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On the Bézier Variant of the Srivastava-Gupta Operators
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ABSTRACT. Inthe present paper, we introduce the Bézier variant of the Srivastava-Gupta operators, which preserve
constant as well as linear functions. Our study focuses on a direct approximation theorem in terms of the Ditzian-Totik
modulus of smoothness, respectively the rate of convergence for differentiable functions whose derivatives are of
bounded variation.
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1. INTRODUCTION

Srivastava-Gupta [19] presented the following summation-integral type operators defined
as follows:

(11) Gn,c(f§ l’) =n an,k('ra C) /0 pn—i-c,k—lf(t)dt + Pno (1‘, C)f(O),
k=1
where
Ry
puilen0) = o),

with the following special cases:
(na)"*
SR .
/e . (/o (cx)

(2) ¢ =Nand ¢, .(z) = (1 + cx)~"/¢, then we obtain p,, x(,0) = H Ot a)s

() Ifc=—1and ¢, c(x) = (1 — )", then py, x(z, —1) = (})zF (1 — )"~
Gupta [12] introduced the general class of Durrmeyer type operators and studied some di-
rect results. In [16], the authors considered the Bézier variant of the operators (1.1) and es-
tablished the estimate of the rate of convergence of these operators for functions of bounded
variation. Kajla and Acar [17] constructed mixed hybrid operators and established quantita-
tive Voronovskaja type theorems, local approximation theorems and weighted approximation
properties for these operators. Verma and Agrawal [23] presented the generalized form of the
operators (1.1) and obtained some approximation properties for these operators. Acar et al. [3]
proposed Stancu type generalization of the operators (1.1) and studied the rate of convergence
for functions having derivatives of bounded variation and also discussed the simultaneous ap-
proximation for these operators. Recently, Neer et al. [18] introduced the Bézier variant of the

(1) If c =0and ¢, c(x) = e~ ™%, then we get p, ,(x,0) = e~ ™*
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operators which is proposed by Yadav [22] and obtained several approximation properties.

Gupta [11] introduced a modification of the operators (1.1) as

Un,c(.f; CE) = (n + 20) an-‘rC,k(I) C) A pn+3c,k—1(t7 C)f(t)dt

k=1
(12) + pn—‘rc,O (I’, C)f(())

It is important to note here that these operators preserve constant as well as linear functions.
The r**(r € N) order moments are given by
I'((n/c) —r+2)T(r+1)

I'((n/e)+1)cr—1

(nx)r!

n?”

oFy (2 42,1-r2—cx), forc=NU{-1},

Un,c(erv QIT) =

1F1 (1 =752, —na), for ¢ = 0.

Srivastava and Gupta [20] got the rate of convergence for the Bézier variant of the Bleimann
Butzer and Hahn operators for functions with bounded variation. In 2007, Guo et al. [15] stud-
ied Baskakov-Bézier operators and established direct, inverse and equivalence approximation
theorems with the help of Ditzian-Totik modulus of smoothness. Very recently, Agrawal et
al. [5] introduced mixed hybrid operators for which they got direct results and the rate of con-
vergence for differentiable functions whose derivatives are of bounded variation. Many other
interesting Bézier type operators were studied by several researchers, cf. [1,2,4,6,7,9,10,13,14,
21,24,25].

For 6 > 1, we present the Bézier variant of the operators U, . f defined by
U0 = 04203 Q000 [ prsesatte o
k=1 0
(1.3) +Quo(,e)(0),

(oo}
where Q) (z,¢) = (Jux(2,0)" = (Jurs1(x,0)’, with Jo 1 (2,¢) = Y purej(@,c). For 0 = 1,
=k

the operators Uffc) f reduce to the operators U,, . f.
Alternatively we may rewrite the operators (1.3) as

(1.4) Ul (f /Pngc (z,t)f(t)dt, x€[0,00),
where
Ppoc(z,t) = (n+2c) Z (@, &)Pn+3e,k—1(t, c)—|—Q ( c)o(t),
k=1

0(t) being the Dirac-delta function.

The aim of this paper is to introduce the Bézier variant (1.3) of the Srivastava-Gupta oper-
ators, which preserve linear functions. Our further study focuses on a direct approximation
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theorem in terms of the Ditzian-Totik modulus of smoothness, respectively the rate of con-
vergence for differential functions whose derivatives are of bounded variation on every finite
subinterval of (0, o), for the presented operators (1.3).

2. AUXILIARY RESULTS

Throughout this paper, C' denotes a positive constant independent of n and x, not necessarily
the same at each occurrence. For these new operators (1.3) we establish some auxiliary results.
The monomials ey (z) = z*, for k € Ny called test functions play an important role in uniform
approximation by linear positive operators.

Lemma 2.1. For any n € N, the images of test functions by Gupta operators (1.2) are given by

2x(1
Un,c(emx) = 13 Un,c(el;x) =, Un,c(e2;x) = x2 + M

n
Consequently,
o2y 2z(l+ )
(2.5) Un,e ((t —2)%2) = —
Lemma 2.2. Let f be a real-valued function continuous and bounded on [0, 00), with || f|| = sup |f(x)],

z€[0,4+00)

then |Un.o(f)| < Il

Lemma 2.3. Let f be a real-valued function continuous and bounded on [0,00) and 6 > 1, then
TR < Ol

Proof. Applying the well known property |a* — b*| < a|a — b|, with 0 < a,b <1, @ > 1 and the

definition of fo L (z,c), we have

(26) 0< (Jn,k'(-rac))g - (Jn,k'+1(xac))9 < G(Jn,k(x7 C) - Jn,k+1(xv C)) = Gpn—&-c,k(m)-
Hence, from the definition of U\’ (f) operators and Lemma 2.2, we get

U (F)] < 0|Unc(F)] <O f]-

Remark 2.1. We have

o0

UL (fia)(eosz) = > QY\(z,¢) = [Jnolz,0))
k=0
0

oo
anJrC}j (CL’) =1L
=0

In order to present our further results, we recall from [8] the definitions of the Ditizian-Totik
modulus of smoothness. Let ¢(x) = \/z(1 + cx), then

we(fit) = sup -~ sup {‘f(a:+w)f(xwm)‘},
0<h<t zthe(z)/2>0 2 9

and the appropriate Peetre’s K-functional is defined by
Ko(f.t)= nf {|If — gl +tleg'I}, t>0,
geVy,
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where V,, = {g € C[0,+00)|g € ACisc[0,+0),[l¢g'|| < oo}. According to Th. 3.1.2, [8], it is
well known that FW (f,t) ~ w,(f,t), which means that there exists a constant M > 0, such that

2.7) M~ w,(f,t) < Kp(fit) < Mwy(f,1).
3. DIRECT THEOREM

Now we are able to prove the following direct approximation theorem in terms of Ditzian-
Totik modulus of smoothness.

Theorem 3.1. Let f € Cg[0,00) and § > 1, then for any = € [0, 00), we have

68) Us) - )| < 0 (1,22,

where C is an absolute constant.
Proof. By the definition of K, (f,t) and the relation (2.7), for fixed n,z, we can choose g =
9n,z € Vi, such that

(39) |u—m+¢|mu+mn<%(ﬁ¢).
Using Remark 2.1, we can write

(UL )~ < U —gix) | +|f — g+ | UP(gi2) — g(z) |
(3.10) < Clf —gll+ 11U (g;2) — g() | -

We only need to estimate the second term in the above relation. We will have to split the
estimate into two domains, i.e. = e Fc = [0, 1/n] and z € F,, = (1/n,00).
Using the representation g(t) = g(x) + f g’ (u)du, we get

t
nf)c)(g;r)*g(w) Ué?g(/ 9'(U)dU;x>‘-
Ifz € F, = (1/n,00), then U ((t — 2)2%;2) ~ 2202(x). We have

t t 1
/g’(u)du < du’

« P(u)
For any z,t € (0, 00), we find that

ek

(3.11)

(3.12)

——du
z Vu(l+ cu)

(et i)
2<\/£_\/§;+ \/(1+ct)—\/(1+0$)>

c

IN

= 2|t—x|< ! + ! )
Vi+vz /(T +ct)+ /(1 +cx)
ST (E R
Ve o /(1 +cx)

2(c+1) |t —z
c(c—1) ¢(x) .

A

(3.13)
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Combining (3.11)-(3.13) and using Cauchy-Schwarz inequality, we obtain
2(c+1)
clc—1)
2(c+1)
Vele—1)
2(c+1)
Vele—1)

Now applying the relation (2.5), we get

U (g3 2) = g(a) leg' ke~ @ULL(t - of: 2)
1/2
leg/ o~ () (U&((t—z)%z))

gl o) (o Un,c«t—x)z;x))m.

@) (. ) _ |log'l|
(3.14) |Un.c(g;2) g(:v)|<07\/ﬁ~

Forz € Fj = [0,1/n], Uf2 ((t - )% 2) ~ 2 and

/: g (u)du

Therefore, using Cauchy-Schwarz inequality we have

<lg'll [t = =.

V20 C
X 0) (g _ < / () — 7l < A
(3.15) Une(giz) — g(x)| < [lg'[[UR2([E — ] 2) Cllgll\/ﬁ —llg'll
From (3.14) and (3.15), we have
lleg'll /
(3.16) A gz <0(+ J).
[Un.e(g; %) — g(z)] n llg"ll

Using K, (f,t) ~ wy(f,t) and (3.9), (3.10), (3.16), we get the desired relation (3.8). This com-
pletes the proof of the theorem.
O

4. RATE OF CONVERGENCE

Let f € DBV,(0,00), v > 0, be the class of differentiable functions defined on (0, cc), whose
derivatives f’ are of bounded variation on every finite subinterval of (0,00) and |f(¢)] < M¢?,
for all t > 0 and some M > 0. The functions f € DBV, (0, c0), could be represented as

f(z) = /OI g(t)dt + £(0),

where ¢ is a function of bounded variation on each finite subinterval of (0, ).

Lemma 4.4. Let x € ( ), then for 8 > 1 and sufficiently large n, we have
0
)Cn@cxy /Pnecxtdt<7p(p()27 0<y<uwm,
n (z—y)
0
) Cn@cxz / Pnecxtdt<np(j(z))2, r <z <o00,
where p > 2.

Proof.
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i) Using Lemma 2.3 and (2.5), we get

Yy Y 2
Cn797c($7 y) = /Pn,G,c(-Ty t>dt S / (x — t) Pn79,c(x7 t)dt
0 0

r—=Yy

<SULN(t = 2)%2) (x —y) 7% < 0Uno((t — 2)%2) (2 — y)

_Op ¢*(@)
< )
S RCEE, Vsyse
i1) The second relation can be proved analogously. O

Theorem 4.2. Let f € DBV, (0,00), 0 > 1 and \/ (f1) be the total variation of f, on [a,b] C (0, 00).
Then, for every « € (0, 00) and sufficiently large n, we have

UENf:) — )| < S| ) + 0o \\f /2 el | ) - 1)
[f l = P
9 (1
L SEAVATARIS AR VAT

k=1 z—z/k z—x/\/n

[\f lz4z/k " 4z /1

e S
where p > 2 and the auxiliary function f; is defined by

@)= f (=), 0<t<u
fo(t) = 0, t=2
F)=f(z+), z<t<l
Proof. Since /oo Pz, t)dt = Un?c(eo; x) = 1, we can write
0
VSN~ 1@) = [0 = @) P et
oo t
417 = "(w)du | Py g o(z, t)dt.
417) [ ([ 7 ) Paacte.tar
Using definition of the function f7, for any f € DBV,,(0, o), it follows
0 —
710 = g (a0 4076 )+ 20+ 5 (£ - /o)) (ssnte -0 + 577 )

@19) 0.0 @ - (£ +e0)),

where
1, x=t
(51.(75)—{ 0, xz#t.
It is clear that
t

/OOO Fro.cl@:t) / (f'(f@ - ;<f’(w+) + f’(l')>)5z(u)dudt = 0.

x
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Using the definition of operators (1.4), then simple computations lead us to

E, = /OOO (/: Hi1<f'(x+) +(‘)f’(m—))du)Pn,a,c(x,t)dt

"x+)+0f (z ‘/ [t — |Ppg.c(x,t)dt

1
0+1
(4.19)

1/2

T 0+1

< g1 (Fen +oren) (U - o)

'(2+) + 0f (x ‘\/7
and
B = /0 - ( / t % ( ) — f’(x—)) (sgn(u _o)+ z;)a@ P, t)dt

= 0+1 -/ m_)‘ /0 [t — x| P c(z,t)dt = 911 fla+) = f'(z—) Uffg (|t — z|; )
(4.20)
1/2 93/2
< e = 1) (U2 e = o2i0) ™ < T | - o]y 2ot

Involving the relations (4.17)-(4.20), we obtain the following estimate
0
OS5 2) = F@)] < Vol o) + Bl font)| + 5o | Fo4) + 605/ ’\f

aa) et — e 2 o)
where

Apo.c(f / </ fr(u du) Prg.c(z,t)dt

Bu.o.c(f / (/ fr(u du> Pog.c(z,t)dt.

Fora complete proof of the theorem, it remains to estimate the terms A,, ¢ (f2, z) and B,, g .(f, x).

and

Since fa diCn.0.c(z,t) < 1,forall [a, b] C (0, 00), using integration by parts and applying Lemma
44 withy =z — (z/y/n), it follows
/ (:n 0,c .73 t )dt‘

(/f du>dtCnecxt‘
(/ /) £)] 10, (x, )] dt

‘Anﬂ,c(fglm )

<4 2dt+/ \/fm

t
<46 y )z —t) 24t 4+ \7 (f1).
= v \/ﬁ xT

—
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Taking u = z/(x — t) into account, we get

z—z/u
Vrn ]l ky1 @ Vn] =z
p(1+cx p(1+cx
e )l VTRV ikl S VAT
k=1 “F z—x/u k=1 z—z/k
Hence, we reach the following estimation
+cx [Vvn ]l = " x
(422) [An o frr2)] < Z V i+ 7= V0
k=1 z—a/k t—a/yn

Using again the integration by parts and applying Lemma 4.4 with z = z 4+ x//n, it follows

Buactfonl=| [ ([ rwan) Bt
| [ ([ ) ai = ooty + [ (/tfg/c(u)d’u)dt(lCn,e,c(%t))
([ )0 -Guote.n] - [ 200 Guatpa
[T i) it~ Gt
[ o) (1= a2 = [ 200 Guaele )i
(w

(/
(f

2 8

+ 1 du) (1= Cno,c(z,t) ] / @)1 = g e, t))dt‘
_ /f (1= Cogol,t) dt+/ £ Cngcxt))dt‘
<or2ld [ V-t [V
pe*( 2 € Al
4.23 <fgT—= )t —x)2dt + — ).
(423) /ﬁwm o= V)

Taking v = z/(t — x) into account, we get

pp*(x) [ , 2 P ( f”m/u
o0 /m/fyw el MY

(1+ cx) k1ot p(1+ cx)
(4.24) <t er) / \/ (fh)du < Z \ ()

Using the relations (4.23)- (4.24), we get the following estimation

/ o1 + cx) Vn lata/k ata/v/m
(4.25) Bpg,e(for )] < Z \/ f \V (.
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The relations (4.21), (4.22) and (4.25) lead us to the desired result. |
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