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1. INTRODUCTION

As was mentioned in [9], the first researches, related to Intuitionistic Fuzzy Sets (IFSs)
started in 1983 and from the beginning, the concept of Intuitionistic Fuzzy Pair (IFP) had
started to be used. As we mentioned in [9], a lot of our colleagues working in the area of
the intuitionistic fuzziness, used it without a special definition in many of their publications,
using different names: IFP, intuitionistic fuzzy couple, intuitionistic fuzzy value and others.
In the mentioned paper, we proposed to the researchers in the area of the intuitionistic
fuzziness to use only one name for the concept.

Here, we give a formal definition of an Interval Valued IFP (IVIFP) and definitions of
operations, relations and operators, defined oved IVIFPs by analogy with the IFPs and of
the IFSs and Interval Values IFSs (IVIFSs), published during the last already 35 years,
using our books [2, 3, 13].

2. DEFINITION AND GEOMETRICAL INTERPRETATIONS OF AN IVIFP

The Interval Valued Intuitionistic Fuzzy Pair (IVIFP) is an object with the form 〈M,N〉,
where M,N ⊆ [0, 1] are closed sets, M = [infM, supM ], N = [inf N, supN ] and
supM + supN ≤ 1, that is used as an evaluation of some object or process and which
components (M and N ) are interpreted as intervals of degrees of membership and non-
membership, or intervals of degrees of validity and non-validity, or intervals of degree of
correctness and non-correctness, etc. Two of the basic geometrical interpretations of an
IVIFP are shown on Figs. 1 and 2.

For the needs of the discussion below, we define the notion of Intuitionistic Fuzzy Tau-
tological Pair (IFTP) by:

x is an IFTP if and only if infM ≥ supN ,

while x is a Tautological Pair (TP) iff M = [1, 1] and N = [0, 0].
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FIGURE 1. Geometrical interpretation of an IVIFP
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FIGURE 2. Three dimensional geometrical interpretation of an IVIFP

3. RELATIONS OVER IVIFPS

Let us have two IVIFPs x = 〈M,N〉 and y = 〈P,Q〉. We define the relations

x < y iff infM < inf P and supM < supP

x <♦ y iff inf N > inf Q and supN > supQ

x < y iff infM < inf P and supM < supP and inf N > inf Q and supN > supQ

x ≤ y iff infM ≤ inf P and supM ≤ supP

x ≤♦ y iff inf N ≥ inf Q and supN ≥ supQ

x ≤ y iff infM ≤ inf P and supM ≤ supP and inf N ≥ inf Q and supN ≥ supQ

x > y iff infM > inf P and supM > supP

x >♦ y iff inf N < inf Q and supN < supQ

x > y iff infM > inf P and supM > supP and inf N < inf Q and supN < supQ
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x ≥ y iff infM ≥ inf P and supM ≥ supP

x ≥♦ y iff inf N ≤ inf Q and supN ≤ supQ

x ≥ y iff infM ≥ inf P and supM ≥ supP and inf N ≤ inf Q and supN ≤ supQ

x = y iff infM = inf P and supM = supP

x =♦ y iff inf N = inf Q and supN = supQ

x = y iff infM = inf P and supM = supP and inf N = inf Q and supN = supQ.

4. OPERATIONS OVER IVIFPS

Now, there are 189 different intuitionistic fuzzy implications (since→40 and→173 co-
incide, see [14]) that generate 54 intuitionistic fuzzy negations and about 500 intuitionistic
fuzzy conjunctions and the same number of intuitionistic fuzzy disjunctions. All of them
have been introduced only for intuitionistic fuzzy case, but in a near future, they will be
modified for interval valued intuitionistic fuzzy case, too. Here, we illustrate with two
examples the process of this modification.

The first intuitionistic fuzzy implication (called first Zadeh’s intuitionistic fuzzy impli-
cation) for IFP-case has the form

x→1 y = 〈max(b,min(a, c)),min(a, d)〉,

where (only here and in the next example) x = 〈a, b〉, y = 〈c, d〉, a, b, c, d, a + b, c + d ∈
[0, 1], which in IVIFP-form is

x→1 y = 〈[max(inf N,min(infM, inf P )),max(supN,min(supM, supP ))],

[min(infM, inf Q),min(supM, supQ)]〉.

The second intuitionistic fuzzy implication (called Gödel’s intuitionistic fuzzy implica-
tion) for IFP-case has the form

x→2 y = 〈1− sg(a− c), dsg(a− c)〉,

where for the real number r

sg(r) =

{
1 if r > 0

0 if r ≤ 0

In IVIFP-form, the second Gödel’s intuitionistic fuzzy implication is

x→2 y = 〈[1− sg(infM − inf P ), 1− sg(supM − supP )],

[inf Qsg(infM − inf P ), supQsg(supM − supP )]〉.

In the same manner we can construct the interval valued intuitionistic fuzzy conjunc-
tions and disjunctions. For example, following [1], where the intuitionistic fuzzy conjunc-
tions and disjunctions from the first type are described, we can construct the following
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operations:

x&4y = x&y = 〈[min(infM, inf P ),min(supM, supN)],

[max(inf N, inf Q),max(supN, supQ)]〉
x ∨4 y = x ∨ y = 〈[max(infM, inf P ),max(supM supN)],

[min(inf N, inf Q),min(supN, supQ)]〉
x&2y = x+ y = 〈[infM + inf P − infM inf P,

supM + supP − supM supP ],

[inf N inf Q, supN supQ]〉
x ∨2 y = x.y = 〈[infM inf P, supM supP ],

[inf N + inf Q− inf N inf Q,

supN + supQ− supN supQ]〉

x&3y = x ∨3 y = x@y = 〈
[
infM+inf P

2 , supM+supN
2

]
,
[
inf N+inf Q

2 , supN+supQ
2

]
〉.

Analogously, we construct the interval valued intuitionistic fuzzy negations. For ex-
ample, the first two implications generate the following two interval valued intuitionistic
fuzzy negations:

¬1x = 〈N,M〉,

¬2x = 〈[1− sg(supM), 1− sg(infM)], [sg(infM), sg(supM)]〉.

5. OPERATORS OVER IVIFPS

There are three types of modal operators over IFPs. The first of them is an intuitionistic
fuzzy form of the standard modal operators (see, e.g., [12]).

Let as above, x = 〈a, b〉 be an IFP and let α, β ∈ [0, 1]. Then the modal type of
operators defined over x have the forms:

x = 〈MA(x), [inf N, 1− supM ]〉,
♦x = 〈[infM, 1− supN ], N〉,
Dα(x) = 〈[infM, supM + α(1− supM − supN)],

[inf N, supN + (1− α)(1− supM − supN ]〉
Fα,β(x) = 〈[infM, supM + α(1− supM − supN)],

[inf N, supN + β(1− supM − supN)], for α+ β ≤ 1,
Gα,β(x) = 〈[α infM,α supM ], [β inf N, β supN ]〉
Hα,β(x) = 〈[α infM,α supM ], [inf N, supN + β(1− supM − supN)]〉,
H∗α,β(x) = 〈[α infM,α supM ], [inf N, supN + β(1− α supM − supN)]〉,
Jα,β(x) = 〈[infM, supM + α(1− supM − supN)], [β inf N, β supN ]〉,
J∗α,β(x) = 〈[infM, supM + α(1− supM − β supN)], [β inf N, β. supN ]〉,

where α, β ∈ [0, 1].
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F( α γ
β δ

)(x) = 〈[infM + α(1− supM − supN), supM + β(1− supM − supN)],

[inf N + γ(1− supM − supN), supN + δ(1− supM − supN)]〉,
where β + δ ≤ 1;

G( α γ
β δ

)(x) = 〈[α infM,β supM ], [γ inf N, δ supN ]〉,

H( α γ
β δ

)(x) = 〈[α infM,β supM ],

[inf N + γ(1− supM − supN), supN + δ(1− supM − supN)]〉,

H
∗(

α γ
β δ

)(x) = 〈[α infM,β supM ],

[inf N + γ(1− β supM − supN), supN + δ(1− β supM − supN)]〉,

J( α γ
β δ

)(x) = 〈[infM + α(1− supM − supN), supM + β(1− supM − supN)],

[γ inf N, δ supN ]〉,

J
∗(

α γ
β δ

)(x) = 〈[infM + α(1− δ supM − supN), supM + β(1− supM − δ supN)],

[γ inf N, δ supN ]〉,

where α, β, γ, δ ∈ [0, 1] such that α ≤ β and γ ≤ δ.
All these operators are partial cases of the following operator

X( a1 b1 c1 d1 e1 f1
a2 b2 c2 d2 e2 f2

)(x)

= 〈x, [a1 infM + b1(1− infM − c1 inf N), a2 supM + b2(1− supM − c2 supN)],

[d1 inf N + e1(1− f1 infM − inf N), d2 supN + e2(1− f2 supM − supN)]〉,

where a1, b1, c1, d1, e1, f1, a2, b2, c2, d2, e2, f2 ∈ [0, 1], the following four conditions are
valid for i = 1, 2:

ai + ei − eifi ≤ 1, (1)

bi + di − bi.ci ≤ 1, (2)

bi + ei ≤ 1, (3)

a1 ≤ a2, b1 ≤ b2, c1 ≤ c2, d1 ≤ d2, e1 ≤ e2, f1 ≤ f2. (4)

The second type of operators is from another type (similar to modal one). Letαi, βi, γi, δi, εi, ζi ∈
[0, 1] for i = 1, 2. Then, we define

+A =

〈[
infM
2 ,

supM
2

]
,

[
inf NA(x) + 1

2 ,
supNA(x) + 1

2

]〉
,

×A =

〈[
infMA(x) + 1

2 ,
supMA(x) + 1

2

]
,
[
inf N
2 ,

supN
2

]〉
,
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+ (
α1
α2

)A = 〈[α1 infM,α2 supM ] ,

[α1 inf NA(x) + 1− α1, α2 supNA(x) + 1− α2]〉,

× (
α1
α2

)A = 〈[α1 infMA(x) + 1− α1, α2 supMA(x) + 1− α2] ,

[α1 inf N,α2 supN ]〉,

+ (
α1 β1
α2 β2

)A = 〈[α1 infM,α2 supM ] ,

[α1 inf NA(x) + β1, α2 supNA(x) + β2]〉,

× (
α1 β1
α2 β2

)A = 〈[α1 infMA(x) + β1, α2 supMA(x) + β2] ,

[α1 inf N,α2 supN ]〉

where α2 + β2 ≤ 1 and α1 ≤ α2, β1 ≤ β2,

+ (
α1 β1 γ1
α2 β2 γ2

)A = 〈[α1 infM,α2 supM ] ,

[β1 inf NA(x) + γ1, β2 supNA(x) + γ2]〉,
× (

α1 β1 γ1
α2 β2 γ2

)A = 〈[α1 infMA(x) + γ1, α2 supMA(x) + γ2] ,

[β1 inf N, β2 supN ]〉,

where max(αi, βi) + γi ≤ 1 for i = 1, 2 and α1 ≤ α2, β1 ≤ β2, γ1 ≤ γ2,

• (
α1 β1 γ1 δ1
α2 β2 γ1 δ2

)A = 〈[α1 infM + γ1, α2 supM + γ2] ,

[β1 inf NA(x) + δ1, β2 supNA(x) + δ2]〉,

where max(αi, βi) + γi + δi ≤ 1 for i = 1, 2 and α1 ≤ α2, β1 ≤ β2, γ1 ≤ γ2, δ1 ≤ δ2,

◦ (
α1 β1 γ1 δ1 ε1 ζ1
α2 β2 γ1 δ2 ε1 ζ1

)A
= 〈[α1 infM − ε1 inf NA(x) + γ1, α2 supM − ε2 inf NA(x) + γ2] ,

[β1 inf NA(x)− ζ1 infMA(x) + δ1, β2 supNA(x)− ζ2 infMA(x) + δ2]〉,

where α1 ≤ α2, β1 ≤ β2, γ1 ≤ γ2, δ1 ≤ δ2, ε1 ≥ ε2, ζ1 ≤ ζ2, and for i = 1, 2:

max(αi − ζi, βi − εi) + γi + δi ≤ 1, (5)

min(αi − ζi, βi − εi) + γi + δi ≥ 0. (6)

In [11], Gökhan Çuvalcıoğlu introduced operator Eα,β that has the following IVIFP-
form

Eα,β(x) = 〈[β(α infM+1−α), β(α supM+1−α)], [α(β inf N+1−β), α(β supN+1−β)]〉.
All assertions, proved for the IFS- and for the IFP-cases are valid in IVIFP-case, too

(see, e.g., [5, 6, 7, 10]. For example, we can prove
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Theorem 5.1 (cf. [8]). The two most extended modal operators

X a1 b1 c1 d1 e1 f1
a2 b2 c2 d2 e2 f2


and

◦  α1 β1 γ1 δ1 ε1 ζ1
α2 β2 γ1 δ2 ε1 ζ1


defined over IVIFPs and satisfying (1) - (6), respectively, are equivalent.

6. CONCLUSION

In the present paper, we transform the definitions of the basic relations, operations and
operators to the concept of an IVIFP.

In future, we will give definitions of new operations and operators over IVIFPs.
In [4], it is shown that the IFSs are a suitable tool for evaluation of Data mining pro-

cesses and objects. We plan to discuss the possibilities to use IVIFPs as a similar tool.
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