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ABSTRACT. In the present paper, we introduce the Bézier variant of the Srivastava-Gupta operators, which preserve
constant as well as linear functions. Our study focuses on a direct approximation theorem in terms of the Ditzian-Totik
modulus of smoothness, respectively the rate of convergence for differentiable functions whose derivatives are of
bounded variation.
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1. INTRODUCTION

Srivastava-Gupta [19] presented the following summation-integral type operators defined
as follows:

Gn,c(f ;x) = n

∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1f(t)dt+ pn,0(x, c)f(0),(1.1)

where

pn,k(x, c) =
(−x)k

k!
φ(k)n,c(x),

with the following special cases:

(1) If c = 0 and φn,c(x) = e−nx, then we get pn,k(x, 0) = e−nx
(nx)k

k!
,

(2) c = N and φn,c(x) = (1 + cx)−n/c, then we obtain pn,k(x, 0) =
(n/c)k
k!

(cx)k

(1 + cx)
n
c +k

,

(3) If c = −1 and φn,c(x) = (1− x)n, then pn,k(x,−1) =
(
n
k

)
xk(1− x)n−k.

Gupta [12] introduced the general class of Durrmeyer type operators and studied some di-
rect results. In [16], the authors considered the Bézier variant of the operators (1.1) and es-
tablished the estimate of the rate of convergence of these operators for functions of bounded
variation. Kajla and Acar [17] constructed mixed hybrid operators and established quantita-
tive Voronovskaja type theorems, local approximation theorems and weighted approximation
properties for these operators. Verma and Agrawal [23] presented the generalized form of the
operators (1.1) and obtained some approximation properties for these operators. Acar et al. [3]
proposed Stancu type generalization of the operators (1.1) and studied the rate of convergence
for functions having derivatives of bounded variation and also discussed the simultaneous ap-
proximation for these operators. Recently, Neer et al. [18] introduced the Bézier variant of the
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operators which is proposed by Yadav [22] and obtained several approximation properties.

Gupta [11] introduced a modification of the operators (1.1) as

Un,c(f ;x) = (n+ 2c)

∞∑
k=1

pn+c,k(x, c)

∫ ∞
0

pn+3c,k−1(t, c)f(t)dt

+ pn+c,0(x, c)f(0).(1.2)

It is important to note here that these operators preserve constant as well as linear functions.
The rth(r ∈ N) order moments are given by

Un,c(er, x) =


xΓ ((n/c)− r + 2) Γ(r + 1)

Γ ((n/c) + 1) cr−1
2F1

(
n
c + 2, 1− r; 2;−cx

)
, for c = N ∪ {−1},

(nx)r!

nr
1F1 (1− r; 2;−nx) , for c = 0.

Srivastava and Gupta [20] got the rate of convergence for the Bézier variant of the Bleimann
Butzer and Hahn operators for functions with bounded variation. In 2007, Guo et al. [15] stud-
ied Baskakov-Bézier operators and established direct, inverse and equivalence approximation
theorems with the help of Ditzian-Totik modulus of smoothness. Very recently, Agrawal et
al. [5] introduced mixed hybrid operators for which they got direct results and the rate of con-
vergence for differentiable functions whose derivatives are of bounded variation. Many other
interesting Bézier type operators were studied by several researchers, cf. [1,2,4,6,7,9,10,13,14,
21, 24, 25].

For θ ≥ 1, we present the Bézier variant of the operators Un,cf defined by

U (θ)
n,c(f ;x) = (n+ 2c)

∞∑
k=1

Q
(θ)
n,k(x, c)

∫ ∞
0

pn+3c,k−1(t, c)f(t)dt

+Q
(θ)
n,0(x, c)f(0),(1.3)

where Q(θ)
n,k(x, c) = (Jn,k(x, c))

θ − (Jn,k+1(x, c))
θ, with Jn,k(x, c) =

∞∑
j=k

pn+c,j(x, c). For θ = 1,

the operators U (θ)
n,cf reduce to the operators Un,cf .

Alternatively we may rewrite the operators (1.3) as

U (θ)
n,c(f ;x) =

∞∫
0

Pn,θ,c(x, t)f(t)dt, x ∈ [0,∞),(1.4)

where

Pn,θ,c(x, t) = (n+ 2c)

∞∑
k=1

Q
(θ)
n,k(x, c)pn+3c,k−1(t, c) +Q

(θ)
n,0(x, c)δ(t),

δ(t) being the Dirac-delta function.

The aim of this paper is to introduce the Bézier variant (1.3) of the Srivastava-Gupta oper-
ators, which preserve linear functions. Our further study focuses on a direct approximation
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theorem in terms of the Ditzian-Totik modulus of smoothness, respectively the rate of con-
vergence for differential functions whose derivatives are of bounded variation on every finite
subinterval of (0,∞), for the presented operators (1.3).

2. AUXILIARY RESULTS

Throughout this paper,C denotes a positive constant independent of n and x, not necessarily
the same at each occurrence. For these new operators (1.3) we establish some auxiliary results.
The monomials ek(x) = xk, for k ∈ N0 called test functions play an important role in uniform
approximation by linear positive operators.

Lemma 2.1. For any n ∈ N, the images of test functions by Gupta operators (1.2) are given by

Un,c(e0;x) = 1, Un,c(e1;x) = x, Un,c(e2;x) = x2 +
2x(1 + cx)

n
.

Consequently,

Un,c
(
(t− x)2;x

)
=

2x(1 + cx)

n
.(2.5)

Lemma 2.2. Let f be a real-valued function continuous and bounded on [0,∞), with ‖f‖ = sup
x∈[0,+∞)

|f(x)|,

then |Un,c(f)| ≤ ‖f‖.

Lemma 2.3. Let f be a real-valued function continuous and bounded on [0,∞) and θ ≥ 1, then
|U (θ)
n,c(f)| ≤ θ‖f‖.

Proof. Applying the well known property |aα − bα| ≤ α|a− b|, with 0 ≤ a, b ≤ 1, α ≥ 1 and the
definition of Q(θ)

n,k(x, c), we have

0 < (Jn,k(x, c))
θ − (Jn,k+1(x, c))

θ ≤ θ(Jn,k(x, c)− Jn,k+1(x, c)) = θpn+c,k(x).(2.6)

Hence, from the definition of U (θ)
n,c(f) operators and Lemma 2.2, we get

|U (θ)
n,c(f)| ≤ θ|Un,c(f)| ≤ θ‖f‖.

�

Remark 2.1. We have

U (θ)
n,c(f ;x)(e0;x) =

∞∑
k=0

Q
(θ)
n,k(x, c) = [Jn,0(x, c)]

θ

=

 ∞∑
j=0

pn+c,j(x)

θ = 1.

In order to present our further results, we recall from [8] the definitions of the Ditizian-Totik
modulus of smoothness. Let ϕ(x) =

√
x(1 + cx), then

ωϕ(f, t) = sup
0<h≤t

sup
x±hϕ(x)/2≥0

{ ∣∣∣∣f(x+
hϕ(x)

2

)
− f

(
x− hϕ(x)

2

)∣∣∣∣ },
and the appropriate Peetre’s K-functional is defined by

Kϕ(f, t) = inf
g∈Vϕ

{‖f − g‖+ t‖ϕg′‖}, t > 0,
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where Vϕ = {g ∈ C[0,+∞) | g ∈ ACloc[0,+∞), ‖ϕg′‖ < ∞}. According to Th. 3.1.2, [8], it is
well known that Kϕ(f, t) ∼ ωϕ(f, t), which means that there exists a constant M > 0, such that

M−1ωϕ(f, t) ≤ Kϕ(f, t) ≤Mωϕ(f, t).(2.7)

3. DIRECT THEOREM

Now we are able to prove the following direct approximation theorem in terms of Ditzian-
Totik modulus of smoothness.

Theorem 3.1. Let f ∈ CB [0,∞) and θ ≥ 1, then for any x ∈ [0,∞), we have∣∣∣U (θ)
n,c(f ;x)− f(x)

∣∣∣ ≤ Cωϕ(f, ϕ(x)√
n

)
,(3.8)

where C is an absolute constant.

Proof. By the definition of Kϕ(f, t) and the relation (2.7), for fixed n, x, we can choose g =
gn,x ∈ Vϕ such that

||f − g||+ 1√
n
||ϕg′||+ 1

n
||g′|| ≤ ωϕ

(
f,

1√
n

)
.(3.9)

Using Remark 2.1, we can write

| U (θ)
n,c(f)− f | ≤ | U (θ)

n,c(f − g;x) | +|f − g|+ | U (θ)
n,c(g;x)− g(x) |

≤ C||f − g||+ | U (θ)
n,c(g;x)− g(x) | .(3.10)

We only need to estimate the second term in the above relation. We will have to split the
estimate into two domains, i.e. x ∈ F cn = [0, 1/n] and x ∈ Fn = (1/n,∞).

Using the representation g(t) = g(x) +
∫ t
x
g′(u)du, we get∣∣∣U (θ)

n,c(g;x)− g(x)
∣∣∣ =

∣∣∣∣U (θ)
n,c

(∫ t

x

g′(u)du;x

)∣∣∣∣ .(3.11)

If x ∈ Fn = (1/n,∞), then U (θ)
n,c

(
(t− x)2;x

)
∼ 2θ

n ϕ
2(x). We have∣∣∣∣ ∫ t

x

g′(u)du

∣∣∣∣ ≤ ||ϕg′||∣∣∣∣ ∫ t

x

1

ϕ(u)
du

∣∣∣∣.(3.12)

For any x, t ∈ (0,∞), we find that∣∣∣∣ ∫ t

x

1

ϕ(u)
du

∣∣∣∣ =

∣∣∣∣ ∫ t

x

1√
u(1 + cu)

du

∣∣∣∣
≤

∣∣∣∣ ∫ t

x

(
1√
u

+
1√

(1 + cu)

)
du

∣∣∣∣
≤ 2

(√
t−
√
x+

√
(1 + ct)−

√
(1 + cx)

c

)
= 2|t− x|

(
1√

t+
√
x

+
1√

(1 + ct) +
√

(1 + cx)

)
< 2|t− x|

(
1√
x

+
1√

(1 + cx)

)
≤ 2(c+ 1)√

c(c− 1)

|t− x|
ϕ(x)

.(3.13)
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Combining (3.11)-(3.13) and using Cauchy-Schwarz inequality, we obtain

|U (θ)
n,c(g;x)− g(x)| <

2(c+ 1)√
c(c− 1)

||ϕg′||ϕ−1(x)U (θ)
n,c(|t− x|;x)

≤ 2(c+ 1)√
c(c− 1)

||ϕg′||ϕ−1(x)

(
U (θ)
n,c((t− x)2;x)

)1/2

≤ 2(c+ 1)√
c(c− 1)

||ϕg′||ϕ−1(x)

(
θ Un,c((t− x)2;x)

)1/2

.

Now applying the relation (2.5), we get

|U (θ)
n,c(g;x)− g(x)| < C

||ϕg′||√
n
.(3.14)

For x ∈ F cn = [0, 1/n], U
(θ)
n,c

(
(t− x)2;x

)
∼ 2θ

n2 and∣∣∣∣ ∫ t

x

g′(u)du

∣∣∣∣ ≤ ||g′|| |t− x|.
Therefore, using Cauchy-Schwarz inequality we have

|U (θ)
n,c(g;x)− g(x)| ≤ ||g′||U (θ)

n,c(|t− x|;x) ≤ C||g′||
√

2θ√
n
<
C

n
||g′||.(3.15)

From (3.14) and (3.15), we have

|U (θ)
n,c(g;x)− g(x)| < C

(
||ϕg′||√

n
+

1

n
||g′||

)
.(3.16)

Using Kϕ(f, t) ∼ ωϕ(f, t) and (3.9), (3.10), (3.16), we get the desired relation (3.8). This com-
pletes the proof of the theorem.

�

4. RATE OF CONVERGENCE

Let f ∈ DBVγ(0,∞), γ ≥ 0, be the class of differentiable functions defined on (0,∞), whose
derivatives f ′ are of bounded variation on every finite subinterval of (0,∞) and |f(t)| ≤ Mtγ ,
for all t > 0 and some M > 0. The functions f ∈ DBVγ(0,∞), could be represented as

f(x) =

∫ x

0

g(t)dt+ f(0),

where g is a function of bounded variation on each finite subinterval of (0,∞).

Lemma 4.4. Let x ∈ (0,∞), then for θ ≥ 1 and sufficiently large n, we have

i) ζn,θ,c(x, y) =

∫ y

0

Pn,θ,c(x, t)dt ≤
θρ

n

ϕ2(x)

(x− y)2
, 0 ≤ y < x,

ii) 1− ζn,θ,c(x, z) =

∫ ∞
z

Pn,θ,c(x, t)dt ≤
θρ

n

ϕ2(x)

(z − x)2
, x < z <∞,

where ρ ≥ 2.

Proof.
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i) Using Lemma 2.3 and (2.5), we get

ζn,θ,c(x, y) =

y∫
0

Pn,θ,c(x, t)dt ≤
y∫

0

(
x− t
x− y

)2

Pn,θ,c(x, t)dt

≤ U (θ)
n,c((t− x)2;x) (x− y)−2 ≤ θUn,c((t− x)2;x)(x− y)−2

≤ θρ

n

ϕ2(x)

(x− y)2
, 0 ≤ y < x.

ii) The second relation can be proved analogously. �

Theorem 4.2. Let f ∈ DBVγ(0,∞), θ ≥ 1 and
∨b
a(f ′x) be the total variation of f ′x on [a, b] ⊂ (0,∞).

Then, for every x ∈ (0,∞) and sufficiently large n, we have∣∣∣U (θ)
n,c(f ;x)− f(x)

∣∣∣ ≤ √
θ

θ + 1

∣∣∣∣f ′(x+) + θf ′(x−)

∣∣∣∣√ ρ

n
ϕ(x) +

√
ρ

n
ϕ(x)

θ3/2

θ + 1

∣∣∣∣f ′(x+)− f ′(x−)

∣∣∣∣
+
θρ(1 + cx)

n

[
√
n ]∑

k=1

x∨
x−x/k

(f
′

x) +
x√
n

x∨
x−x/

√
n

(f
′

x)

+
θρ(1 + cx)

n

[
√
n ]∑

k=1

x+x/k∨
x

(f
′

x) +
x√
n

x+x/
√
n∨

x

(f
′

x),

where ρ ≥ 2 and the auxiliary function f ′x is defined by

f
′

x(t) =

 f
′
(t)− f ′

(x−), 0 ≤ t < x
0, t = x

f
′
(t)− f ′

(x+), x < t ≤ 1.

Proof. Since
∫ ∞
0

Pn,θ,c(x, t)dt = U (θ)
n,c(e0;x) = 1, we can write

U (θ)
n,c(f ;x)− f(x) =

∫ ∞
0

(f(t)− f(x))Pn,θ,c(x, t)dt

=

∫ ∞
0

(∫ t

x

f
′
(u)du

)
Pn,θ,c(x, t)dt.(4.17)

Using definition of the function f ′x, for any f ∈ DBVγ(0,∞), it follows

f ′(t) =
1

θ + 1

(
f ′(x+) + θf ′(x−)

)
+ f ′x(t) +

1

2

(
f ′(x+)− f ′(x−)

)(
sgn(t− x) +

θ − 1

θ + 1

)
+ δx(t)

(
f ′(x)− 1

2

(
f ′(x+) + f ′(x−)

))
,(4.18)

where

δx(t) =

{
1 , x = t
0 , x 6= t.

It is clear that ∫ ∞
0

Pn,θ,c(x, t)

t∫
x

(
f ′(x)− 1

2

(
f ′(x+) + f ′(x−)

))
δx(u)dudt = 0.
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Using the definition of operators (1.4), then simple computations lead us to

E1 =

∫ ∞
0

(∫ t

x

1

θ + 1

(
f ′(x+) + θf ′(x−)

)
du

)
Pn,θ,c(x, t)dt

=
1

θ + 1

∣∣∣∣f ′(x+) + θf ′(x−)

∣∣∣∣ ∫ ∞
0

|t− x|Pn,θ,c(x, t)dt

≤ 1

θ + 1

(
f ′(x+) + θf ′(x−)

)(
U (θ)
n,c((e1 − x)2;x)

)1/2
≤
√
θ

θ + 1

∣∣∣∣f ′(x+) + θf ′(x−)

∣∣∣∣√ ρ

n
ϕ(x)

(4.19)

and

E2 =

∫ ∞
0

(∫ t

x

1

2

(
f ′(x+)− f ′(x−)

)(
sgn(u− x) +

θ − 1

θ + 1

)
du

)
Pn,θ,c(x, t)dt

≤ θ

θ + 1

∣∣∣∣f ′(x+)− f ′(x−)

∣∣∣∣ ∫ ∞
0

|t− x|Pn,θ,c(x, t)dt =
θ

θ + 1

∣∣∣∣f ′(x+)− f ′(x−)

∣∣∣∣U (θ)
n,c (|t− x| ;x)

≤ θ

θ + 1

∣∣∣∣f ′(x+)− f ′(x−)

∣∣∣∣ (U (θ)
n,c

(
(e1 − x)2;x

))1/2
≤ θ3/2

θ + 1

∣∣∣∣f ′(x+)− f ′(x−)

∣∣∣∣√ ρ

n
ϕ(x).

(4.20)

Involving the relations (4.17)–(4.20), we obtain the following estimate∣∣∣U (θ)
n,c(f ;x)− f(x)

∣∣∣ ≤ |An,θ,c(f ′x, x) +Bn,θ,c(f
′
x, x)|+

√
θ

θ + 1

∣∣∣∣f ′(x+) + θf ′(x−)

∣∣∣∣√ ρ

n
ϕ(x)

+
θ3/2

θ + 1
|f ′(x+)− f ′(x−)|

√
ρ

n
ϕ(x),(4.21)

where

An,θ,c(f
′
x, x) =

∫ x

0

(∫ t

x

f ′x(u)du

)
Pn,θ,c(x, t)dt

and

Bn,θ,c(f
′
x, x) =

∫ ∞
x

(∫ t

x

f ′x(u)du

)
Pn,θ,c(x, t)dt.

For a complete proof of the theorem, it remains to estimate the termsAn,θ,c(f ′x, x) andBn,θ,c(f ′x, x).
Since

∫ b
a
dtζn,θ,c(x, t) ≤ 1, for all [a, b] ⊆ (0,∞), using integration by parts and applying Lemma

4.4 with y = x− (x/
√
n), it follows

|An,θ,c(f ′x, x)| =
∣∣∣∣∫ x

0

(∫ t

x

f ′x(u)du

)
dtζn,θ,c(x, t)

∣∣∣∣ =

∣∣∣∣∫ x

0

ζn,θ,c(x, t)f
′
x(t)dt

∣∣∣∣
≤
(∫ y

0

+

∫ x

y

)
|f ′x(t)| |ζn,θ,c(x, t)| dt

≤ θρϕ
2(x)

n

∫ y

0

x∨
t

(f ′x)(x− t)−2dt+

∫ x

y

x∨
t

(f ′x)dt

≤ θρϕ
2(x)

n

∫ y

0

x∨
t

(f ′x)(x− t)−2dt+
x√
n

x∨
x−x/

√
n

(f ′x).
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Taking u = x/(x− t) into account, we get

θ
ρϕ2(x)

n

∫ x−x/
√
n

0

(x− t)−2
x∨
t

(f ′x)dt = θ
ρ(1 + cx)

n

∫ √n
1

x∨
x−x/u

(f ′x)du

≤ θρ(1 + cx)

n

[
√
n ]∑

k=1

∫ k+1

k

x∨
x−x/u

(f ′x)du ≤ θρ(1 + cx)

n

[
√
n ]∑

k=1

x∨
x−x/k

(f ′x).

Hence, we reach the following estimation

|An,θ,c(f ′x, x)| ≤ θρ(1 + cx)

n

[
√
n ]∑

k=1

x∨
x−x/k

(f ′x) +
x√
n

x∨
x−x/

√
n

(f ′x).(4.22)

Using again the integration by parts and applying Lemma 4.4 with z = x+ x/
√
n, it follows

|Bn,θ,c(f
′

x, x)| =
∣∣∣∣ ∫ ∞
x

(∫ t

x

f ′x(u)du

)
Pn,θ,c(x, t)dt

∣∣∣∣
=

∣∣∣∣ ∫ z

x

(∫ t

x

f ′x(u)du

)
dt(1− ζn,θ,c(x, t)) +

∫ ∞
z

(∫ t

x

f ′x(u)du

)
dt(1− ζn,θ,c(x, t))

∣∣∣∣
=

∣∣∣∣[(∫ t

x

f ′x(u)du

)
(1− ζn,θ,c(x, t))

]z
x

−
∫ z

x

f ′x(t)(1− ζn,θ,c(x, t))dt

+

∫ ∞
z

(∫ t

x

f ′x(u)du

)
dt(1− ζn,θ,c(x, t))

∣∣∣∣
=

∣∣∣∣ (∫ z

x

f ′x(u)du

)
(1− ζn,θ,c(x, z))−

∫ z

x

f ′x(t)(1− ζn,θ,c(x, t))dt

+

[(∫ t

x

f ′x(u)du

)
(1− ζn,θ,c(x, t))

]∞
z

−
∫ ∞
z

f ′x(t)(1− ζn,θ,c(x, t))dt
∣∣∣∣

=

∣∣∣∣ ∫ z

x

f ′x(t)(1− ζn,θ,c(x, t))dt+

∫ ∞
z

f ′x(t)(1− ζn,θ,c(x, t))dt
∣∣∣∣

< θ
ρϕ2(x)

n

∫ ∞
z

t∨
x

(f ′)x(t− x)−2dt+

∫ z

x

t∨
x

(f ′x)dt

≤ θρϕ
2(x)

n

∫ ∞
x+x/

√
n

t∨
x

(f ′x)(t− x)−2dt+
x√
n

x+x/
√
n∨

x

(f ′x).(4.23)

Taking u = x/(t− x) into account, we get

θ
ρϕ2(x)

n

∫ ∞
x+x/

√
n

t∨
x

(f ′x)(t− x)−2dt = θ
ρϕ2(x)

xn

∫ √n
0

x+x/u∨
x

(f ′x)du

≤ θρ(1 + cx)

n

[
√
n ]∑

k=1

∫ k+1

k

x+x/u∨
x

(f ′x)du ≤ θρ(1 + cx)

n

[
√
n ]∑

k=1

x+x/k∨
x

(f ′x).(4.24)

Using the relations (4.23)-(4.24), we get the following estimation

|Bn,θ,c(f
′

x, x)| ≤ θρ(1 + cx)

n

[
√
n ]∑

k=1

x+x/k∨
x

(f ′x) +
x√
n

x+x/
√
n∨

x

(f ′x).(4.25)
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The relations (4.21), (4.22) and (4.25) lead us to the desired result. �

REFERENCES

[1] U. Abel and V. Gupta, An estimate of the rate of convergence of a Bézier variant of the Baskaokov-Kantorovich operators
for bounded variation functions, Demonstratio Math. 36 (2003), No. 1, 123–136

[2] T. Acar and A. Kajla, Blending type approximation by Bézier-summation-integral type operators, Commun. Fac. Sci.,
Univ. Ank. Ser. A1 Math. Stat. 66 (2018), No. 2, 195–208

[3] T. Acar, L. N. Mishra and V. N. Mishra, Simultaneous approximation for generalized Srivastava-Gupta operators, J.
Funct. Spaces 2015, Article ID 936308, 11 pages.

[4] T. Acar, P. N. Agrawal and T. Neer, Bézier variant of the Bernstein-Durrmeyer type operators, Results. Math., DOI:
10.1007/s00025-016-0639-3.

[5] P. N. Agrawal, S. Araci, M. Bohner and K. Lipi, Approximation degree of Durrmeyer -Bézier type operators, J. Inequal.
Appl. (2018), Doi:10.1186/s13660-018-1622-1

[6] P. N. Agrawal, N. Ispir and A. Kajla, Approximation properties of Bézier-summation-integral type operators based on
Polya-Bernstein functions, Appl. Math. Comput. 259 (2015), 533–539

[7] G. Chang, Generalized Bernstein-Bézier polynomials, J. Comput. Math. 1 (1983), No. 4, 322–327
[8] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer, New York 1987
[9] M. Goyal and P. N. Agrawal, Bézier variant of the Jakimovski-Leviatan-Păltănea operators based on Appell polynomials,
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