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THE CAUCHY PROBLEM FOR MATRIX FACTORIZATIONS OF

THE HELMHOLTZ EQUATION IN R3

D.A. JURAEV

Abstract. In the paper it is considered the regularization of the Cauchy prob-

lem for systems of elliptic type equations of the first order with constant coeffi-
cients factorisable Helmholtz operator in three-dimensional bounded domain.

Using the results of [1-6; 19,20,21,22], we construct in explicit form Carleman

matrix and, based on the regularized solution of the Cauchy problem.

1. Introduction

It is known that the Cauchy problem for elliptic equations is unstable relatively
small change in the data, i.e. incorrect (example Hadamard, see for instance [10], p.
39). In unstable problems, the image of the operator is not is closed, therefore, the
solvability condition can not be is written in terms of continuous linear functionals.
So, in the Cauchy problem for elliptic equations with data on part of the boundary
of the domain the solution is usually unique, the problem is solvable for everywhere
dense a set of data, but this set is not closed. Consequently, the theory of solvability
of such problems is much more difficult and deeper than theory of solvability of
Fredholm equations. The first results in this direction appeared only in the mid-
1980s in the works of L.A. Aizenberg, A.M. Kytmanov, N.N. Tarkhanov (see for
instance [3]).

The uniqueness of the solution follows from Holmgren’s general theorem [14].
The conditional stability of the problem follows from the work of A.N. Tikhonov
[13], if we restrict the class of possible solutions to a compactum.

In this paper we construct a family of vector-functions Uσ(δ)(x) = U(x, fδ)
depending on a parameter σ and it is proved that, under certain conditions and a
special choice of the parameter σ = σ(δ); as δ → 0, the family Uσ(δ)(x) converges
in the usual sense to a solution U(x) at the point x ∈ G.

Following A.N. Tikhonov [13], a family of vector-functions Uσ(δ)(x) is called a
regularized solution of the problem. A regularized solution determines a stable
method of approximate solution of the problem. For special domains, the problem
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of extending bounded analytic functions in the case when the data is specified ex-
actly on a part of the boundary was considered by Carleman [4]. The researches of
T. Carleman were continued by G.M. Goluzin and V.I. Krylov [12]. A multidimen-
sional analogue of Carleman’s formula for analytic functions of several variables
was constructed in [11]. The use of the classical Green’s formula for constructing a
regularized solution of the Cauchy problem for the Laplace equation was proposed
by Academician M.M. Lavrent’ev (see for instance[5,6]), in his famous monograph.
Extending Lavrent’ev idea, Yarmukhamedov constructed the Carleman function
for the Cauchy problem for the Laplace and Helmholtz equations (see for instance
[7,8,9]). The Cauchy problem for the multidimensional Lame system is considered
by O.I. Makhmudov and I.E. Niyozov (see for instance [17,19]). The construction of
the Carleman matrix for elliptic systems was carried out by Sh. Yarmukhamedov,
N.N. Tarkhanov, O.I. Makhmudov, I.E. Niyozov and others.

The system considered in this paper was introduced by N.N. Tarkhanov. For
this system, he studied correct boundary value problems and found an analogue of
the Cauchy integral formula in a bounded domain (see for instance [1]). In many
well-posed problems for a system of equations of elliptic type of the first order
with constant coefficients, the factorizing operator of Helmholtz, the calculation of
the value of the vector function on the whole boundary is inaccessible. Therefore,
the problem of reconstructing, solving a system of equations of elliptic type of the
first order with constant coefficients, the factorizing operator of Helmholtz (see for
instance [19,20,21,22]), is one of the topical problems in the theory of differential
equations.

Let R3 be the three-dimensional real Euclidean space,

x = (x1, x2, x3) ∈ R3, y = (y1, y2, y3) ∈ R3, x′ = (x1, x2) ∈ R2, y′ = (y1, y2) ∈ R2.

G ⊂ R3 be a bounded simply-connected domain with piecewise smooth boundary
consisting of the plane T : y3 = 0 and of a smooth surface S lying in the half-space
y3 > 0, that i.s., ∂G = S

⋃
T .

We introduce the following notation:

xT =

 x1

x2

x3

 transposed vector x, r = |y − x| , α = |y′ − x′|,

U(x) = (U1(x), ... , Un(x))T , u0 = (1, ... , 1) ∈ Rn, n = 2m, m = 3,

E(z) =

∥∥∥∥∥∥
z1 ... 0
.......
0 ...zn

∥∥∥∥∥∥ diagonal matrix, z = (z1, ... , zn) ∈ Rn.

Let D(xT ) the (n × n)−the matrix with elements consisting of a set of linear
functions with constant coefficients of the complex plane for which the following
condition is satisfied:

D∗(xT )D(xT ) = E((|x|2 + λ2)u0),

where D∗(xT ) is the Hermitian conjugate matrix D(xT ), λ−real number.
We consider in the domain G a system of differential equations

D

(
∂

∂x

)
U(x) = 0, (1)

where D
(
∂
∂x

)
is the matrix of differential operators is of the first order.
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We denote by A(G) the class of vector-functions in a domain G of continuous on
G = G

⋃
∂G and satisfying the system (1).

2. Statement of the problem

The Cauchy problem. Suppose U(y) ∈ A(G) and

U(y)|S = f(y), y ∈ S. (2)

Here, f(y) a given continuous vector-function on S. It is required to restore the
vector function U(y) in the domain G, based on it’s values f(y) on S.

If U(y) ∈ A(G), then the following integral formula of Cauchy type is valid

U(x) =

∫
∂G

M(y, x)U(y)dsy, x ∈ G, (3)

where

M(y, x) =

(
E

(
−e

iλr

4πr
u0

)
D∗
(
∂

∂y

))
D(tT ).

Here t = (t1, t2, t3) is the unit exterior normal, drawn at a point y, the surface ∂G,

− e
iλr

4πr is the fundamental solution of the Helmholtz equation in R3. [15].
We denote by K(w) is an entire function taking real values for real w (w =

u+ iv; u, v−real numbers) and satisfying the following conditions:

K(u) 6= 0, sup
v≥1
|vpKp(w)| = M(u, p) <∞,

−∞ < ξ <∞, p = 0, 1, 2, 3.
(4)

We define a function Φ(y, x) when y 6= x by the following equality:

Φ(y, x) = − 1

2π2K(x3)

∞∫
0

Im
K(w)

w − x3

cosλu√
u2 + α2

du, (5)

In the formula (5), choosing

K(w) = exp(σw2), K(x3) = exp(σx2
3), σ > 0,

we get

Φσ(y, x) = −e
−σx2

3

2π2

∞∫
0

Im
exp(σw2)

w − x3

cosλu√
u2 + α2

du, (6)

The formula (3) is true if instead − e
iλr

4πr of substituting the function

Φσ(y, x) = −e
iλr

4πr
+ gσ(y, x), (7)

where gσ(y, x) is the regular solution of the Helmholtz equation with respect to the
variable y, including the point y = x.

Then the integral formula has the form:

U(x) =

∫
∂G

Nσ(y, x)U(y)dsy, x ∈ G, (8)

where

Nσ(y, x) =

(
E
(
Φσ(y, x)u0

)
D∗
(
∂

∂y

))
D(tT ).
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3. Regularization of the Cauchy problem

Theorem 3.1. Let U(y) ∈ A(G) it satisfy the inequality

|U(y)| ≤ 1, y ∈ T. (9)

If

Uσ(x) =

∫
S

Nσ(y, x)U(y)dsy, x ∈ G, (10)

Then we have the estimate

|U(x)− Uσ(x)| ≤ C(x)σe−σx
2
3 , σ > 1, x ∈ G. (11)

Here and below functions bounded on compact subsets of the domain G, we
denote by C(x).

Proof. Using the integral formula (8) and the equality (10), we obtain

U(x) = Uσ(x) +

∫
T

Nσ(y, x)U(y)dsy, x ∈ G.

Taking into account the inequality (9), we estimate the following

|U(x)− Uσ(x)| ≤
∣∣∣∣∫
T

Nσ(y, x)U(y)dsy

∣∣∣∣ ≤
≤
∫
T

|Nσ(y, x)| dsy, x ∈ G.
(12)

To do this, we estimate the integrals
∫
T

|Φσ(y, x)| dsy,
∫
T

∣∣∣∂Φσ(y,x)
∂yj

∣∣∣ dsy, (j = 1, 2)

and
∫
T

∣∣∣∂Φσ
∂y3

(y, x)
∣∣∣ dsy on the part T of the plane y3 = 0.

Separating the imaginary part of (6), we obtain

Φσ(y, x) = eσ(y2
3−x2

3)

2π2

[∞∫
0

e−σ(u2+α2) cos 2σy3

√
u2+α2

u2+r2 cosλudu−

−
∞∫
0

e−σ(u2+α2)(y3−x3) sin 2σy3

√
u2+α2

u2+r2
cosλu√
u2+α2

du

]
, x3 > 0.

(13)

Taking into account equality (13), we have∫
T

|Φσ(y, x)| dsy ≤ C(x)σe−σx
2
3 , σ > 1, x ∈ G, (14)

To estimate the second integral, we use the equality

∂Φσ(y, x)

∂yj
=
∂Φσ(y, x)

∂s

∂s

∂yj
= 2(yj − xj)

∂Φσ(y, x)

∂s
, j = 1, 2. (15)
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Where

∂Φσ(y,x)
∂s = eσ(y2

3−x2
3)

2π2

[∞∫
0

e−σ(u2+α2)
(
−σ cos 2σy3

√
u2+α2

u2+r2 −

− σy3 sin 2σy3

√
u2+α2

(u2+r2)
√
u2+α2

− cos 2σy3

√
u2+α2

(u2+r2)2

)
cosλudu−

−
∞∫
0

e−σ(u2+α2)
(
−σ(y3−x3) sin 2σy3

√
u2+α2

(u2+r2)
√
u2+α2

+

+σy3(y3−x3) cos 2σy3

√
u2+α2

(u2+r2)(u2+α2) −
∞∫
0

(y3−x3) sin 2σy3

√
u2+α2

(u2+r2)
√
u2+α2

−

−
∞∫
0

(y3−x3) cos 2σy3

√
u2+α2

(u2+r2)(u2+α2) 3 / 2

)
cosλudu

]
, s = α2.

(16)

Taking into account (15) - (16), we obtain∫
T

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy ≤ C(x)σe−σx
2
3 , σ > 1, x ∈ G. (17)

Similarly we obtain∫
T

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy ≤ C(x)σe−σx
2
3 , σ > 1, x ∈ G. (18)

To estimate the integral
∫
T

∣∣∣∂Φσ
∂y3

(y, x)
∣∣∣ dsy, we use the equality

Φσ(y,x)
∂y3

= eσ(y2
3−x2

3)

2π2

[∞∫
0

e−σ(u2+α2)
(

2σy3 cos 2σy3

√
u2+α2

u2+r2 −

− 2σ
√
u2+α2 sin 2σy3

√
u2+α2

u2+r2 − 2(y3−x3) cos 2σy3

√
u2+α2

(u2+r2)2

)
cosλudu−

−
∞∫
0

e−σ(u2+α2)
(

2σy3(y3−x3) sin 2σy3

√
u2+α2+sin 2σy3

√
u2+α2

u2+r2 −

− 2σ
√
u2+α2(y3−x3) cos 2σy3

√
u2+α2

u2+r2 − 2(y3−x3)2 cos 2σy3

√
u2+α2

(u2+r2)2

)
cosλu√
u2+α2

du
]
.

(19)

Taking into account the equality (19), we obtain∫
T

∣∣∣∣∂Φσ
∂y3

(y, x)

∣∣∣∣ dsy ≤ C(x)σe−σx
2
3 , σ > 1, x ∈ G, (20)

From the inequalities (14), (17), (18), and (20), we obtain (11). �

Corollary 3.1. The limiting equality

lim
σ→∞

Uσ(x) = U(x),

holds uniformly on each compact set in the domain G.
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Theorem 3.2. Let U(y) ∈ A(G) it satisfy condition (9), and on a smooth surface
S the inequality

|U(y)| ≤ δ, 0 < δ < e−σȳ
2
3 , (21)

where ȳ2
3 = max

y∈S
y2

3. Then we have the estimate

|U(x)| ≤ C(x)σδ
x2
3
ȳ2
3 , σ > 1, x ∈ G. (22)

Proof. Using the integral formula (8), we have

U(x) =

∫
S

Nσ(y, x)U(y)dsy +

∫
T

Nσ(y, x)U(y)dsy, x ∈ G.

We estimate the following

|U(x)| ≤

∣∣∣∣∣∣
∫
S

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
T

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣ , x ∈ G. (23)

Taking inequality (21) into account, we estimate the first integral in (23).∣∣∣∣∫
S

Nσ(y, x)U(y)dsy

∣∣∣∣ ≤ ∫
S

|Nσ(y, x)| |U(y)| dsy ≤

≤ δ
∫
S

|Nσ(y, x)| dsy, x ∈ G.
(24)

To do this, we estimate the integrals δ
∫
S

|Φσ(y, x)| dsy, δ
∫
S

∣∣∣∂Φσ(y,x)
∂yj

∣∣∣ dsy, (j =

1, 2) and δ
∫
S

∣∣∣∂Φσ
∂y3

(y, x)
∣∣∣ dsy on a smooth surface S.

Taking into account the equality (13), we have

δ

∫
S

|Φσ(y, x)| dsy ≤ C(x)σδeσ(y2
3−x

2
3), σ > 1, x ∈ G. (25)

To estimate the second integral, we use equalities (15) and (16).

δ

∫
S

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy ≤ C(x)σδeσ(y2
3−x

2
3), σ > 1, x ∈ G, (26)

Similarly, using equalities (15) and (16) we obtain

δ

∫
S

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy ≤ C(x)σδeσ(y2
3−x

2
3), σ > 1, x ∈ G. (27)

Taking into account the equality (19), we obtain

δ

∫
S

∣∣∣∣Φσ(y, x)

∂y3

∣∣∣∣ dsy ≤ C(x)σδeσ(y2
3−x

2
3), σ > 1, x ∈ G, (28)

From (25) - (28), we obtain∣∣∣∣∣∣
∫
S

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣ ≤ C(x)σδeσ(y2
3−x

2
3), σ > 1, x ∈ G. (29)
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The following is known∣∣∣∣∣∣
∫
T

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣ ≤ C(x)σe−σx
2
3 , σ > 1, x ∈ G. (30)

Now taking into account (29) - (30), we have

|U(x)| ≤ C(x)σ

2
(δσȳ

2
3 + 1)e−σx

2
3 , σ > 1, x ∈ G. (31)

Choosing σ from the equality

σ =
1

ȳ2
3

ln
1

δ
, (32)

we obtain the inequality (22). �

Let U(y) ∈ A(G) and together U(y) on S with its approximation fδ(y), respec-

tively, with an error, 0 < δ < e−σȳ
2
3 , max

S
|U(y)− fδ(y)| ≤ δ.

We set

Uσ(δ)(x) =

∫
S

Nσ(y, x)fδ(y)dsy, x ∈ G. (33)

The following theorem takes place

Theorem 3.3. Let U(y) ∈ A(G) on the part of the plane y3 = 0 satisfy condition
(9).

Then we have the estimate∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ C(x)σδ

x2
3
ȳ2
3 , σ > 1, x ∈ G. (34)

Proof. From the integral formulas (8) and (33), we have

U(x)− Uσ(δ)(x) =

∫
S

Nσ(y, x) {U(y)− fδ(y)} dsy +

∫
T

Nσ(y, x)U(y)dsy.

Now, repeating the proof of Theorems 1 and 2, we obtain

|U(x)− Uσδ(x)| ≤ C(x)σ

2
(δ eσȳ

2
3 + 1)e−σx

2
3 .

Hence, choosing σ from (32), we obtain (34). �

Corollary 3.2. The limiting equality

lim
δ→0

Uσ(δ)(x) = U(x),

holds uniformly on each compact set in the domain G.
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