
1. INTRODUCTION

Investors want to maximize their returns by allo-
cating their capitals among a set of potential invest-

ments. The aim in this allocation process is to achieve 
a desired tradeoff between their risk and return pre-
ferences. In other words, investors aim to optimize 
their portfolios in accordance with their preferences. 
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ABSTRACT

Portfolio optimization, the construction of the best combination of 
investment instruments that will meet the investors’ basic expectati-
ons under certain limitations, has an important place in the finance 
world. In the portfolio optimization, the Mean Variance model of Mar-
kowitz (1952) that expresses a tradeoff between return and risk for a 
set of portfolios, has played a critical role and affected other studies 
in this area. 

In the Mean Variance model, only the covariances between securi-
ties are considered in determining the risk of portfolios. The model 
is based on the assumptions that investors have a quadratic utility 
function and the return of the securities is distributed normally. Va-
rious studies that investigate the validity of these assumptions find 
evidence against them. Asset returns have significant skewness and 
kurtosis. In the light of these findings, it is seen that in recent years 
researchers use higher order of moments in the portfolio selection 
(Konno et al, 1993; Chunhachinda et al,  1997; Liu et al, 2003; Harvey 
et al, 2004; Jondeau and Rockinger, 2006; Lai et al, 2006; Jana et al, 
2007; Maringer and Parpas, 2009; Briec et al, 2007; Taylan and Tatlıdil, 
2010).

In this study, in the mean- variance- skewness- kurtosis framework, 
multiple conflicting and competing portfolio objectives such as 
maximizing expected return and skewness and minimizing risk and 
kurtosis simultaneously, will be addressed by construction of a poly-
nomial goal programming (PGP) model. The PGP model will be tested 
on Istanbul Stock Exchange (ISE) 30 stocks. Previous empirical results 
indicate that for all investor preferences and stock indices, the PGP 
approach is highly effective in order to solve the multi conflicting 
portfolio goals in the mean – variance - skewness – kurtosis frame-
work. In this study, portfolios will be formed in accordance with the 
investor preferences over incorporation of higher moments. The ef-
fects of preferences both on the combination of stocks in the port-
folios and descriptive statistics of portfolio returns will be analyzed. 
Another aim of this study is to investigate the impacts of the incor-
poration of skewness and kurtosis of asset returns into the portfolio 
optimization on portfolios’ returns descriptive statistics.

Keywords: Portfolio optimization, mean-variance-skewness-
kurtosis approach, Istanbul stock exchange (ISE) 30.

ÖZET

Belli kısıtlar altında yatırımcıların temel beklentilerini karşılayacak 
en iyi yatırım araçları karmasının oluşturulması olan portföy opti-
mizasyonu. finans dünyasında önemli bir yere sahiptir. Portföy op-
timizasyonunda, oluşturulan portföyler için getiri ve risk arasında 
bir dengelemeyi ifade eden Markowitz’in (1952)  Ortalama Varyans 
modeli, bu alanda kritik bir role sahiptir ve yapılan diğer çalışmaları 
da etkilemiştir.  

Markowitz’in Ortalama-Varyans modelinde, portföyün riski belirle-
nirken sadece menkul kıymet getirilerinin kovaryans değerleri dik-
kate alınmaktadır. Bu model, yatırımcıların kuadratik fayda fonksi-
yonuna sahip olduğu ve hisse senedi getirilerin normal dağıldığı 
varsayımlarına dayandırılmıştır. Bu varsayımların geçerliliğini ince-
leyen çok sayıda çalışmada karşıt bulgulara ulaşılmıştır. Varlık ge-
tirilerinin anlamlı derecede çarpıklık ve basıklık özelliği gösterdiği 
saptanmıştır. Bu bulgular ışığında, son yıllarda araştırmacıların port-
föy seçiminde yüksek dereceden momentleri kullandıkları görülmek-
tedir (Konno et al, 1993; Chunhachinda et al,  1997; Liu et al, 2003; 
Harvey et al, 2004; Jondeau and Rockinger, 2006; Lai et al, 2006; Jana 
et al, 2007; Maringer and Parpas, 2009; Briec et al, 2007; Taylan and 
Tatlıdil, 2010).

Bu çalışmada, ortalama-varyans-çarpıklık ve basıklık modeli çer-
çevesinde, beklenen getiri ve çarpıklığın maksimize edilmesi, varyans 
ve basıklığın minimize edilmesi gibi birbiri ile çelişen ve aynı anda 
karşılanması gereken portföy amaçları, oluşturulacak polinomal hedef 
programlama yöntemi ile ele alınacaktır. Oluşturulacak PGP modeli, 
İstanbul Menkul Kıymetler Borsası (İMKB) 30 hisse senetleri üzerin-
de test edilecektir. Daha önce yapılmış olan çeşitli ampirik çalışma 
sonuçları, tüm yatırımcı tercihleri ve hisse senedi endeksleri için, 
ortalama-varyans-çarpıklık-basıklık çerçevesinde çoklu çelişen port-
föy amaçlarının çözümünde PGP yaklaşımının etkili bir yol olduğunu 
işaret etmektedir. Bu çalışmada, yatırımcıların yüksek dereceden 
momentler ile ilgili tercihlerine göre portföyler oluşturulacaktır. Bu 
tercihlerin hem portföy içindeki hisse senedi dağılımına, hem de 
portföylerin getirilerinin tanımlayıcı istatistiklerine etkileri incele-
necektir. Bu çalışmanın bir diğer amacı da, portföy optimizasyonunda 
hisse senetlerinin getirilerinin çarpıklık ve basıklığının göz önünde 
bulundurulmasının portföy getirilerinin tanımlayıcı istatistikleri   
üzerinde yarattığı etkilerin de incelenmesidir. 

Anahtar Kelimeler: Portföy optimizasyonu, ortalama–vary-
ans–çarpıklık–basıklık yaklaşımı, İstanbul menkul kıymetler 
borsası (İMKB) 30
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For long years, portfolio selection and optimiza-
tion problem is an attractive topic for investors. Fol-
lowing the seminal work of Markowitz, returns of 
financial assets are typically described their mean, 
while risk is described by variance (Maringer and 
Parpas, 2009: 219). Subsequently, an abundant litera-
ture emerged, questioning the adequacy of the me-
an-variance criterion proposed by Markowitz (1952) 
for allocating wealth (Xu et. al., 2007: 2488). This lite-
rature finds evidence against the model and shows 
that asset returns are characterized by significant 
skewness and kurtosis. As a result of these findings, 
more recently researchers tended to concern for hig-
her moments in the portfolio optimization problem 
and lots of techniques have been developed to solve 
this problem (Konno et al., 1993; Chunhachinda et al., 
1997; Liu et al., 2003; Harvey et al., 2004; Jondeau and 
Rockinger, 2006; Lai et al., 2006; Jana et al, 2007; Ma-
ringer and Parpas, 2009; Briec et al., 2007; Taylan and 
Tatlıdil, 2010).  

Lai(1991), Chunhachinda, et al. (1997), Prakash et 
al. (2003) and Sun and Yan  (2003) applied the poly-
nomial goal programming approach to the portfolio 
selection with skewness. Later, kurtosis is incorpora-
ted into the portfolio selection by Jondeau and Roc-
kinger (2004). 

In this study, in the mean- variance- skewness- 
kurtosis framework, portfolio optimization problem 
will be addressed. In the presence of higher order 
moments, portfolio selection contains multiple conf-
licting and competing portfolio objectives such as 
maximizing expected return and skewness and mi-
nimizing risk and kurtosis simultaneously. In this 
framework, portfolio allocation depends on investor 
preferences for these moments. This multi objective 
problem will be solved by using a polynomial goal 
programming (PGP) model.

The existing literature about portfolio optimiza-
tion indicates that the PGP approach is highly effec-
tive in order to solve the multi conflicting portfolio 
goals in the mean – variance - skewness – kurtosis 
framework for all investor preferences and stock in-
dices. In this study, the PGP model will be tested on 
a small sample of stocks in ISE and the existence of 
an optimal solution will be investigated under diffe-
rent investor preferences. The effects of preferences 
both on the combination of stocks in the portfolios 
and descriptive statistics of portfolios’ returns will be 
analyzed.

In this context, the concepts, portfolio and port-
folio optimization are reviewed in section 2. The app-

roach of PGP and existing literature about this app-
roach are discussed in section 3. Section 4 represents 
our empirical analysis of the PGP approach. And sec-
tion 5 concludes the paper. 

2. PORTFOLIO OPTIMIZATION IN THE MEAN–
VARIANCE–SKEWNESS-KURTOSIS FRAMEWORK

In financial terms, a portfolio is an appropriate 
mix or collection of investments held by an institu-
tion or private individuals. The portfolio optimization 
problem is a well-known difficult problem occurring 
in the finance world. The problem consists of choo-
sing an optimal set of assets in order to minimize the 
risk and maximize the profit of the investment. The 
investor’s objective is to get the maximum possible 
return on an investment with the minimum possible 
risk. This objective is achieved through asset diversifi-
cation (Singh et al., 2010: 75). 

The mean-variance framework for portfolio selec-
tion, developed by Markowitz (1952), continues to 
be the most popular method for portfolio construc-
tion (Kale, 2009: 439). Since Markowitz’s pioneering 
work was published, the mean-variance model has 
revolutionized the way people think about portfolio 
of assets, and numerous studies on portfolio selecti-
on have been made based on only the first two mo-
ments of return distributions (Lai et al, 2006: 1) Most 
serious investors use mean-variance optimization to 
form portfolios, in part, because it requires know-
ledge only of a portfolio’s expected return and vari-
ance. Yet this convenience comes at some expense, 
because the legitimacy of mean-variance optimizati-
on depends on questionable assumptions. Either in-
vestors have quadratic utility or portfolio returns are 
normally distributed. Neither of these assumptions 
is literally true (Cremers et al., 2003:2; Harvey et al., 
2004: 4; Lai et al., 2006:1). Strong empirical evidence 
suggests that returns are driven by asymmetric and/
or fat-tailed distributions (Jondeau and Rockinger, 
2006: 29). The mean – variance model by Markowitz 
is important in portfolio optimization but this model 
should be expanded. 

The classical Markowitz (1952, 1959) model for 
portfolio selection has been studied in the past by 
simplifying it or reformulating it into different mo-
dels. Several practitioners pointed out to the com-
putational difficulty of Markowitz model which is 
associated with solving a large-scale quadratic prog-
ramming (Simimou and Thulasiram, 2010: 481). Seve-
ral alternative approaches have been developed in 
the financial literature to incorporate the individual 
preferences for higher-order moments into optimal 
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asset allocation problems (Jurczenko et al., 2005: 
2; Taylan and Tatlıdil, 2010: 349). Samuelson (1970) 
also showed that the higher moment is relevant to 
investors’ decision-making in portfolio selection and, 
furthermore, almost all investors would prefer a port-
folio with a larger third moment if the first and se-
cond moments are the same (Liu et al, 2003: 255). In 
this framework, portfolio selection with skewness is 
determined. But the fourth moment, kurtosis, which 
is neglected by most researchers, is also important 
for portfolio selection if return distribution is non-
normal, or utility functions are higher than quadratic, 
or higher moments are relevant to the investor’s de-
cision (Lai et al, 2006: 1). In the light of these findings, 
it is seen that in recent years researchers use higher 
order of moments in the portfolio selection.

In this study, following Lai (2006) the PGP will be 
used in order to find solutions to portfolio optimiza-
tion problem that contains multiple conflicting and 
competing portfolio objectives that are maximizing 
expected return and skewness and minimizing risk 
and kurtosis simultaneously. 

As told by Lai et al (2006)’, PGP was first introdu-
ced by Tayi and Leonard to facilitate bank balance 
sheet management with competing and conflicting 
objectives (Lai et al. 2006: 2). Along with, Lai (1991), 
Chunhachinda et al. (1997), and Prakash et al. (2003) 
applied the PGP approach to the portfolio selection 
with skewness. All these studies provided evidence 
that incorporating skewness into the portfolio deci-
sion causes major changes in the optimal portfolio 
(Jondeau and Rockinger, 2006: 30; Lai et al. 2006: 2). 
In the study of Taylan and Tatlıdil (2010), it is seen that 
the portfolio optimization is achieved by shortage 
function and higher order moments. By construction 
of a PGP, they tried to analyze multiple competing 
portfolio allocation objectives such as maximizing 
expected portfolio return and skewness, minimizing 
risk and kurtosis simultaneously and investor’s prefe-
rences over incorporation of higher moments (Taylan 
and Tatlıdil, 2010: 348).

To sum up, more recently in local and foreign lite-
rature, higher order moments -especially mean- va-
riance- skewness- kurtosis- based portfolio optimi-
zation has attracted a great deal of attention. In this 
study, to achieve portfolio optimization in the frame-
work of four moments, the PGP is used. In the follo-
wing sections of the study a brief review of the PGP 
will be given and it will be followed by the research 
section of the study.

3. POLYNOMIAL GOAL PROGRAMMING

Goal programming (GP) is an important category 
in linear programming.  In this idea, instead of trying 
to optimize each objective function, the decision 
maker is asked to specify a goal or target value that 
realistically is the most desirable value for that functi-
on (Hashemi et al. ,2006: 507). The overall purpose of 
goal programming is to minimize the deviations bet-
ween the achievement of goals and their aspiration 
levels (Chang, 2002: 62 – 63).

In this study, we deal with PGP. The PGP is a mul-
ti-objective goal programming technique that allows 
us to incorporate higher order moments in portfolio 
selection. The PGP model accommodates both intra-
level and inter-level preference trade-offs via the spe-
cification of the objective function as a polynomial 
expression (Deckro and Hebert, 2002: 149). 

There are numerous studies in the literature  in-
dicating that portfolio returns are not normally dist-
ributed. As a result of the evidence against the nor-
mality assumption of the Markowitz’s model, higher 
order moments are started to be considered in the 
portfolio selection problem. 

Starting from this point, Lai (1991) proposed a 
multiobjective portfolio selection model to incorpo-
rate the skewness of return distributions. The optimal 
solution of this model is to select a portfolio compo-
nent such that its multiple objectives are optimized. 
That is to maximize the expected rate of return and 
skewness, while minimizing the variance (Chen and 
Shia, 2007: 133). Like Lai, Harvey et al (2004),  Jurc-
zenko et al (2006), Lai et al.(2006), Chen, and  Shia 
(2007) and Taylan and Tatlıdil (2010) applied the PGP 
method to portfolio optimization with fourth mo-
ment. 

As Chunhachinda et al. (1997) mentioned, the 
important features of polynomial goal programming 
include (Chen and Shia, 2007: 131):

- The existence of an optimal solution, 

- The flexibility in incorporating investor preferen-
ces, and 

- The relative simplicity of the computational re-
quirements (Chen and Shia, 2007: 131).

The advantage of the PGP framework is that it is 
general enough to accommodate investor desires for 
higher moments: skewness and kurtosis through pre-
ference parameters. It solves the trade-off among the 
competing objectives for the return distribution pro-
perties (Proelss and Schweizer 2009: 1).
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where R is the distribution of returns and 
−

R   is 
mean of the return, XT=(x1,x2,…,xn) is the transpose 
of the weight vector used to combine the portfolio, 
xi is the percentage of wealth invested in the ith risky 
asset. V, S, and K is the variance - covariance, skew-
ness-coskewness, and kurtosis – cokurtosis matrices 
of R, respectively.

To combine the multiple objectives such that ma-
ximization of the expected return and skewness of 
return while minimization of the variance and kurto-
sis of return, we use the same multiobjective prog-
ramming technique with Lai et.al. (2006). The formu-
lation of the model is given below.

 

              P1

                (5)

To combine these objectives into a single objec-
tive function, we use a PGP approach. Let d1, d2, d3 
and d4 be the goal variables which account for the 
deviations of expected return, variance, skewness 

and kurtosis from the optimal scores of, R*, V*, S* and 
K*, respectively. To obtain the optimal scores, the gi-
ven model, P1, is divided into four subproblems and 
solved them individually (see Lai et. al.(2006)).

After calculating the optimal scores of each mo-
ment, we use the PGP model that was proposed by 
Lai et. al. (2006) to find portfolio allocations for diffe-
rent investors’ preferences. The PGP model (P2) is 

 

The PGP problem solution involves a two- step 
procedure. First the optimal scores of R*, V*, S* and 
K*. Then the optimal scores are substituted into P2, 
and the minimum value of Z can be found for a given 
set of investor preferences (Lai et. al.,2006:3). 
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 In the application of the PGP model, we compute the first four moments of asset returns (see Lai et al., 
2006):
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4. EXPERIMENTAL ANALYSIS

4.1. Data Set

In this study, Istanbul Stock Exchange (ISE) 30 
stocks are examined. Our data set contains daily pri-
ces of permanently traded stocks in ISE- 30 index du-
ring the last five years. Among the permanent stocks 
in ISE-30 Index, we choose the ones with positive 
average daily returns for the period January 4, 2010 
to December 31,2010. As a result, we  obtain 8 stocks 
for implementation. We use logarithmic returns in 
our analysis.

4.2. Experiment Results 

In this study our main objective is to show the ef-
fects of investors’ preferences both on the combinati-
on of stocks in the portfolios and descriptive statistics 
of portfolios’ returns in the four moment framework. 
In this part, we present all process followed in perfor-
ming the PGP approach. The distribution properties 
of the analysed stocks are given in the table below.

In addition to individual distribution properties 
of asset returns, covariance, coskewness and cokur-
tosis of asset returns are calculated. Tables 2- 4 show 
these statistics. 
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The portfolios formed in accordance with the 
investor’s preferences over incorporation of higher 
moments are given above. In order to analyze the 
effects of preferences both on the combination of 
stocks in the portfolios and descriptive statistics of 
portfolios’ returns, different levels of preferences 
are investigated. Investors’ preferences of (1,0,0,0), 
(0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,0,0), (1,3,0,0), (1,1,1,1), 
(1,1,3,0), (1,3,0,1), (3,1,1,0), (3,1,3,1) and (1,3,1,3) are 
included in our experiment.

In the first four portfolio, the first, the second, 
the third and the fourth moment are optimized. The 
portfolio 5, (1,1,0,0) is the Markowitz mean-variance 
portfolio. Investors higher preference for variance in 
portfolio 6, resulting in an increase in each moment 
investigated. When we consider changing the prefe-
rence parameters from (1,3,0,0) to (1,1,1,1), it is seen 
that each moment investigated decreases. The decre-
ase in the preference for variance by holding expec-
ted return is constant and considering the third and 

By dividing the P1 model into four subproblems 
and solved them individually, the optimal scores of 
four moments are obtained.

With the optimal solution of individual objective, we 
solve the P2 with the PGP approach. In the Tables 6-7, 
the first four moment and asset allocations for optimal 
portfolio with different investors’ preferences are given.
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fourth moment in addition to the first two moments 
in portfolio formation, leads to lower expected re-
turn, variance, skewness and kurtosis. Portfolio 8-12 
represent different combinations of  investors’ prefe-
rences for expected returns, variance, skewness and 
kurtosis. 

5. CONCLUSION  

Investors aim to allocate their capitals among a 
set of potential investments to achieve a desired tra-
deoff between their risk and return preferences. One 
of the most important preferred investment instru-
ment is the securities. The important questions that 

have to be answered here is how the portfolio will 
be formed and what the best combination of invest-
ment instruments in the portfolio will be. 

In this study, we try to answer these questions in 
the mean- variance- skewness- kurtosis framework 
by using a PGP model. In this model, multiple conflic-
ting and competing portfolio objectives such as ma-
ximizing expected return and skewness and minimi-
zing risk and kurtosis simultaneously are considered 
in accordance with different investors’ preferences. 
Our results reveal that the investors’ preferences af-
fect both asset allocations of portfolio and descrip-
tive statistics of descriptive statistics of asset returns. 
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