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Kamenev-type oscillation criteria for second order
matrix di�erential systems with damping
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Abstract

By using the positive linear functional, including the generalized aver-
aging technique, some new Kamenev-type oscillation criteria are estab-
lished for the second order matrix di�erential system

(r(t)P (t)ψ(X(t))K(X ′(t)))′ + p(t)R(t)ψ(X(t))K(X ′(t))

+Q(t)F (X ′(t))G(X(t)) = 0.

The results improve and generalize those given in some previous papers.
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1. Introduction

Consider the second order matrix di�erential system of the form

(1.1) (r(t)P (t)ψ(X(t))K(X ′(t)))′ + p(t)R(t)ψ(X(t))K(X ′(t))

+Q(t)F (X ′(t))G(X(t)) = 0, t ≥ t0,

where t0 ≥ 0 and r, p, P , ψ, K, R, Q and G satisfy the following conditions:

(1) r ∈ C1([t0,∞), (0,∞)), p ∈ C([t0,∞), (−∞,∞));
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(2) P (t) = PT (t) > 0, Q(t) ≥ 0, R(t) = RT (t) > 0 for t ≥ t0, P , Q and R are n× n
matrices real valued continuous functions on the interval [t0,∞), and P (t) and
R(t) are commutative. By AT we mean the transpose of the matrix A;

(3) ψ, K, G, F ∈ C1(Rn
2

,Rn
2

), and ψ−1(X(t)), K−1(X ′(t)) and G−1(X(t)) exist
and F (X ′) ≥ 0 for all real matrix X 6= 0.

We now denote by M the linear space of n × n real matrices, In ∈ M the idendity
matrix and S the subspace of all symmetric matrices in M . For any A, B, C ∈ S, we
write A ≥ B to mean that A−B ≥ 0, that is, A−B is positive semi-de�nite, and A > B
to mean that A−B > 0, that is, A−B is positive de�nite. Note that A±B, and A′ are
also symmetric matrices, where ′ denotes the �rst derivative. We will use some properties
of this ordering, that is, A ≥ B implies that CTAC ≥ CTBC.

We call a matrix function solution X(t) ∈ C2([t0,∞),Rn
2

) of (1.1) is prepared non-
trivial if detX(t) 6= 0 for at least one t ∈ [t0,∞) and X(t) satis�es the equation

(1.2) GT (X(t))P (t)ψ(X(t))K(X ′(t))− (K(X ′(t)))TψT (X(t))P (t)G(X(t)) ≡ 0,

(1.3) GT (X(t))R(t)ψ(X(t))K(X ′(t))− (K(X ′(t)))TψT (X(t))R(t)G(X(t)) ≡ 0

and

(1.4) ψT (X(t))G′(X(t))X ′(t)K−1(X ′(t))

−(KT (X ′(t)))−1(X ′(t))T (G′(X(t)))Tψ(X(t)) ≡ 0, t ≥ t0.

A prepared solution X(t) of (1.1) is called oscillatory if detX(t) has arbitrarily large
zeros; otherwise, it is called nonoscillatory.

For n = 1, oscillatory and nonoscillatory behavior of solutions for various classes of
second-order di�erential equations have been widely discussed in the literature (see, for
example, [1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 25, 23, 26, 27, 28, 33,
35, 36, 41] and references quoted there in).

The oscillatory properties for (1.1) with its special case

(1.5) (X ′(t))′ +Q(t)X(t) = 0, t ≥ t0 > 0,

and

(1.6) (P (t)X ′(t))′ +Q(t)X(t) = 0, t ≥ t0 > 0,

are important in the mechanical systems associated with (1.1). Therefore, such properties
have been studied quite extensively. Some criteria for oscillation of systems (1.5) and
(1.6) have established (see [3, 4, 17, 18, 31, 32, 42, 43])

Oscillation results based on Kamenev-type criterion for Eq.(1.6) can also be found
in earlier papers of Etgen and Pawlowski [5], Erbe et al. [4], Meng et al. [17]. On
the other hand, Wang et al. [32] and Wang [30] also studied for Eq.(1.6). Motivated
by ideas of Philos [19], Kong [12] and Wang [29], Wang [30] used the functions of the
form H(t, s)k(s) instead of H(t, s). By using the generalized Riccati technique and the
averaging technique, he established several new interval criteria for oscillation of system
(1.6). In 2003, Wang et al. [32] obtained new Kamenev-type oscillation criteria by using
the generalized Riccati technique and the averaging technique for Eq.(1.6).

In 2005, Yang and Cheng [38] studied for the linear matrix di�erential system with
damped

(1.7) (P (t)X ′(t))′ + r(t)P (t)X ′(t) +Q(t)X(t) = 0.
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They obtained Kamenev-type oscillation criteria for Eq.(1.7).
In 2006, Sun and Meng [24] using a positive linear functional established some oscil-

lation criteria of Kamenev-type

(1.8) (P (t)X ′(t))′ +R(t)X ′(t) +Q(t)X(t) = 0.

In 2002, Yang [40] extended some results of Li and Agarwal [15] to the nonlinear
matrix di�erential system

(1.9) (r(t)X ′(t))′ + p(t)X ′(t) +Q(t)F (X ′(t))G(X(t)) = 0, t ≥ t0 ≥ 0.

Also, in 2006, motivated by the work of Wong [34], Yancong and Fanwei [37] studied for
(1.9). They obtained some results di�erent from those of Yang [40] for (1.9).

In 2003, Yang and Tang [39] obtained new oscillation criteria for the nonlinear matrix
di�erential system

(1.10) (r(t)P (t)X ′(t))′ + p(t)P (t)X ′(t) +Q(t)F (X ′(t))G(X(t)) = 0, t ≥ t0 ≥ 0.

In this paper, the authors improved the theorems of Yang [40] and generalized the results
of Li and Agarwal [15] and Rogovchenko [20].

Motivated by the idea of Li and Agarwal [15], Yang and Tang [39] and Yang [40],
in this paper we establish the oscillation theorems of Kamenev-type by using the gener-
alized averaging technique and positive linear functionals. Our results make use of the
oscillatory properties of the damping term and some of the them extend and generalized
the main results given in [15, 20, 38, 40].

The rest of paper is arranged as follows. In Section 2, several de�nitions and a lemma
are introduced. Motivated by [15, 39, 40], several Kamenev-type oscillation criteria for
(1.1) are established in Section 3. Finally, in Section 4 several examples that dwell upon
the sharpness of our results are presented.

2. De�nitions and lemma

2.1. De�nition. Denote by M the linear space of n × n real matrices, by In ∈ M the
identity matrix and S the subspace of all symmetric matrices in M . A linear functional
L on M is said to be �positive� if L(A) > 0 for any A ∈ S and A > 0.

2.2. De�nition. Let D = {(t, s) : t ≥ s ≥ t0}, D0 = {(t, s) : t > s > t0}, ρ ∈ C1(D,R)
and k ∈ C1([t0,∞), (0,∞)). We say that a pair of real-valued functions (ρ, k) belongs
to a function class H, if there exist functions h1,h2 ∈ C1(D0,R) satisfying the following
conditions:

(H1) ρ(t, t) = 0 for t ≥ t0; ρ(t, s) > 0 on D0;

(H2) ∂
∂t
(ρ(t, s)k(t)) = h1(t, s)

√
ρ(t, s)k(t), ∀(t, s) ∈ D0;

(H3) ∂
∂s

(ρ(t, s)k(s)) = −h2(t, s)
√
ρ(t, s)k(s), ∀(t, s) ∈ D0.

2.3. Lemma. Let X(t) be a nontrivial prepared solution of (1.1) and detX(t) 6= 0 for
t0 ≥ 0. Then for all a ∈ C1((t0,∞), (0,∞)) the matrix function

(2.1) W (t) = a(t)r(t)P (t)ψ(X(t))K(X ′(t))G−1(X(t))

satis�es the equation

(2.2) W ′(t) =
a′(t)

a(t)
W (t)− p(t)

r(t)
R(t)P−1(t)W (t)− a(t)Q(t)F (X ′(t))

−W (t)G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t))P−1(t)W (t)

a(t)r(t)
.
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Proof. From (1.1), we obtain

W ′(t) = a′(t)r(t)P (t)ψ(X(t))K(X ′(t))G−1(X(t))

+a(t)(r(t)P (t)ψ(X(t))K(X ′(t)))′G−1(X(t))

+a(t)r(t)P (t)ψ(X(t))K(X ′(t))(G−1(X(t)))′

= a′(t)
a(t)

W (t)− a(t)p(t)R(t)ψ(X(t))K(X ′(t))G−1(X(t))− a(t)Q(t)F (X ′(t))

−a(t)r(t)P (t)ψ(X(t))K(X ′(t))G−1(X(t))G′(X(t))X ′(t)G−1(X(t))

= a′(t)
a(t)

W (t)− p(t)
r(t)

R(t)P−1(t)W (t)− a(t)Q(t)F (X ′(t))

−W (t)G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t))P−1(t)W (t)

a(t)r(t)
.

�

3. Main results

In this section, by using the generalized averaging technique, we establish the Kamenev-
type oscillation criterion for the system of (1.1). Before we state our next theorems, we
need two lemmas.

3.1. Lemma. Let X(t) be a prepared solution of (1.1) such that detX(t) 6= 0 on
[c, b) ⊂ [t0,∞). Assume that all conditions stated in Section 1 are satis�ed and sup-
pose also that for any solution X(t) for (1.1),

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) > 0

and P (t) and R(t) are commutative with

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t))

for t ≥ t0. Moreover, for a ∈ C1([t0,∞), (0,∞)) let

W (t) = a(t)r(t)P (t)ψ(X(t))K(X ′(t))G−1(X(t)), t ∈ [c, b).

Then, for any (ρ, k) ∈ H, we get

(3.1)

∫ b

c

ρ(b, s)k(s)Q(s)F (X ′(s))ds ≤ ρ(b, c)k(c)W (c)

+

∫ b

c

1

4a(s)r(s)

(
h2(b, s)a(s)r(s)In

−
√
ρ(b, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds.

Proof. By Lemma 2.3 and (1.2), W (t) is symmetric and satis�es the Riccati equation
(2.2). Also, from (1.3), it can be seen that

R(t)P−1(t)W (t)

is symmetric. Multiplying both sides of (2.2) by ρ(t, s)k(s), integrating it with respect
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to s from c to t for t ∈ [c, b) and using integration by parts and (H1),(H3), we obtain∫ t

c

ρ(t, s)k(s)a(s)Q(s)F (X ′(s))ds = −
∫ t

c

ρ(t, s)k(s)W ′(s)ds

+

∫ t

c

ρ(t, s)k(s)
a′(s)

a(s)
W (s)ds−

∫ t

c

ρ(t, s)k(s)
p(s)

r(s)
R(s)P−1(s)W (s)ds

−
∫ t

c

ρ(t, s)k(s)
W (s)G′(X(s))X ′(s)K−1(X ′(s))ψ−1(X(s))P−1(s)W (s)

a(s)r(s)
ds

(3.2) = ρ(t, c)k(c)W (c)−
∫ t

c

h2(t, s)
√
ρ(t, s)k(s)W (s)ds

+

∫ t

c

ρ(t, s)k(s)
a′(s)

a(s)
W (s)ds−

∫ t

c

ρ(t, s)k(s)
p(s)

r(s)
R(s)P−1(s)W (s)ds

−
∫ t

c

ρ(t, s)k(s)
W (s)G′(X(s))X ′(s)K−1(X ′(s))ψ−1(X(s))P−1(s)W (s)

a(s)r(s)
ds.

Denote

(3.3) Z(t) =W (t)− 1

2

(
a′(t)r(t)In − a(t)p(t)R(t)P−1(t)

)
×P (t)ψ(X(t))K(X ′(t))(X ′(t))−1(G′(X(t)))−1.

Since R(t)P−1(t)W (t) is symmetric, and P (t) and R(t) are commutative with
G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)), then we obtain

ZT (t)G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t))P−1(t)Z(t)

=

(
W (t)− 1

2

[
a′(t)r(t)In − a(t)p(t)R(t)P−1(t)

]
×P (t)ψ(X(t))K(X ′(t))(X ′(t))−1(G′(X(t)))−1

)
×G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t))P−1(t)

×
(
W (t)− 1

2

[
a′(t)r(t)In − a(t)p(t)R(t)P−1(t)

]
×P (t)ψ(X(t))K(X ′(t))(X ′(t))−1(G′(X(t)))−1

)
(3.4) =W (t)G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t))P−1(t)W (t)− a′(t)r(t)W (t)

+a(t)p(t)R(t)P−1(t)W (t) +
1

4

(
a′(t)r(t)In − a(t)p(t)R(t)P−1(t)

)2

×P (t)ψ(X(t)))K(X ′(t))(X ′(t))−1(G′(X(t)))−1.

Then from (3.4), (3.2) can be written as∫ t

c

ρ(t, s)k(s)a(s)Q(s)F (X ′(s))ds = ρ(t, c)k(c)W (c)−
∫ t

c

h2(t, s)
√
ρ(t, s)k(s)Z(s)ds

−
∫ t

c

1

2
h2(t, s)

√
ρ(t, s)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)
×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

+

∫ t

c

ρ(t, s)k(s)
a′(s)

a(s)
W (s)ds−

∫ t

c

ρ(t, s)k(s)
p(s)

r(s)
R(s)P−1(s)W (s)ds
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−
∫ t

c

ρ(t, s)k(s)
Z(s)G′(X(s))X ′(s)K−1(X ′(s))ψ−1(X(s))P−1(s)Z(s)

a(s)r(s)
ds

−
∫ t

c

ρ(t, s)k(s)
a′(s)

a(s)
W (s)ds+

∫ t

c

ρ(t, s)k(s)
p(s)

r(s)
R(s)P−1(s)W (s)ds

+

∫ t

c

ρ(t, s)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)2

4a(s)r(s)

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

(3.5) = ρ(t, c)k(c)W (c)−
∫ t

c

h2(t, s)
√
ρ(t, s)k(s)Z(s)ds

−
∫ t

c

1

2
h2(t, s)

√
ρ(t, s)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)
×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

−
∫ t

c

ρ(t, s)k(s)
Z(s)G′(X(s))X ′(s)K−1(X ′(s))ψ−1(X(s))P−1(s)Z(s)

a(s)r(s)
ds

+

∫ t

c

ρ(t, s)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)2

4a(s)r(s)

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds.

Let

V (s) =
√
ρ(t, s)k(s)(UZU)(s) +

1

2
h2(t, s)In,

where

U(s) =

[
1

a(s)r(s)
G′(X(s))X ′(s)K−1(X ′(s))ψ−1(X(s))P−1(s)

]1/2
.

Then (3.5) can be written as∫ t

c

ρ(t, s)k(s)a(s)Q(s)F (X ′(s))ds = ρ(t, c)k(c)W (c)

−
∫ t

c

h2(t, s)U
−1(s)V (s)U−1(s)ds+

∫ t

c

1

2
h2
2(t, s)(U

−1(s))2ds

−
∫ t

c

1

2
h2(t, s)

√
ρ(t, s)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)
×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

−
∫ t

c

U−1(s)V 2(s)U−1(s)ds+

∫ t

c

h2(t, s)U
−1(s)V (s)U−1(s)ds

−
∫ t

c

1

4
h2
2(t, s)(U

−1(s))2ds

+

∫ t

c

ρ(t, s)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)2

4a(s)r(s)

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

= ρ(t, c)k(c)W (c)−
∫ t

c

U−1(s)V 2(s)U−1(s)ds+

∫ t

c

1

4
h2
2(t, s)(U

−1(s))2ds
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−
∫ t

c

1

2
h2(t, s)

√
ρ(t, s)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)
×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

+

∫ t

c

ρ(t, s)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)2

4a(s)r(s)

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

≤ ρ(t, c)k(c)W (c) +

∫ t

c

1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In

−
√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds.

Letting t→ b− in the above inequality, we obtain (3.1). �

3.2. Lemma. Let X(t) be prepared solution of (1.1) such that detX(t) 6= 0 on (a, c] ⊂
[t0,∞). Assume that all conditions stated in Section 1 are satis�ed and suppose also that
for any solution X(t) for (1.1),

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) > 0

and P (t) and R(t) are commutative with

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t))

for t ≥ t0. Moreover, for a ∈ C1([t0,∞), (0,∞)) let

W (t) = a(t)r(t)P (t)ψ(X(t))K(X ′(t))G−1(X(t)), t ∈ (a, c].

Then, for any (ρ, k) ∈ H, we get

(3.6)

∫ c

a

ρ(s, a)k(s)a(s)Q(s)F (X ′(s))ds ≤ −ρ(c, a)k(c)W (c)

+

∫ c

a

1

4a(s)r(s)

(
h1(s, a)a(s)r(s)In

+
√
ρ(s, a)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds.

Proof. Similar to the proof of Lemma 3.1, multiplying both sides of (2.2) (with t replaced
by s) by ρ(s, t)k(s), integrating it with respect to s from t to c for t ∈ (a, c], using
(H1),(H2) and (3.3), and rearranging the terms, we �nd∫ c

t

ρ(s, t)k(s)a(s)Q(s)F (X ′(s))ds = −ρ(c, t)k(c)W (c)+

∫ c

t

h1(s, t)
√
ρ(s, t)k(s)Z(s)ds

+

∫ c

t

1

2
h1(s, t)

√
ρ(s, t)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)
×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds
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−
∫ c

t

ρ(s, t)k(s)
Z(s)G′(X(s))X ′(s)K−1(X ′(s))ψ−1(X(s))P−1(s)Z(s)

a(s)r(s)
ds

+

∫ c

t

ρ(s, t)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)2

4a(s)r(s)

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds.

Let

V1(s) =
√
ρ(s, t)k(s)(UZU)(s)− 1

2
h1(s, t)In,

where

U(s) =

[
1

a(s)r(s)
G′(X(s))X ′(s)K−1(X ′(s))ψ−1(X(s))P−1(s)

]1/2
.

It follows that∫ c

t

ρ(s, t)k(s)a(s)Q(s)F (X ′(s))ds ≤ −ρ(c, t)k(c)W (c)

−
∫ c

t

U−1(s)V 2
1 (s)U

−1(s)ds+

∫ c

t

1

4
h2
1(s, t)(U

−1(s))2ds

+

∫ c

t

1

2
h1(s, t)

√
ρ(s, t)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)
×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

+

∫ c

t

ρ(s, t)k(s)

(
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

)2

4a(s)r(s)

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

≤ −ρ(c, t)k(c)W (c) +

∫ c

t

1

4a(s)r(s)

(
h1(s, t)a(s)r(s)In

+
√
ρ(s, t)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds.

Letting t→ a in the above inequality, we obtain (3.6). �

Now we state the following theorems of Kamenev-type.

3.3. Theorem. Assume that all conditions stated in Section 1 are satis�ed and suppose
also that for any solution X(t) for (1.1),

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) > 0

for t ≥ t0, and P (t) and R(t) are commutative with

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t))

for t ≥ t0. Let (ρ(t, s), k(s)) ∈ H and ∂(ρ(t, s)k(s))/∂s ≤ 0 be continuous for t ≥ s ≥ t0.
Suppose further that there exist a ∈ C1([t0,∞), (0,∞)) and a positive linear functional L
on M such that

(3.7) lim sup
t→∞

1

ρ(t, t0)
L

[ ∫ t

t0

{
ρ(t, s)k(s)a(s)Q(s)F (X ′(s))
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− 1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In−

√
ρ(t, s)k(s)

[
a′(s)r(s)In−a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1

}
ds

]
=∞.

Then any prepared solution X(t) of (1.1) is oscillatory on [t0,∞).

Proof. Suppose to the contrary that there exists a prepared solution X(t) of the system
(1.1) which is any nontrivial prepared solution of (1.1) in [t1,∞)is not oscillatory. With-
out loss of generality, assume that detX(t) 6= 0, t ≥ t1 ≥ t0. De�ne a matrix function
W (t) on [t1,∞) by (2.1). Then by Lemma 2.3, W (t) satis�es (2.2). On multiplying
(2.2) ( with t replaced by s )by ρ(t, s)k(s), integrating with respect to s from t1 to t
for t ≥ t1 ≥ t0, and following the procedure of the proof of Lemma 3.1, we obtain for
t ≥ t1 ≥ t0∫ t

t1

{
ρ(t, s)k(s)a(s)Q(s)F (X ′(s))

− 1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In −

√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1

}
ds

≤ ρ(t, t1)k(t1)W (t1).

From ∂(ρ(t,s)k(s))
∂s

≤ 0, we have∫ t

t0

{
ρ(t, s)k(s)a(s)Q(s)F (X ′(s))

− 1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In −

√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1

}
ds

=

(∫ t1

t0

+

∫ t

t1

){
ρ(t, s)k(s)a(s)Q(s)F (X ′(s))

− 1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In −

√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1

}
ds

≤ ρ(t, t0)
[ ∫ t1

t0

k(s)a(s)Q(s)F (X ′(s))ds+W (t1)k(t1)

]
,

which implies for t ≥ t0

lim sup
t→∞

1

ρ(t, t0)
L

[ ∫ t

t0

{
ρ(t, s)k(s)a(s)Q(s)F (X ′(s))

− 1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In −

√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1

}
ds

]
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≤ L
[ ∫ t1

t0

k(s)Q(s)F (X ′(s))ds+W (t1)k(t1)

]
<∞,

which contradicts (3.7). So,this completes the proof Theorem 3.3. �

3.4. Corollary. Assume that all conditions stated in Section 1 are satis�ed and suppose
also that for any solution X(t) for (1.1),

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) ≥ A

and

F (X ′(t)) ≥ B, t ∈ [t0,∞),

where A,B ∈ S are constant positive de�nite matrices, and A is commutative with P (t)
and R(t). Let (ρ(t, s), k(s)) ∈ H and ∂(ρ(t, s)k(s))/∂s ≤ 0 be continuous for t ≥ s ≥ t0.
Suppose further that there exist a ∈ C1([t0,∞), (0,∞)) and a positive linear functional L
on S such that

(3.8) lim sup
t→∞

1

ρ(t, t0)
L

[ ∫ t

t0

{
ρ(t, s)k(s)a(s)Q(s)B − 1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In

−
√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

P (s)A−1

}
ds

]
=∞.

Then any prepared solution X(t) of (1.1) is oscillatory.

Under the modi�cation of the hypotheses of Theorem 3.3 and Corollary 3.4, we can
obtain the following results, respectively.

3.5. Theorem. Let the condition (3.7) in Theorem 3.3 be replaced by

lim sup
t→∞

1

ρ(t, t0)
L

[ ∫ t

t0

ρ(t, s)k(s)a(s)Q(s)F (X ′(s))ds

]
=∞,

and

lim sup
t→∞

1

ρ(t, t0)
L

[ ∫ t

t0

1

a(s)r(s)

(
h2(t, s)a(s)r(s)In

−
√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

]
<∞

with the other conditions unchanged. Then any prepared solution X(t) of (1.1) is oscil-
latory on [t0,∞).

3.6. Corollary. Let the condition (3.8) in Corollary 3.4 be replaced by

lim sup
t→∞

1

ρ(t, t0)
L

[ ∫ t

t0

ρ(t, s)k(s)a(s)Q(s)Bds

]
ds =∞
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and

lim sup
t→∞

1

ρ(t, t0)
L

[ ∫ t

t0

1

a(s)r(s)

(
h2(t, s)a(s)r(s)In

−
√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

P (s)A−1ds

]
<∞

with the other conditions unchanged. Then any prepared solution X(t) of (1.1) is oscil-
latory on [t0,∞).

The following theorem is an immediate consequence of Lemma 3.1 and Lemma 3.2.

3.7. Theorem. Assume that all conditions stated in Section 1 are satis�ed and suppose
also that for any solution X(t) for (1.1),

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) > 0,

and P (t) and R(t) are commutative with

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t))

for t ∈ [t0,∞). Assume that for some c ∈ (a, b), (ρ, k) ∈ H, a ∈ C1([t0,∞), (0,∞)), and
for any prepared solution X(t) of (1.1),

1

ρ(c, a)

∫ c

a

ρ(s, a)k(s)a(s)Q(s)F (X ′(s))ds

+
1

ρ(b, c)

∫ b

c

ρ(b, s)k(s)a(s)Q(s)F (X ′(s))ds

>
1

ρ(c, a)

∫ c

a

1

4a(s)r(s)

(
h1(s, a)a(s)r(s)In

+
√
ρ(s, a)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds

+
1

ρ(b, c)

∫ b

c

1

4a(s)r(s)

(
h2(b, s)a(s)r(s)In

−
√
ρ(b, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1ds.

Then for any every prepared solution X(t) of (1.1), detX(t) has at least one zero in (a, b).

Now, we state some corollaries of Theorem 3.7.

3.8. Corollary. Assume that all conditions stated in Section 1 hold and suppose also
that for each τ ≥ t0, there exists (ρ, k) ∈ H, a ∈ C1([t0,∞), (0,∞)),

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) > 0

and P (t) and R(t) are commutative with

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)),
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such that for any prepared solution X(t) of (1.1),

(3.9) lim sup
t→∞

∫ t

τ

{
ρ(s, τ)k(s)a(s)Q(s)F (X ′(s))

− 1

4a(s)r(s)

(
h1(s, τ)a(s)r(s)In+

√
ρ(s, τ)k(s)

[
a′(s)r(s)In−a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1

}
ds > 0

and

(3.10) lim sup
t→∞

∫ t

τ

{
ρ(t, s)k(s)a(s)Q(s)F (X ′(s))

− 1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In−

√
ρ(t, s)k(s)

[
a′(s)r(s)In−a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1

}
ds > 0.

Then any prepared solution X(t) of (1.1) is oscillatory.

3.9. Corollary. Let the conditions (3.9) and (3.10) in Corollary 3.8 be respectively
replaced by

(3.11) lim sup
t→∞

1

ρ(t, τ)

∫ t

τ

{
ρ(s, τ)k(s)a(s)Q(s)F (X ′(s))

− 1

4a(s)r(s)

(
h1(s, τ)a(s)r(s)In +

√
ρ(s, τ)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1

}
ds > 0

and

(3.12) lim sup
t→∞

1

ρ(t, τ)

∫ t

τ

{
ρ(t, s)k(s)a(s)Q(s)F (X ′(s))

− 1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In −

√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1

}
ds > 0.

Then any prepared solution X(t) of (1.1) is oscillatory.

From Corollary 3.9, we obtain the following results:

3.10. Corollary. Assume all conditions stated in Section 1 hold. Suppose further that
there exists A > 0 such that for each X ∈M ,

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) ≥ A

and

F (X ′(t)) ≥ B, t ∈ [t0,∞),

where A,B ∈ S are constant positive de�nite matrices, and A is commutative with P (t)
and R(t). Suppose that for each τ ≥ t0 , there exists (ρ, k) ∈ H and a ∈ C1([t0,∞), (0,∞))
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such that

(3.13) lim sup
t→∞

1

ρ(t, τ)

∫ t

τ

{
ρ(s, τ)k(s)a(s)Q(s)B − 1

4a(s)r(s)

(
h1(s, τ)a(s)r(s)In

+
√
ρ(s, τ)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

P (s)A−1

}
ds > 0

and

(3.14) lim sup
t→∞

1

ρ(t, τ)

∫ t

τ

{
ρ(t, s)k(s)a(s)Q(s)B − 1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In

−
√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

P (s)A−1

}
ds > 0.

Then any prepared solution X(t) of (1.1) is oscillatory.

3.11. Remark. In the special case of Eq.(1.1) with ψ(X(t)) = In, K(X ′(t)) = X ′(t) and
p(t) = 0, for a(t) = 1 Theorem 3.3, Theorem 3.5, Corollary 3.4, Corollary 3.6, Theorem
3.7, Corollaries 3.8-3.10 give Theorem 4.1,Theorem 4.2, Corollary 4.1 and Corollary 4.2,
Theorem 4.3, Corollaries 5.1-5.3 of Yang and Tang [39], with a(t) = 1 and p(t) = 0,
respectively.

3.12. Remark. When P (t) = In, R(t) = In, ψ(X(t)) = In and K(X ′(t)) = X ′(t) in
(1.1), for k(t) ≡ 1 Theorem 3.7, Corollaries 3.9 and 3.10 give Theorem 3.5, Corollaries
3.6 and 3.7 in Yang [40], respectively.

Now, let k(t) ≡ 1 and ρ(t, s) = (t − s)λ, where λ > 1 is a constant. Then, it follows
from (ρ, k) in De�nition 2.2 that

h1(t, s) = λ(t− s)
λ
2
−1

and
h2(t, s) = λ(t− s)

λ
2
−1.

Based on Corollary 3.10 we obtain the following corollary.

3.13. Corollary. Assume the conditions of Corollary 3.10 hold. Suppose further that
for each τ ≥ t0 , there exists a ∈ C1([t0,∞), (0,∞)) such that

(3.15) lim sup
t→∞

1

tλ−1

∫ t

τ

{
(s− τ)λa(s)Q(s)B − 1

4a(s)r(s)

(
λ(s− τ)

λ
2
−1a(s)r(s)

+(s− τ)
λ
2

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

P (s)A−1

}
ds > 0

and

(3.16) lim sup
t→∞

1

tλ−1

∫ t

τ

{
(t− s)λa(s)Q(s)B − 1

4a(s)r(s)

(
λ(t− s)

λ
2
−1a(s)r(s)

−(t− s)
λ
2

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

P (s)A−1

}
ds > 0.
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Then any prepared solution X(t) of (1.1) is oscillatory.

3.14. Remark. When P (t) = In, R(t) = In, ψ(X(t)) = In and K(X ′(t)) = X ′(t)
in Eq.(1.1) Corollary 3.13 gives Corollary 3.8 in Yang [40]. Also, when ψ(X(t)) = In,
K(X ′(t)) = X ′(t) and p(t) = 0 in (1.1) with a(t) = 1, Corollary 3.13 is the same Corollary
5.4 in Yang and Tang [39], with a(t) = 1 and p(t) = 0.

Let r(t) = 1, p(t) = 0, P (t) = In, ψ(X) = In, K(X ′) = X ′, F (X ′) = In and
G(X) = In. Then (1.1) reduces to the linear matrix equation

(3.17) X ′′(t) +Q(t)X(t) = 0,

and for a(t) = 1 and k(t) ≡ 1, Corollary 3.13 reduces to the following corollary.

3.15. Corollary. If Q(t) be a continuous positive de�nite for all [t0,∞), assume, for
each τ ≥ t0 and some λ > 1, that

(3.18) lim sup
t→∞

1

tλ−1

∫ t

τ

(s− τ)λQ(s)ds >
λ2

4(λ− 1)
In

and

(3.19) lim sup
t→∞

1

tλ−1

∫ t

τ

(t− s)λQ(s)ds >
λ2

4(λ− 1)
In.

Then every prepared solution X(t) of (3.17) is oscillatory.

Let p(t) = 0. Then (1.1) reduces to the nonlinear matrix equation

(3.20) (r(t)P (t)ψ(X(t))K(X ′(t)))′ +Q(t)F (X ′(t))G(X(t)) = 0.

De�ne B(t) =
∫ t
τ

1
r(s)

ds, t ≥ τ ≥ t0, and let

ρ(t, s) = [B(t)−B(s)]λ, t ≥ t0,

where λ > 1 is a constant. For k(t) ≡ 1 and a(t) = 1, Corollary 3.8 reduces to the
following corollary.

3.16. Corollary. Assume for each X ∈M ,

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) ≥ In.

Let P−1(t) ≥ In, F (X(t)) ≥ In, limt→∞B(t) = ∞ holds and Q(t) be a continuous
positive de�nite for all [t0,∞). Suppose further that there exists λ > 1 such that for each
τ ≥ t0 the following inequalities are satis�ed:

(3.21) lim sup
t→∞

1

Bλ−1(t)

∫ t

τ

[B(s)−B(τ)]λQ(s)ds >
λ2

4(λ− 1)
In

and

(3.22) lim sup
t→∞

1

Bλ−1(t)

∫ t

τ

[B(t)−B(s)]λQ(s)ds >
λ2

4(λ− 1)
In.

Then every prepared solution X(t) of (3.20) is oscillatory.
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Proof. It is easy to see that

h1(t, s) = λ[B(t)−B(s)]
λ
2
−1 1

r(t)

and

h2(t, s) = λ[B(t)−B(s)]
λ
2
−1 1

r(s)

in Corollary 3.8. Note that∫ t

τ

1

4
r(s)h2

1(s, τ)Inds =
λ2

4(λ− 1)
[B(t)−B(τ)]λ−1In

and ∫ t

τ

1

4
r(s)h2

2(t, s)Inds =
λ2

4(λ− 1)
[B(t)−B(τ)]λ−1In.

From limt→∞B(t) =∞, we obtain

(3.23) lim
t→∞

1

Bλ−1(t)

∫ t

τ

1

4
r(s)h2

1(s, τ)Inds =
λ2

4(λ− 1)
In

and

(3.24) lim
t→∞

1

Bλ−1(t)

∫ t

τ

1

4
r(s)h2

2(t, s)Inds =
λ2

4(λ− 1)
In.

From (3.21) and (3.23), we get

lim sup
t→∞

1

Bλ−1(t)

∫ t

τ

{
ρ(s, τ)Q(s)F (X ′(s))

−1

4
h2
1(s, τ)r(s)P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s)))−1

}
ds

≥ lim sup
t→∞

1

Bλ−1(t)

∫ t

τ

(
ρ(s, τ)Q(s)− 1

4
h2
1(s, τ)r(s)In

)
ds

= lim sup
t→∞

1

Bλ−1(t)

∫ t

τ

[B(s)−B(τ)]λQ(s)ds− λ2

4(λ− 1)
In > 0.

So, (3.9) holds. Similarly, (3.22) and (3.24) imply that (3.10) holds. From Corollary 3.8,
it follows that every prepared solution of Eq.(3.20) is oscillatory. �

3.17. Remark. Let ψ(X(t)) = In and K(X ′(t)) = X ′(t) in Corollary 3.16. Then
Corollary 3.16 gives Corollary 5.5 of Yang and Tang [39], with p(t) = 0 and v(t) = 1.

3.18. Remark. G′(X(t)) > 0 in [39] and [40]. But in our paper, G′(X(t)) does not have
to be positive de�nite matrix.
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4. Examples

In this section, we will show the application of our oscillation criteria with three
examples. We will see that the equations in the examples are oscillatory based on the
results in Section 3, though the oscillations cannot be demonstrated by results of Yang
and Tang [39] and Yang [40] since K(X ′(t)) 6= X ′(t) and ψ(X(t)) 6= In.

4.1. Example. Let t ≥ 1. Consider the following matrix di�erential system:

(4.1)

(
t3/2X(t)X ′(t)

)′
−
√
tX(t)X ′(t) +

√
t

4

[
2X2(t)− In

]
= 0.

Then r(t) = t3/2, p(t) = −
√
t, P (t) = In, R(t) = In, Q(t) =

√
t

4
In, ψ(X) = X,

K(X ′) = X ′, F (X ′) = In, G(X) = 2X2 − In, G′(X) = 4X and

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) = 4In > 0.

Also, let a(t) = 1

t3/2
, k(t) ≡ 1 and ρ(t, s) = [ln t− ln s]2. Then, for τ ≥ 1, we obtain from

Corollary 3.9 that if

lim sup
t→∞

1

[ln t− ln τ ]2

∫ t

τ

{
ρ(s, τ)k(s)a(s)Q(s)F (X ′(s))

− 1

4a(s)r(s)

(
h1(s, τ)a(s)r(s)In +

√
ρ(s, τ)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s))−1

}
ds

= lim sup
t→∞

1

[ln t− ln τ ]2

∫ t

τ

{
[ln s− ln τ ]2

4s
− 1

16

(
2

s
− [ln s− ln τ ]

2s

)2}
Inds

= lim sup
t→∞

1

[ln t− ln τ ]2

∫ t

τ

{
[ln s− ln τ ]2

4s
− 1

4s2
+

[ln s− ln τ ]

8s2
− [ln s− ln τ ]2

64s2

}
Inds

> lim sup
t→∞

1

[ln t− ln τ ]2

∫ t

τ

{
[ln s− ln τ ]2

4s
− 1

4s2
+

[ln s− ln τ ]

8s2
− [ln s− ln τ ]2

64s

}
Inds

> lim sup
t→∞

1

[ln t− ln τ ]2

∫ t

τ

(
− 1

4s2

)
Inds = 0

and similarly,

lim sup
t→∞

1

[ln t− ln τ ]2

∫ t

τ

{
ρ(t, s)k(s)a(s)Q(s)F (X ′(s))

− 1

4a(s)r(s)

(
h2(t, s)a(s)r(s)In −

√
ρ(t, s)k(s)

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

×P (s)ψ(X(s))K(X ′(s))(X ′(s))−1(G′(X(s))−1

}
ds

= lim sup
t→∞

1

[ln t− ln τ ]2

∫ t

τ

{
[ln t− ln s]2

4s
− 1

16

(
2

s
+

[ln t− ln s]

2s

)2}
Inds

= lim sup
t→∞

1

[ln t− ln τ ]2

∫ t

τ

{
[ln t− ln s]2

4s
− 1

4s2
− [ln t− ln s]

8s2
− [ln t− ln s]2

64s2

}
Inds

> lim sup
t→∞

1

[ln t− ln τ ]2

∫ t

τ

{
[ln t− ln s]2

4s
− 1

4s2
− [ln t− ln s]2

8s
− [ln t− ln s]2

64s

}
Inds
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> lim sup
t→∞

1

[ln t− ln τ ]2

∫ t

τ

(
− 1

4s2

)
Inds = 0.

So, all the assumptions of Corollary 3.9 are satis�ed and every prepared solutions of (4.1)

is oscillatory. In fact, X(t) = sin
√
tI2 is an oscillatory solution of (4.1).

4.2. Example. Let t ≥ 1. Consider the following matrix di�erential system:

(4.2)

(
X ′(t) + (X ′(t))−3

)′
+
µ

t2
X(t) = 0.

Then r(t) = 1, p(t) = 0, P (t) = In, R(t) = In, Q(t) = µ
t2
In, ψ(X) = In, K(X ′) =

X ′ + (X ′)−3, F (X ′) = In = B > 0, G(X) = X, G′(X) = In and

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) = In + (X ′(t))2 ≥ In = A > 0.

Also, let a(t) = 1. Then, for λ > 1 and τ ≥ 1, we obtain from Corollary 3.13 that if

lim sup
t→∞

1

tλ−1

∫ t

τ

{
(s− τ)λa(s)Q(s)B − 1

4a(s)r(s)

(
λ(s− τ)

λ
2
−1a(s)r(s)In

+(s− τ)
λ
2

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

P (s)A−1

}
ds

= lim sup
t→∞

1

tλ−1

∫ t

τ

{
(s− τ)λ µ

s2
In −

1

4

(
λ(s− τ)

λ
2
−1

)2

In

}
ds

= lim sup
t→∞

1

tλ−1

∫ t

τ

{
(s− τ)λ µ

s2
− 1

4
λ2(s− τ)λ−2

}
Inds

= µ
1

λ− 1
In >

λ2

4(λ− 1)
In

or

µ >
λ2

4
>

1

4

and similarly,

lim sup
t→∞

1

tλ−1

∫ t

τ

{
(t− s)λa(s)Q(s)B − 1

4a(s)r(s)

(
λ(t− s)

λ
2
−1a(s)r(s)In

−(t− s)
λ
2

[
a′(s)r(s)In − a(s)p(s)R(s)P−1(s)

])2

P (s)A−1

}
ds

= lim sup
t→∞

1

tλ−1

∫ t

τ

{
(t− s)λ µ

s2
− 1

4

(
λ(t− s)

λ
2
−1

)2

In

}
ds > 0,

then any prepared solution X(t) of (4.2) is oscillatory.

4.3. Example. Let t ≥ t0 > 1. Consider the following matrix di�erential system:

(4.3)

(
tX2(t)X ′(t)

)′
+

µ

t(ln t)2

[
X5(t) +

1

3
X3(t)

]
= 0.
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Then r(t) = t, P (t) = In, Q(t) = µ
t(ln t)2

, ψ(X(t)) = X2(t), K(X ′) = X ′, F (X ′) = In,

G(X(t)) = X5(t) + 1
3
X3(t), G′(X(t)) = 5X4(t) +X2(t) and

G′(X(t))X ′(t)K−1(X ′(t))ψ−1(X(t)) = 5X2(t) + In ≥ In.

So, we get

B(t) =

∫ t

τ

1

r(s)
ds =

∫ t

τ

1

s
ds = ln t− ln τ.

For λ > 1, we obtain from Corollary 3.16 that if

(4.4) lim sup
t→∞

1

(ln t− ln τ)λ−1

∫ t

τ

[ln s− ln τ ]λQ(s)ds >
λ2

4(λ− 1)
In

and

(4.5) lim sup
t→∞

1

(ln t− ln τ)λ−1

∫ t

τ

[ln t− ln s]λQ(s)ds >
λ2

4(λ− 1)
In,

then every prepared solutions of (4.3) is oscillatory. That is, (4.4) and (4.5) are equivalent
to

lim sup
t→∞

1

(ln t− ln τ)λ−1

∫ t

τ

[ln s− ln τ ]λ
µ

s(ln s)2
Inds

=
µ

λ− 1
In >

λ2

4(λ− 1)
In

or

µ >
λ2

4
>

1

4
.
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