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EXISTENCE RESULTS FOR AN IMPULSIVE FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATIONS WITH A
NON-COMPACT SEMIGROUP

K. HILAL, K. GUIDA, L. IBNELAZYZ, AND M. OUKESSOU

ABSTRACT. In this paper we study a fractional differential equations prob-
lem with not instantaneous impulses involving a non-compact semigroup. We
present some concepts and facts about the strongly continuous semigroup and
the measure of noncompactness. After that we give an existence theorem of
our problem using a condensing operator and the measure of noncompactness.

1. INTRODUCTION

The concept of fractional differential equations has become more popular among
mathematicians, and is studied extensively in the recent years for its many appli-
cations, for more details about fractional differential equations we refer the readers
to [13, 14, 9, 16, 17, 22, 11].

Furthermore, impulsive differential equations have known rapid growth because
they play a main role in describing modern problems in fields such as physics,
biology, economics and population dynamics; for more details the reader can see
[15, 1, 7].

A lot of models about fractional impulsive differential equations were studied
recently, for more details we give the references [19, 12, 21| and the references
therein.

In [3] P. Chen, X. Zhang and Y. Li studied the existence of mild solutions for
the initial value problem

' (t) + Az(t) = f(t,z(t)), t € (si,tit1],4=10,1,2,...,m,
(1.1) .Z‘(t) = gi(t,x(t)), te (ti, Si},i = 1,2, e, m,
x(0) = xp.

Where A : D(A) C E — E is a closed linear operator, —A is the infinitesimal
generator of a strongly continuous semigroup (T'(t));>0 in E, here the semigroup
(T'(t))t>0 is non-compact.

Motivated by this work, in this article we study the impulsive fractional evolution
equation
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Dx(t) = Az(t) + f(t, z(t), Bz(t)) + C(t)u(t), t € (s;,t;11],
1=0,1,2,....m, u € Uy,

DPx(t) = gi(t,x(t)), t € (ti,s),i =1,2,....,m

z(0) = wo,

(1.2)

involving °D* and °D? which are the Caputo fractional derivatives of order a €
(0,1) and B € (0, 1) respectively with the lower limit zero, A : D(A) C X — X is
the generator of a non-compact Cyp-semigroup of bounded operators (T(t))tzo on a

Banach space (X, || . ||), zo € X, 0 =1y =50 < t1 < 81 < t2 < s9 <. < t

Sm < tm41 = T are fixed numbers, g; € C(Jx X, X), and Bx(t fo ds

B e C(Dy,RY), with Dy = {(t,s) e R?: 0 < s <t <w}, KO_(r%a% B(t 8) and
t,s)€

U,q is a set that will be defined later.

The rest of the paper is organized as follows. In section 2 we present the no-
tations, definitions and preliminary results needed in the following sections. In
section 3, a suitable concept of PC-mild solutions for our problems is introduced.
Section 4 is concerned with the existence results of our problems.

2. PRELIMINARIES AND NOTATIONS

Let usset J = [0,T], Jo = [0, 1], J1 = (t1, 2], oy Jn—1 = (tm—1,tm), I = (Emy tint1]
and introduce the space PC(J,X) = {z : J - X : z € C((ti, ti+1],X),i =
0,1,...,m and there exist x(t;) and z(t}), i =1, ....m with x(t;) = z(t])}. It is
clear that PC(J, X) is a Banach space with the norm ||u||pc = sup {||u(t)|| : t € J}.
Let Y be a separable reflexive Banach space where controls u takes values, and
P;(Y) is a class of nonempty closed and convex subsets of Y. We suppose that the
multivalued map w : [0, a] — P¢(Y) is measurable, w(.) C E, where E is bounded

set of Y, and the admissible control set U,q = {u € LP(E) : u(t) € w(t), a.e}, D>

L (7 €(0,a) ), for more details about admissible control set, we refer the readers

to [6].
Let us recall the following well-known definitions.

Definition 2.1. [17] The Riemann-Liouville fractional integral of order q with
lower limit zero for a function f is defined as

19f(t) = ﬁ St~ 5)11 f(s)ds, q > 0,

provided the integral exists, where I'(.) is the gamma function.

Definition 2.2. [17] The Riemann-Liouville derivative of order ¢ with the lower
limit zero for a function f : [0,00) — R can be written as

1

I‘(idtn Jot =)0 f(s)ds, n—1< g <n,t>0.

tDif(t) =

Definition 2.3. [17] The Caputo derivative of order g for a function f : [0, 00) —
R can be written as
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D) =00 (10~ T

Definition 2.4. [21] A function z € C(J, X) is said to be a mild solution of the
following problem:

()),n—1<q<n,t>0.

= \

{ Dex(t) = Ax(t) + y(t), t € (0,77,
JT(O) = To,

if it satisfies the integral equation
£L'(t) = Pa(t)l'o + fot(t - s)ailQa(t - s)y(s)d$7

Here

=[5 &(OT(t20)d0, Qu(t) = o [, 0£a(0)T(t0)d0,

fa( ) 59 1_75 ( %)

@(a)ziz ( 1)n 1g-na- 1Wsm(nm),ee (0,00), and £4(6) > 0,

6 € (0,00), fo £ (0)do = 1.

oo 1
It is easy to verify that [~ 6. (0)df = it a)
Theorem 2.5. (Darbo-Sadovskii [8]) if D C X is bounded, closed and convez, the
continuous map S : D — D is B- condensing, then S has a fixed point in D.

Lemma 2.6. [4, 5, 20] The operators P, and Q, have the following properties:

(1) For any fized t > 0, Py (t) and Qu(t) are linear and bounded operators, and
for any x € X,
aMy

[ Pat)z |< Ma x|, [| Qa(t)z [|< m

(2) {Py(t),t >0} and {Qn(t),t > 0} are strongly continuous,

(3) if (T'(t))i>0 is an equicontinuous semigroup, then P, (t) and Qq(t) are con-
tinuous in (0,00) by the norm, which means that for 0 < t' <t < T we
have:

| Po(t”) = Py(t) ||— 0 and || Qu(t") — Qu(t') ||— 0 as t/ — t'.

Definition 2.7. [8] Let X be a Banach space and Qx be the bounded subsets of X.
The Kuratowski measure of noncompactness is the map 8 : Qx — [0, 00) defined
by :

B(B) =inf{e >0: B =U",B; and diam(B;) <€ fori=1,2,..,n}
with diamB; = sup{|z —y| : z,y € B;} and B € Qx

[P

Remark 2.8. Tt is clear that 8(B) < diam(B).

Next, we are going to look back on some properties of the measure of noncom-
pactness that will be used in the proof of our main results.

Lemma 2.9. [8] Let A and B be bounded sets of X and A be a real number. Then
the measure of noncompactness has the following properties:

1) B(A) =0 if and only if A is a relatively compact set,
2) A C B implies that S(A) < B(B),
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4) = IB(A),
+ B) < B(A) + B(B),
7) B(eoA) = B(A).

Where ¢o means the closure of the convex hull.

Lemma 2.10. [2] Let X be a Banach space, W C X be bounded. Then there ezists
a countable set W1 C W such that

BW) <28(Wh).

Lemma 2.11. [8] Let X be a Banach space, W C C(J, X) be bounded and equicon-
tinuous. Then B(W (t)) is continuous on J and

BOW) = max S(W (1)) = BV ().

Lemma 2.12. [10] Let X be a Banach space, W = {u,} € C(J, X) be bounded
and countable set. Then B(W (t)) is a Lebesgue integral on J and

B <{/Jun(t)dt ‘n e N}) < Q/me(t))dt’

3. THE CONSTRUCTION OF MILD SOLUTIONS

Let € PC(J, X). We first consider the following fractional impulsive problem:

DPx(t) = gi(t,x(t)), t € (ti,si),i =1,2,...,m

{ Dx(t) = Ax(t) + f(t,z(t), Bz(t)) + C(t)u(t), t € (sitiva],i =0,1,2,....m,u € Uyg,
x(0) = xo.

From the property of the Caputo derivative, a general solution can be written
as

o+ Fgy Jo 0= 97 [Aa() + F(s.2(). Ba(s) + C(s)u(s)] ds. 1€ (0.11]
dy, + ﬁ fo — 8)PLg1(s, 2(s))ds, t € (t1,s1],
Ky + (o) f(f(t — )2 Ax(s) + f(s,2(s), Bx(s)) + C(s)u(s)] ds, t € (s1,ta],

it 7 Jo(t = 9 a5, 1€ (1]
K, Jr 1 fo (t — )2 [Ax(s) + f(s,2(s), Bx(s)) + C(s)u(s)] ds, t € (s, tiv1],

where d;, and K;,, i = 1,2,...,m, are elements of X.
We obtain
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1
diz + @ fot(t —5)8~Lgi(s,x(s))ds, t € (ti,5:],1 <i < m,
x(t) =< Pt —s)Kizx + f(f(t —5)27LQu(t — 8) [f(s,2(s), Bx(s)) + C(s)u(s)] ds,
t € (si,tit1],0<i<m,
K0$ = X.
And using the fact that x is continuous at the points ¢;, we get :
2(t;) = Palti—si)Ku-1ys+ [y (ti — ) Qa(t: — 5) [f(s, 2(s), Bx(s)) + C(s)u(s)] ds

1 "
= dizg + = [ (t; — 8)P 1gi(s,2(s))ds.
(5 o't = 9" (s 2()
Which implies that:

dig = Pa(tli —5i-1)K(i—1)a + foti (ti = 8)* 7' Qa(ti — ) [f(s,2(5), Bx(s)) + C(s)u(s)] ds
g o =9 s w()ds.

Using the fact that x is continuous at the points s;, we get :

1 1
.T(SZ) = diz + @ fo (Si - S)ﬁ gi(57x(5))d5
= Kia+ [y (5i = 5)* ' Qalsi — ) [f(s,2(5), Bx(s)) + C(s)u(s)] ds.
Which implies that:

Kiw = dzz —+ %ﬁ) fOSi (31 — s)ﬁ—lgi(s,x(s))ds
= Jo ' (si = 8)* ' Qalsi — 5) [f (s, 2(s), Bu(s)) + C(s)u(s)] ds.

Therefore, a mild solution of problem (1.2) is given by

Poz(t)iﬂolJr Jot = )27 Qa(t — 5) [f(s,2(s), Ba(s)) + C(s)u(s)] ds, t € (0,t1],
dy + T fg(t —5)8=1g (s, 2(s))ds, t € (t1,51],
P,(t—s1)K1 + fot(t —8)271Qu(t — 8) [f(s,2(8), Bx(s)) + C(s)u(s)] ds, t € (s1,t2],

x(t) =
diz + ﬁ fg(t —5)8=1gi(s,2(s))ds, t € (t;,5:],1 <i<m,
P.(t —s) Kz + fg(t —5)271Qu(t — 5) [f(s,2(s), Bx(s)) + C(s)u(s)] ds,
te (Si,ti+1], 1<1<m,
where

Ko, = o,
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diz = Polti —si-1)K@i—1)a + foti (ti = 8)* 7' Qa(ti — ) [f(s,2(s), Bx(s)) + C(s)u(s)] ds
B fo.z(tz‘ — )77 g,(s, 2(s))ds,

Kie = diz— 5 (si = 5)* ' Qalsi — ) [f(s,2(s), Bx(s)) + C(s)u(s)] ds
+TB) o (si = )7 Lgi(s, x(s))ds.

Definition 3.1. A function z € PC(J, X) is said to be a mild solution of problem
(1.2) if it satisfies the following relation:

Pa(t) Koz + Jy(t = )71 Qa(t — 5) [f(s2(s), ljfv( ) + C(s)u(s)] ds,

z(t) =< dig + ﬁ fot(t —8)87Lgi(s,2(s))ds, t € (t;,5],1 <i<m,
Po(t = 5)Kia + [o(t — )27 1Qu(t — 5) [f(s,2(s), Ba(s)) + C(s)u(s)] ds,
t e (Si,ti+1],1 <i<m.

Where
Ko = o,

diz = Pa(tli —si—1) K1)z + fg (ti —8)*1Qa(t; — 8) [f(s,2(5), Bx(s)) + C(s)u(s)] ds

7% fo(tl —5)871gi(s,2(s))ds,
Kio = diz— 5 (i — 5)* ' Qalsi — ) [f(s,2(s), Bx(s)) + C(s)u(s)] ds

gy Jo (5= 9)7 (s, ().

4. EXISTENCE RESULTS

This section deals with the existence results of the problem (1.2).
To prove our first existence result we introduce the following assumptions.

(H1) A generates an equicontinuous and uniformly bounded strongly continuous
semigroup T'(t):>0 on a Banach space X such that || T'(¢) ||< My for all ¢t € J,

(Hz) C:10,T] — L(Y, X) is essentially bounded, ie C' € L>([0,T], L(Y, X)),

(H3) The function f € C(J x X x X, X),
(Hy)there exists 7 € (0, ) and a positive function m € L7 (J,R) such that

I f(t,u,v) [|< m(t), for u,v € X and t € J,

(Hs) For ¢ = 1,2,...,m, the function ¢g; € C([t;,s;] X X;X) and there exists
constants K; > 0 such that:

Il gi(t,u) — gi(¢,0) | K; || w—v || for all u,v € X, and K = max {K;}
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(Hf) For i =1,2,....m, g; € C(J x X; X) is completely continuous, and there
exists constants b,d > 0 such that:

| gi(t,w) |< b || w || +d;, for all w € B,. B, is a set that will be defined later,
and b = max {b;},d= max {d;},

(Hg) There exists constants L, Ly > 0 such that:

B(f(t,Dy,Ds) < L18(Dy) + LoB(D2) for all ¢ € J and D;, Dy bounded and
countable sets in X.

Theorem 4.1. Assume that (Hy) — (Hg) hold. In addition, let’s suppose that the
following property is verified:

max{A, B} <1,

with
W (8 4 18) + Ma(s?_, +12 )+ .+ MP(sP + ) .
n I'(B+1)
o+ Mty + so_1) + o+ MPTH(E 4 57)
AM A (L Lo K,
+4M (L1 + wLoKp) T(a+ 1)
and
B Ma(s, +15,) + M3(sh_y +th, 1)+ ...+ My (sy +17) .
L(B+1)
&+ Ma(tS 4+ s%) + ... + MP(ES + s§)
4M L L K m—+1 m m A 1 1

Then the problem (1.2) has at least one mild solution.
Proof. We introduce the composition QQ = Q1 + Q2 where :

P, (t)xq —11— fot(t —5)271Q,(t — 5)C(s)u(s)ds, t € [0,t1],
dire + NG fot(t — 58~ 1g;(s,z(s))ds, t € (t;,5:],i=1,2,..,m,

Qa(t) =
Po(t — si)Kire + [ (t — 8)* 1 Qa(t — s)C(s)u(s)ds,
te (Si,ti_;,_l],i =1,2,..,m,
Jo(t = )*"1Qa(t = 5)f (s,(s), Bx(s))ds, t € [0,t1],
ng(t) _ digz, te (ti,si],z: 1,2,..,m,

Po(t — ) King + [ (t — 8)* 71 Qa(t — ) f(s,2(s), Ba(s))ds,
S (Si,ti_;,_l],i =1,2,..,m,

with
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__ Lt —g)B-1g -
F(ﬁ) fo (tl S) gz<57$(3)>d87 L= 17 27 -y 1,
= _ = [Si(s. _ g\B-1
Kzlac dzlg:‘" 1—\(5) 0 (Sl 3) gz(s,m(s))ds
— J5 (si = 8)* 7 Qalss — 5)C(s)u(s)ds,i = 1,2,..,m,
Koiz = o,
and
dize = Po(ti — si—1)K(i—1)2 + fg7 (ti —8)*71Qq(t; — 8)f(s,2(s), Bx(s))ds,i = 1,2, ..
Koy = dijoy — fosi (si — 8)* tQu(5; — 8) f(s,z(x), Bx(s))ds,i = 1,2,..,m,

K02m =0.

Our proof will be divided into several steps.

Stepl: We show that QB,(J) C B.(J)

where B, = {z € PC(J, X);| = ||< r} the ball with radius r > 0 ;

1—7\'"7 1-r\'77
Ko, = ( ) | Cu|lp1/- and S, = ( ) Fm g,
oa—T @ =

L(B+1) '

L(B+1) — MoKt + 57

y= MG o |

(Mato  + M3 + 857 ) + o + M7 4+ s )D(B+ 1)

K. HILAL, K. GUIDA, L. IBNELAZYZ, AND M. OUKESSOU

dite = Po(ti — si—1)K(i—1)12 + foti (ti — ) 'Qa(t; — s)C(s)u(s)ds

7= (T(B+1) — MAK (£ + 5°))T(a)

Soc,‘r)a

., MZ(t2  +s0 )+ o+ M+ s
3 =

(T(B+1) — MoK (7 + s7Y)
here y1 +71+71 <.

| gm (2, 0) |,

For any x € B,., we have:

Casel.For t € [0,14]

(KOL7T+

1Qe(®) | < |l Palt)Kow | + || Jy(t = ) Qalt — ) [ (s, 2(s), Ba(s)) + C(s)u(s)]ds |

MAt?iT

I(a)

Case 2.For t € (t;,s;],i=1,2,...,m.

< MA || Zo H + (Ka,'r + Sa,'r) .

For t € (1, s1]
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1 L
1Qz®) | < Nldio |+ Il 57 Jo (= 5)° Haa(s,a(s))ds |
< | Pa (tl)KOx
+f =871 Qulhs =) /(3 2(s), Bals)) 1+ Cls)u(s))ds |
=) (s (s)ds | + | Wfo = 5)° " g1(s, 2(s)ds |
MAta T tﬂ + s
< 7
For t € (sl,t;]
| Qet) | < || Palt = s0)Ka | + ]| fy(t = )27 Qalt = ) [ (s, 2(s), Ba(s)) + Cls)u(s)] ds |
< IR o |
+ 1 Palt = s0)(J" (51 = )7 Qa(t = 9) [f(5,2(s), Ba(s)) + Cls)u(s)] ds
iy o $)° " ga(s,2(s))ds) |
+ 1 ot = 5)* 7 Qa(t = 8) [/ (5, 2(s), Ba(s)) + Cs)u(s)] ds |
< Mj o |
+Mi(t?77 + SF(]ZO[‘;) + MAtgiT (KOé,T + SQ,T)
B B
M e+ 1o )
<

We suppose that: for 1 < j <.
For ¢t S (tj, Sj]

|| Qx(t) H < Mj || o H +MAt0‘ T+MA(ta 17'—|—30‘ 7')+ —|—MJ (ta T 4 ix ‘r)
— A
[(a)
Jr(tf + Sf) + MA(t?_l + 85_1) + ...+ Mi_l(tff + sf)
L(B+1)

(Ka,T + Sa,‘r)

(K 2|+ g;(0)[)
<
For t € (sj,tj41]
a—T 2 (pa—T a—T J+1a—T1 a—T
Qe | < Mz +MAtj+1 + MA@ + 5 F(L;L e MO 50T
+MA(tf sy MAP 50 ) e MY+ s
L(B+1)

(KQ,T + SOC,T)

(K[| [} + 1 952, 0) 1)

<
And we prove the relations for j =i + 1.

For t € (ti+1, 5i+1]
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ldsrsre |1+ 1 537 e = 97 (o) |

| Paltes — s FE (s — 505 Qu(tess — ) [F(s,2(s), Ba(s)) + C(s)us)] ds |
I L = 907 g (0(6)) s

+ || fo — )P giva (s, x(s)ds |

A+ Matdr + MATT +s777) 4+ o+ MAT (77T +5777)
A H Zo || + F(Oé)

+(t?+1 F sl )+ MA? + D) 4+ MY+ 5P
L(B+1)

I Q(t) ||

IN

IN

(Ka,‘r Jr SO[,T)

IN

(K [z [ + [l gi+1(2,0) 1)
< r

For t € (SiJrl, ti+2] '
. Mato + MZ (ST 4 8577) + oo+ MIT2(t077 4 5077)
t < Mz+2 i+2 A\Yi+1 z+1 A 1 1
I Qe < Moo+ i

Ma(t], ) + 87 00) + M3t + 87) + o+ MY (8] + s7)
rB+1)

(KQ,T + Sa,T)

(K [l | + 1] gira (8, 0) )

+
<
We proved that @B, (J) C B.(J).

Step2: @ is lipschitz. Let z,y € PC(J, X),
Case 1. For t € [0,11], we have:

| Quz(t) — Quy(t) l|I=

Similar to the proof on Stepl, we prove that:

Case 2. For t € [t;,8;],1 <i<m,

(87 2 4+ Ma(s? | +17 )+ o+ MNP 12

| Quz(t)—Quy(t) [I< K| z—=yllpc -

L(B+1)
For t € [s;,tiy1],1 <i<m,
Ma(s? + 2+ M2(sP  +4% )+ .+ Mi(s? +4°
I Qua(t)-Qu(t) 1< [ i i Loy A g oy e

This implies that @ is Lipschitz.

Step3: @2 is continuous.
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Let (x,,)n>0 be a sequence such that lim ||z, — = ||[pc= 0, we have :
- Tr—r00

Case 1. For t € [0, 1]

N

| Qan(t) — Qax(t) | I fo —5)* ' Qal(t — 5) (f(s,2n(s), Bra(s)) — f(s,2(s), Bx(s))) ds ||

Mat
ot D) ) || fGan (), Ben()) = f(2(), Bx(.)) llpo -

Similar to the proof we did in Stepl, we prove that:

IN

Case 2. For t € (t;,8;],i=1,2,...m

| Q2wn(t)—Qa2x(t) [|<
f( (), Bz() llpc -

[MAt? + M + 858 ) + o+ ME (S + s%)}

Cla+1) | F(own(.), Ban())—

Case 3. For t € (s;,ti41),1=1,2,...,m,

Mat, ) + ME (Y + s%) 4 ...+ M (15 + s7)
INa+1)

| Qazn (t)—Qax(t) [|< [ 1 Coan(), Bon(.)—

fCsa (), Bx()) e -

Step4: Q2 is equicontinuous, which means || Q2x(t2) — Q2x(t1) ||— 0 as t2 — ¢;.

For 0 <t/ <t <t;, we have:

| Qaz(t") — Qez() || < | fo (t" = )7 Qa(t" — 5)f (s, x(s), Bx(s))ds

—fo (t'—5)*1Qa(t" — 5)f(s,2(s), Bx(s))ds ||
< 11+12+Isa

where Iy =|| [ (# = $)°"1Qu(t" — 5) f(s, 2(s), Bx(s))ds |,
L=| J{ (¢ = )" [Qa(t” — 5) — Qu(t' — 5)] f(s,2(s), Ba(s))ds |

Iy =|| fy [(#" = )70 = (¢ = 5)*"] Qalt” — 5)f(s,2(s), Ba(s))ds |

O;j\f_Al j;/ (t" — s)*~ 1 f(s,2(s), Bx(s)) || ds

Sa T
< ZACeT et s Qast’ —t — 0,
I'(a)

L —0ast’'—t' — 0.

I

For ¢/ =0, 0 <’ < t1, it is easy to see that I = 0.

For ¢ > 0 and € > 0 small enough, we have
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Lo< | fy (=) [Qalt” = 5) = Qult — 9)] f(5,2(s), Ba(s))ds |
i = 927 [Qa(t” = ) = Qu(t! — )] f(s,2(s), Bu(s))ds |
< [ Qalt =9 = Qult =5) | Jo TN (@ = )2 (s, a(s), Ba(s)) || ds
+% JE @ = 8o f(s,x(s), Ba(s)) | ds
re=r o=z 1=r "oy o % a—1
< Sar (t € ) se[s()lil’)—e] | Qa(t” —s) — Qa(t' —s) || +F(a) Sar€

Ihb —0ast’'—t — 0 and e — 0.

I; < {\0; Ig[(t" —5) 7 = (t' = 5)* 7] Qalt” = 8)f(s,2(s), Bx(s)) || ds
A a,T " 7 2=T jo=7 =T -7
< — 1—7 -7 —T
< TR ((t )T T S )
ARt iy na—T1 VY
T(a) " —t) — 0;t" =t — 0

I3 — 0ast’' —t — 0.
Case 1. For t; <t/ <t’ <s;,
| Qx(t") — Q2(t') ||= 0.

Case 2. For s; < <t < tit+1,

(4.1) || Qaz(t") = Qoz(t') ||< I + Iz + Is+ || (Pa(t" — 5i) — Pa(t' — si)) Kiza || -

The right-hand side of (4.1) tends to 0 independently of 2 € B, as t’/ — t'.
Case 3. For t; <t < s; <t <t41,

| Qar(t")~ Qo (t!) I|<I| Pa(t”—s:) Kizat fy (1”—5)*"Qa(t"~5)f (5, 2(s), B (s))ds—
digw H—> 0

indenpendently of © € B,, as t” — ¢’ we have (t" — s;).

In conclusion, || Q2x(t") — Q2z(¢') ||— 0, as ¢ — ¢ — 0, which implies that
Q2(B,(J)) is equicontinuous.

We have Q2B C B,, where Q2B,(t) = {Q22(t);z € B} for t € J.
Steph: @ is 8- condensing in B;..
For any W C B,, Q2(W) is bounded and equicontinuous. Hence, by lemma(2.10),

there exists a countable set Wy = {u,}.-_; C W such that (Q2(W)) < 28(Q2(W1)).
Since Q2(W1) C B, is equicontinuous, lemma(2.11) implies Q2(W1) = maxBQ2(W1(t)).
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We have: ({fo ds/uEBT,tE J} ) <wKoB ({u(t)/u € Byt € J} ).

Casel. For t € [0, 1], we have:

@) = 8({f3(t=9)""1Qult = 9)f(s,un(s). Buy(s))ds| )

< 2MA (=9 B (s, B (s))7,) s

< QMA § Iy = 9077 (LaBWA(s) + LoB(BWL)(s)) ds

2MAL1 fo (t— 5)2 1 B(W (s))ds + MalewKo 2MAL2wKo fo (t — 5)>~1B(Wy(s))ds

2MA(L1 + ngKo)t‘f
= Taty ")

Since Q2(W7) is bounded and equicontinuous, by lemma (2.11)

B(Q2(W)) 26(Q2(W1)) = 2max S(Q2(W1(1)))

4MA(L1 + ngKo)t? ﬂ(W)

<

IN

<
- INa+1)
< BW).

In the other hand we have:

| Quz(t) — Q1y(t) ||= 0 which implies that 8(Q1(W)) = 0.

Then
BQUV) < BQIW)) + 5(Qa(1))
< 4MA(L1 -‘ergKo)tl B(W) < 6(W)

Ia+1)
Case2. For t € (t;,s;],i = 1,2,...,m, we have:

(s7 +17) 4 Ma(s? | +17 )+ oo+ M (5] 4+ 1])
| Quz(t)—Quy(t) [|< 1F(ﬂ+11) S K ey |rc -
Hence, by definition (2.7) we get:
BBy £ My (s? p Mi1(s? 148
Qi) < S E A e £ £ () ),

On the other hand:

£+ Mot + 88 + o+ MY+ 59)

B(Q2(W)) < AM4(L1+wL Ko) T(a+1)

BW).

Then
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BRW)) < B(Q1(W))+ B(Q2AW)) _
o [t Malsly ) 4 A M 1) |
B T(B+1)
1 4 Ma(t8 ) + 58 ,) + o+ M 4 59)
AM (L Lo K w
+4M (L1 + wLa Ky) Tla+1) BW)
< pW).
Case3. For t € [s;,t;411],i = 1,2,...,m we have:
Ma(sP + 2+ M3(sP | +47 )+ .o+ Mi(s) +7)
[ @iz(t)—Quy(t) < [ A FzﬁJrl)l e Y e e

Sa

Hence, by definition (2.7) we get:

Ma(s? +17) + M2(s?_ | +47 )+ ...+ Mi(s? + 1))
L(B+1)

KB(W).

A(@:1(W)) < [

On the other hand:

61+ Ma(t® + s2) 4+ ...+ MY (t8 + ¢
INa+1)

B(Qs(W)) < AMa(Ly+wLsKo) [ } BOW).

Then

BRW)) < B(Q1(W)) + B(Q2(W))
Ma(s? +17) + M3(s? |+ 17 ) + oo+ Miy(sh) + )
rg+1)
61 4+ Ma(tY + 58 + ..+ M4t + s7)
I'a+1)

A

< KB(W)

+ 4MA(L1 +WL2K0) |:

< BW).
Conclusion: in all cases we have:

[ scw)

BRW)) < B(@1(W)) + B(Q2(W)) < CA(W) < (W) with C > 0.

Since the operator @ is continuous and (-condensing. According to Darbo-
dovskii’s fixed point theorem, () has a fixed point in B,. Therefore, the prob-

lem(1.2) has at least one mild solution in B,.. This completes the proof.

O

Theorem 4.2. Assume that (Hy) — (Hy4),and (HL) — (Hg) hold. In addition, let’s
suppose that the following property is verified:

max{C,D} <1
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0+ Ma(t2_y 4 8% 1) + oo+ MY + 59)
Ia+1)
9+ M (S + 5%) + o+ Mt + sff)]

INa+1)
Then the problem (1.2) has at least one mild solution.

Where C = AM s (L1+wLoKp)

2’

and D = 4M (L1 + wL2Kp) [

Proof. We introduce the composition QQ = Q1 + Q2 where :

P, (t)xo + fo )27 Qu (t — 5)C(s)u(s)ds, t € [0,t4],
Qua(t) = dits + Lfo t— )3 Lgi(s,x2(s))ds, t € (ti,5], i=1,2,..,m
Po(t - z) 111+f0 )1 Qa(t — 5)C(s)u(s)ds,
t e (Sz,tz—i-l] 1= 1 2 m,
J3(t = 8)*1Qu(t — 5)f(s,2(s), Bx(s))ds, t € [0, 1],
Q {L‘(t) _ digw, te (ti,si], 1= 1,2, L, m,
’ Pt = i) Kiza + 5 (t = )71 Qa(t — 5)f(s, 2(s), Ba(s))ds,
te (Si,ti_;,_ﬂ 1=1,2,..,m
with

ditz = Po ( —5i-1)Ki1 1a;+f0 (ti = 5)*'Qa(ti — 5)C(s)u(s)ds
fo (t; — )% Lgi(s,2(s))ds,i = 1,2,..,m

Kz = dil:r F(lﬂ) “(si — 8)Pgi(s,x(s))ds

- 051(3Z —38)271Qu (s — 5)O(s)u(s)ds,i = 1,2,...,m
Koz = 0,

and

dioyz = Po(t; — si_ 1)K(l 1)2x+f0 (ti —8)* 1 Qu(t; — 8)f(s,2(s), Bx(s))ds,i = 1,2,..,m,
Koy = diog — fo —5)* ' Qalsi — 5)f(s,z(x), Bx(s))ds,i = 1,2,..,m,
Koz, = 0.

Our proof will be divided into several steps.
Stepl: We show that QB,.(J) C B,(J),

where B, = {x € PC(J,X); || = ||< r} the ball with radius r > 0 ;

1—7\'"" 1-7\'"77
Kow = (220) 1 Culysr and Sur = (222) e

a—T T
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r(B+1)

T(B+1) — MaK(t] +57)
(Mt + M +s57) 4+ o+ MY + 577 7)D(B+ 1)

=M o |

Y2 = (Kort
(D(B+1) = MaK(t] + s7))T(a)
Soz,‘r)a
., M3E 488 )4 M@ sf)d
3 =

(T(B+1) — MAK(t? + s¥))
Here vy + 71 +71 <.

For any x € B,., we have:
Casel. For t € [0, t4]

1Qu(t) | < [l Palt)Kow | + 11 Jy(t = $)*7'Qalt = 5) [f(s.2(s), Bx(s)) + Cls)u(s)]ds ||

MAt?_T
< M ——— (Kgr + Sar)-
< Ma oo |+ ety (Ker + o)
Similar to the proof of the previous theorem we show that:
for t € (ti, Si]

Matd ™" + M 4 s777) + o+ ML (777 +5777)
[(a)

+(tf + )+ MA(? 57 )+ MY 4 5D

rg+1)

Q) I < Mjl[lxo| +

(Ka,T + Soz,‘r)

O [ +d)

< 7
For t € (5i7ti+1]

Mat§TT + M2 + 887 T) o M 4+ 5077)

| Qu(t) | < M [ | + =25 o (Kor + 5ar)
Ma(t] 4 s0) 4+ M3t + 87 1) + oo 4+ My(t] + 57
+ A( 7 ’L) A( i—1 3 1) A( 1 1)<b H T || +d)

r(B+1)
<

We proved that QB,.(J) C B,.(J).
Step2: @2 is continuous.

Let (x,)n>0 be a sequence such that lim || x, — 2 |pc= 0, we have by (H}) :
- n—oo
gi(t, zn(t)) — gi(t, z(¢)).

Case 1. For ¢ € [0,t1], we have:
| Quan(t) — Qua(t) |=0

Case 2. For t € [t;,8;],1 <i<m,
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(87 12y 4+ Ma(s? | +17 )+ o+ MY 12

| Qua(t)—Quy(t) [I< TG+ 1)

I 9i(t; 2 (t)=gi(t, 2(t)) lpc -

For t € [Si,ti_ﬂ],l <i1<m,

Ma(s? + 7y + M2(s? | +47 )+ .+ Mi(s7 +t9)
L(B+1)

| Qua(t)—Quy(t) [I< [ | 9i(t; 2n(t)=gi(t, 2(1)) [lPc -

Thus we get || Q12 (t) — Q12(t) ||[pc— 0 as n — 0.

Then we can say that 1 is continuous.

We already have that ()o is continuous. Finally @ is continuous.
Step3: @ is - condensing in B,.

Casel. For t € [0,¢1], we have:

Considering the condition (H{) and using the same method in the previous the-
orem we get:

BRW)) =< B(Q2(W))
4MA(L1 + ngKO)

INa+1)
pW).

Case2. For t € (t;,s;],i = 1,2,...,m, we have:

pRW)) < B(QW))

T 5w)

IN

A

(4 Ma(t8 ) + 58 y) + o + MY + 59)
< AMy(L Ly K, )
< A(L1 +wLy Ky) Tla+ 1) BW)
Case3: For t € [s;,t;41],i = 1,2,...,m, we have:
BRW)) < B(Q(W)) ,
1) + Ma(t9 + 59) + ...+ M (15 + s9)
< 4Mu(L LyKp) | -2 U .
< AL Lok | e 507)

Conclusion: in all cases we have:
BQRW)) < B(Q2(W)) < CB(W) < B(W) with C' > 0.

Since the operator @ is continuous and [-condensing. According to Darbo-
Sadovskii’s fixed point theorem, () has a fixed point in B,. Therefore, the prob-
lem(1.2) has at least one mild solution in B,.. This completes the proof.

O
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