 0.2900 0.93 0.2989 0.92
(5,5) 0.2739 0.93 0.2739 0.93 0.2811 0.93

10

(3,3) 0.2505 0.93 0.2504 0.93 0.2552 0.93
(3,4) 0.2346 0.92 0.2346 0.92 0.2380 0.93
(4,4) 0.2176 0.95 0.2176 0.95 0.2206 0.94
(4,5) 0.2065 0.93 0.2064 0.93 0.2089 0.93
(5,5) 0.1948 0.93 0.1948 0.93 0.1969 0.93

σ1 = 1, σ2 = 2

5

(3,3) 0.3264 0.92 0.3256 0.92 0.3290 0.91
(3,4) 0.3037 0.90 0.3023 0.91 0.3012 0.9
(4,4) 0.2852 0.92 0.2847 0.92 0.2864 0.91
(4,5) 0.2703 0.93 0.2696 0.93 0.2686 0.93
(5,5) 0.2556 0.93 0.2552 0.93 0.2555 0.92

10

(3,3) 0.2338 0.94 0.2335 0.94 0.2317 0.93
(3,4) 0.2190 0.93 0.2185 0.93 0.2162 0.93
(4,4) 0.2034 0.93 0.2033 0.94 0.2011 0.93
(4,5) 0.1928 0.93 0.1926 0.93 0.1894 0.92
(5,5) 0.1823 0.93 0.1821 0.93 0.1799 0.93

σ1 = 2, σ2 = 1

5

(3,3) 0.3260 0.90 0.3250 0.90 0.3288 0.91
(3,4) 0.3055 0.91 0.3053 0.92 0.3079 0.91
(4,4) 0.2848 0.92 0.2843 0.93 0.2845 0.92
(4,5) 0.2710 0.94 0.2708 0.94 0.2713 0.93
(5,5) 0.2563 0.93 0.2558 0.93 0.2560 0.93

10

(3,3) 0.2340 0.93 0.2338 0.94 0.2317 0.93
(3,4) 0.2191 0.94 0.2191 0.94 0.2185 0.93
(4,4) 0.2035 0.94 0.2033 0.93 0.2013 0.94
(4,5) 0.1931 0.93 0.1931 0.94 0.1907 0.93
(5,5) 0.1824 0.95 0.1823 0.94 0.1793 0.94
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Table 1. (Continued)

RSS

ACIML ACIMML BCI − I BCI − II

rx = ry (mx,my) ACL CP ACL CP ACL CP ACL CP

σ1 = 1, σ2 = 1

5

(3,3) 0.2611 0.91 0.2612 0.91 0.2504 0.90 0.2648 0.91
(3,4) 0.2356 0.93 0.2353 0.92 0.2230 0.90 0.2347 0.91
(4,4) 0.2061 0.93 0.2061 0.93 0.1933 0.90 0.2044 0.91
(4,5) 0.1891 0.94 0.1889 0.92 0.1751 0.91 0.1858 0.92
(5,5) 0.1702 0.94 0.1702 0.94 0.1571 0.92 0.1663 0.92

10

(3,3) 0.1867 0.95 0.1866 0.94 0.1828 0.93 0.1879 0.94
(3,4) 0.1678 0.95 0.1675 0.91 0.1637 0.93 0.1675 0.93
(4,4) 0.1466 0.95 0.1465 0.94 0.1423 0.94 0.1460 0.94
(4,5) 0.1343 0.95 0.1342 0.93 0.1297 0.94 0.1333 0.93
(5,5) 0.1208 0.94 0.1207 0.94 0.1163 0.93 0.1197 0.93

σ1 = 1, σ2 = 2

5

(3,3) 0.2338 0.91 0.2380 0.91 0.2300 0.90 0.2416 0.91
(3,4) 0.2090 0.91 0.2081 0.90 0.2014 0.90 0.2114 0.90
(4,4) 0.1838 0.92 0.1862 0.91 0.1770 0.91 0.1877 0.92
(4,5) 0.1682 0.93 0.1675 0.92 0.1604 0.92 0.1684 0.92
(5,5) 0.1521 0.93 0.1535 0.92 0.1462 0.92 0.1538 0.93

10

(3,3) 0.1671 0.92 0.1691 0.92 0.1683 0.92 0.1728 0.93
(3,4) 0.1498 0.92 0.1485 0.90 0.1493 0.92 0.1533 0.92
(4,4) 0.1314 0.94 0.1322 0.92 0.1330 0.94 0.1357 0.94
(4,5) 0.1198 0.94 0.1193 0.92 0.1193 0.93 0.1229 0.93
(5,5) 0.1081 0.94 0.1088 0.93 0.1082 0.93 0.1113 0.94

σ1 = 2, σ2 = 1

5

(3,3) 0.2330 0.92 0.2367 0.92 0.2302 0.90 0.241 0.91
(3,4) 0.2106 0.92 0.217 0.90 0.2064 0.90 0.2165 0.91
(4,4) 0.1842 0.92 0.1861 0.91 0.1775 0.91 0.1877 0.92
(4,5) 0.1689 0.93 0.1725 0.93 0.1623 0.92 0.1717 0.92
(5,5) 0.1522 0.93 0.1536 0.93 0.1457 0.92 0.1534 0.93

10

(3,3) 0.1671 0.93 0.1696 0.91 0.1685 0.92 0.1725 0.93
(3,4) 0.1506 0.93 0.1548 0.90 0.1523 0.93 0.1559 0.93
(4,4) 0.1312 0.93 0.1325 0.92 0.1325 0.93 0.1357 0.93
(4,5) 0.1201 0.93 0.1225 0.92 0.1211 0.94 0.1239 0.94
(5,5) 0.1079 0.94 0.1086 0.93 0.1085 0.93 0.1112 0.93

From Table 1, the ACLs for both ACIs and BCIs based on RSS are shorter than the
corresponding con�dence lengths based on SRS. It clear that the lengths of the con�dence
intervals decrease when the sample sizes (n,m) increase, as expected. In the context of
RSS, when we compare the ACIs of R we realized that the ACLs of ACIML and the
ACLs of ACIMML are more or less the same and they close to each other as the set sizes
increase. On the other hand, the ACLs of BCI-I is shorter than the ACLs of BCI-II.
Also, the BCI-I is provides the shortest ACLs among the others.

In terms of CPs, when σ1 = σ2 = 1, the CPs of ACIML and ACIMML of R based on
RSS are closer to nominal value than their SRS counterparts. However, the CPs of BCI
of R based on SRS is better than the CPs of BCIs of R based on RSS when rx = ry = 5.
As the number of cycles increase, the performances of BCIs are shown similarity for both
SRS and RSS with respect to the CPs.

When σ1 = 1, σ2 = 2 and σ2 = 2, σ1 = 1, the CPs of ACIML based on RSS is better
than the corresponding CPs based on SRS. However, the CPs of ACIMML based on RSS
is lower approximately 1% and 2% than its SRS counterpart overall. In view of BCIs,
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the CPs of BCI-I and BCI-II based on RSS are more or less the same with the CPs of
BCI based on SRS in most of the cases especially when rx = ry = 10.

5. Data Analysis

In this section, we analyze the strength data set to illustrate the implementation of
the interval estimation procedure, proposed in this paper. This data set is about the
strength measured in GPA for single carbon �bers of lengths 20 mm (Data Set I) and
50 mm (Data Set II) with sample sizes 69 and 65, respectively, see Ghitany et al. [10].
Besides the single carbon �bers of lengths 20 mm and 50 mm, the single carbon �bers
of lengths 20 mm and 10 mm are also considered in the context of the estimation of
the system reliability R [6, 15]. However, di�erent than these studies, we consider the
strength data (Data Set I and Data Set II) as population of interest, see Akgul et al. [4].
Then, we select samples randomly from these populations via SRS and RSS. Therefore, by
selecting 21 observations from Data Set I and Data Set II, we obtain the random samples
based on SRS, namely X and Y , respectively. By taking the set sizes mx = my = 3 and
the number of cycles rx = ry = 7, then applying RSS procedure given in Section 2, we
obtain the corresponding samples based on RSS, called as X and Y, respectively.

Akgul and Senoglu [3] obtain the ML and the MML estimates of R based on SRS and
RSS. Now, we construct the 95% ACIs for R. Also, 95% BCIs of R are constructed based
on 5000 bootstrap replications. The results are reported in Table 2.

Table 2. 95% ACIs and BCIs of R for the strength data based on SRS
and RSS.

Sampling
CIs Lower Upper Length

Methods

SRS
ACIML 0.2228 0.5135 0.2906
ACIMML 0.2206 0.5108 0.2902
BCI 0.2362 0.5096 0.2734

RSS

ACIML 0.2734 0.4853 0.2118
ACIMML 0.2701 0.4811 0.2110
BCI − I 0.2767 0.4916 0.2149
BCI − II 0.2693 0.4682 0.1989

It is clear from Table 2 that the lengths of con�dence intervals based on RSS are
shorter than the length of con�dence intervals based on SRS. Also, ACIs of R under the
ML and MML estimates based on SRS and RSS are more or less the same in its own
right. To illustrate this situation, we draw the histograms for the replications of BCI
(based on SRS), BCI-I (based on RSS) and BCI-II (based on RSS) of R under ML and
MML estimates based on 5000 replication in Figure 1.
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Figure 1. Histogram of bootstrap replications of R with normal curves.

Obviously, all histograms match with the normal distribution. Furthermore, the means
and the standard deviations of bootstrap replications of R are calculated and it is seen
that they are in agreement with the ML and the MML estimates of R based on SRS and
RSS given in Akgul and Senoglu [3]. Since, the distribution of the bootstrap replications
of R is normal, we can use the mean for estimate of R [23].

6. Conclusions

In this paper, we consider the interval estimation of R = P (X < Y ) when the stress
X and the strength Y are both independent Weibull random variables with common
shape and di�erent scale parameters based on RSS data. We provide the asymptotic
distributions of the ML estimators which are used to construct ACI of R. By substituting
the ML estimators with the MML estimators, we also derive the ACI of R based on MML
estimators. For the small and the moderate sample sizes we construct the BCI of R. The
ACIs and the BCI of R are compared with their SRS counterparts.

In the context of RSS data, it is observed that the ACI based on ML estimator works
well even for small sample sizes in terms of CP. From the real data example, it is seen that
length of the con�dence intervals based on RSS are smaller than their SRS counterparts.
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