

Konuralp Journal of Mathematics

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X

On Conharmonically Flatness of Lorentzian α-Sasakian Manifolds

Nesrin Calışkan^{1*} and Ayşe Funda Sağlamer²

¹Department of Mathematics and Science Education, Faculty of Education, Usak University, 64200, Uşak-Turkey ²Department of Mathematics, Faculty of Science and Arts, Dumlupinar University, 43100, Kutahya-Turkey *Corresponding author E-mail: caliskan.nesrin35@gmail.com

Abstract

Conharmonically flatness of Lorentzian α -Sasakian manifolds is characterized and some structure theorems are discussed. In this manner, conharmonically flat, φ -conharmonically flat, ξ -conharmonically flat and quasi-conharmonically flat Lorentzian α -Sasakian manifolds are investigated.

Keywords: Conharmonic curvature tensor, conharmonically flatness, φ -conharmonically flatness, ξ -conharmonically flatness, quasi-conharmonically flatness.

2010 Mathematics Subject Classification: 53D15, 53C05, 53C15, 53C60.

1. Introduction

Lorentzian α -Sasakian manifolds take part as a special type of trans-Sasakian structures in [14] by Yildiz and Murathan including their characteristics of conformally and quasiconformally flatness. Then, Lorentzian α -Sasakian manifolds' Weyl pseudosymmetry and partially Ricci-Pseudo symmetry properties are studied by Prakasha et al. in [8]. Lokesh et al., searched W_2 curvature tensor related to concircular, conharmonic, quasi-conformal and pseudo projective curvature tensors for these kind of structures in [7]. Taleshian & Asghari searched Ricci-semisymmetry, ϕ -Ricci semisymmetry and ϕ -symmetry of such manifolds in [12]. Barman studied both locally ϕ -symmetry and ξ -projectively flatness of the aforementioned structures via semi-symmetric metric connection in [1]. Ravikumar et al., discussed projectively and concircularly pseudo symmetric besides generalized projective and concircular ϕ -recurrent types of these manifolds in [10]. Dey and Bhattacharyya searched ϕ -recurrency and generalized ϕ -recurrency of projective curvature tensor and quasi-projectively flatness of such spaces in [4]. Ravikumar et al., studied *T*-Curvature tensor for such kind of structures in [11]. Prakasha & Chavan discussed on *M*-projective curvature tensor of the same spaces in [9].

Conharmonic curvature tensor is introduced by Ishii [6] and it has been studying for several structures like *K*-contact and Sasakian manifolds, generalized Sasakian-space-forms, LP-Sasakian manifolds [5], [3], [13]. Also, Bhattacharyya discussed conharmonically flat LP-Sasakian manifolds [2]. In this paper, Lorentzian α -Sasakian manifolds' conharmonic curvature tensor's extended flatness characteristics are discussed.

2. Preliminaries

Assume, $M^{m=(2n+1)}$ be smooth and so the tangent space to *M* of any point of *M* contructs the Lie algebra stucture \mathfrak{L} . Hence, *M* is called Lorentzian α -Sasakian manifold with the quadruple (φ, ξ, η, g) if below properties hold:

$$\varphi^2 = I + \eta o\xi, i_{\xi}g = \eta \tag{2.1}$$

$$\eta(\xi) = -1, \eta \, o \, \varphi = 0, \, \varphi(\xi) = 0, \tag{2.2}$$

where ξ and η denote the Reeb vector and covector fields and additionally, ϕ and *g* denote the endomorphism and Lorentzian metric structure. Also the below relations hold for the Lorentzian α -Sasakian manifolds:

$$\nabla_T \xi = -\alpha \varphi(T) \tag{2.3}$$

Email addresses: caliskan.nesrin35@gmail.com (Nesrin Çalışkan) , afundasaglamer@gmail.com (Ayşe Funda Sağlamer)

$$g(T,U) = g(\varphi T, \varphi U) - \eta(T)\eta(U)$$
(2.4)

$$\eta(R(T,U)V) = \alpha^2(g(U,V)\eta(T) - g(T,V)\eta(U))$$
(2.5)

$$R(T,U)\xi = \alpha^2(\eta(U)T - \eta(T)U)$$
(2.6)

$$R(\xi,T)U = \alpha^2(g(T,U)\xi - \eta(U)T)$$
(2.7)

$$R(\xi,T)\xi = \alpha^2(T + \eta(T)\xi)$$
(2.8)

$$S(\varphi T, \varphi U) = S(T, U) + 2n\alpha^2 \eta(T)\eta(U)$$
(2.9)

$$S(T,\xi) = S(\xi,T) = 2n\alpha^2 \eta(T)$$
 (2.10)

$$S(\xi,\xi) = -2n\alpha^2 \tag{2.11}$$

$$Q\xi = 2n\alpha^2 \xi \tag{2.12}$$

for $T, U, V \in \mathfrak{L}$. In the aforementioned relations, *S* is the Ricci curvature tensor satisfying S(T, U) = g(QT, U) with the notation *Q* of the Ricci operator. Besides the associated Lorentzian metric's covariant differentiation is notated by \forall .

Definition 2.1. The conharmonic curvature tensor of the Lorentzian α -Sasakian manifold M^{2n+1} is described in the sense Ishi introduced in [6]:

$$K(T,U)V = R(T,U)V - \frac{1}{2n-1}[S(U,V)T - S(T,V)U + g(U,V)QT - g(T,V)QU]$$
(2.13)

for $T, U, V \in \mathfrak{L}$.

3. Conharmonically Flat Lorentzian α -Sasakian manifolds

Definition 3.1. The Lorentzian α -Sasakian manifold M is called conharmonically flat if the following relation holds:

$$K(T,U)V = 0 \tag{3.1}$$

for $T, U, V \in \mathfrak{L}$.

Theorem 3.2. If the conharmonically flat Lorentzian α -Sasakian manifold M^{2n+1} is Einstein, then it is locally isometric to $S^{2n+1}(c)$ with the constant c.

Proof. If M^{2n+1} is conharmonically flat, then the aforementioned equation (3.1) holds. By using (2.13) in (3.1),

$$R(T,U)V = \frac{1}{2n-1} [S(U,V)T - S(T,V)U + g(U,V)QT - g(T,V)QU]$$
(3.2)

is obtained. Due to manifold is Einstein, λ is constant, $S(T,U) = \lambda g(T,U)$ holds and enables to

$$g(R(T,U)V,W) = \frac{2\lambda}{2n-1} [g(U,V)g(T,W) - g(T,V)g(U,W)]$$
(3.3)

for $T, U, V, W \in \mathfrak{L}$.

$$[\frac{2\lambda}{2n-1} - \alpha^2][g(U,V) + \eta(U)\eta(V)] = 0$$
(3.4)

for $U, V \in \mathfrak{L}$. This means that $\frac{2\lambda}{2n-1} - \alpha^2 = 0$ or $g(U, V) + \eta(U)\eta(V) = 0$. Due to (2.4) holds for the Lorentzian α -Sasakian manifold and also $g(\varphi U, \varphi V) \neq 0$, it is possible to get the below relation

$$\lambda = \frac{(2n-1)\alpha^2}{2} \tag{3.5}$$

In consequence of (3.3) and (3.5), the following relation is obtained:

$$R(T,U)V = \alpha^{2}[g(U,V)T - g(T,V)U]$$
(3.6)

Thereby M^{2n+1} is a space of constant curvature with the $c = \alpha^2$ constant. By virtue of (3.6), we get hereinbelow

$$(\nabla_W R)(T, U)V = 0 \tag{3.7}$$

for $T, U, V, W \in \mathfrak{L}$. So, the conharmonically flat Einstein Lorentzian α -Sasakian manifold M is a space of constant curvature and hence locally isometric to $S^{2n+1}(\alpha^2)$.

4. Quasi-Conharmonically Flat Lorentzian α -Sasakian Manifolds

Definition 4.1. The Lorentzian α -Sasakian manifold $(M^{2n+1}, \varphi, \xi, \eta, g)$ is called quasi-conharmonically flat if the below relation is verified:

$$g(K(T,U)V,\varphi W) = 0 \tag{4.1}$$

for $T, U, V, W \in \mathfrak{L}$.

Theorem 4.2. Assume that Lorentzian α -Sasakian manifold M^{2n+1} be quasi-conharmonically flat. So, we get the following relation:

$$S(U,V) = (r - 2n\alpha^2 - 2n + 1)g(U,V)$$
(4.2)

for $U, V \in \mathfrak{L}$.

Proof. By using (2.1) and (2.13),

$$g(K(T,U)V,\varphi W) = g(R(T,U)V,\varphi W) - \frac{1}{2n-1} [S(U,V)g(T,\varphi W) - S(T,V)g(U,\varphi W) + g(U,V)S(T,\varphi W) - g(T,V)S(U,\varphi W)]$$
(4.3)

is obtained for $T, U, V, W \in \mathfrak{L}$. Since $\{e_i\}$ the orthonormal basis, if we take summation on i = 1, 2, ..., 2n + 1 and putting $X = \varphi e_i$ and $W = e_i$ in (2.4), we get

$$g(K(\varphi e_i, U)V, \varphi e_i) = g(R(\varphi e_i, U)V, \varphi e_i) - \frac{1}{2n-1} [S(U, V)g(\varphi e_i, \varphi e_i) - S(\varphi e_i, V)g(U, \varphi e_i) + g(U, V)S(\varphi e_i, \varphi e_i) - g(\varphi e_i, V)S(U, \varphi e_i)]$$
(4.4)

for $U, V \in \mathfrak{L}$ and after necessary calculations, we obtain the following relation:

$$g(K(\varphi e_i, U)V, \varphi e_i) = S(U, V) + g(U, V) - \frac{1}{2n - 1} [2nS(U, V) - S(U, V) + \eta(U)S(\xi, V) + (r - 2n\alpha^2)g(U, V) - S(U, V)]$$

$$(4.5)$$

Owing to M^{2n+1} is quasi-conharmonically flat with the help of (2.13), equation (4.2) is verified.

Lemma 4.3. The quasi-conharmonically flat Lorentzian α -Sasakian manifold M^{2n+1} is an Einstein manifold.

Theorem 4.4. The Lorentzian α -Sasakian manifold M^{2n+1} is called quasi-conharmonically flat iff the below relation holds:

$$\eta(R(T,U)V) = \alpha^{2}[\eta(T)\eta(V)U - \eta(U)\eta(V)T] + \frac{1}{(2n-1)} \{2n\alpha^{2}[\eta(U)g(\varphi T, \varphi V) - \eta(T)g(\varphi U, \varphi V)] + [\eta(U)S(\varphi T, \varphi V) - \eta(T)S(\varphi U, \varphi V)]\}$$
(4.6)

for $T, U, V \in \mathfrak{L}$.

Proof. Due to the Lorentzian α -Sasakian manifold M^{2n+1} is quasi-conharmonically flat, by the use of relations (2.1), (2.13) and taking $W = \varphi W$, we obtain

$$g(R(T,U)V,\varphi^2W) = \frac{1}{2n-1} [S(U,V)g(\varphi T,\varphi W) - S(T,V)G(\varphi U,\varphi W) + g(U,V)S(\varphi T,\varphi W) - g(T,V)S(\varphi U,\varphi W)]$$

$$(4.7)$$

for $T, U, V, W \in \mathfrak{L}$.

Finally, we get (4.6) via the use of (2.13) and (2.1) in (2.3) and vice versa.

5. ξ -Conharmonically Flat Lorentzian α -Sasakian Manifold

Definition 5.1. Suppose the Lorentzian α -Sasakian manifold M^{2n+1} be ξ -conharmonically flat, then the following relation holds:

$$K(T,U)\xi = 0 \tag{5.1}$$

for $T, U \in \mathfrak{L}$.

Theorem 5.2. Assume M^{2n+1} be a ξ -conharmonically flat Lorentzian α -Sasakian manifold, then

$$R(T,\xi)\xi = -\frac{1}{2n-1} \{ S(U,\xi)T - S(T,\xi)U + \eta(U)QT - \eta(T)QU \}$$
(5.2)

for $T, U \in \mathfrak{L}$.

Proof. If M^{2n+1} is ξ -conharmonically flat then (5.1) holds. Taking $V = \xi$ in (2.13) and considering (2.1),

$$g(K(T,U)\xi,W) = g(R(T,U)\xi,W) - \frac{1}{2n-1} \{S(U,\xi)g(T,W) - S(T,\xi)g(U,W) + \eta(U)S(T,W) - \eta(T)S(U,W)\}$$
(5.3)

for $T, U, W \in \mathfrak{L}$.

Owing to the fact that $\{e_i\}$ is orthonormal basis, $\{\varphi e_i\}$ is orthonormal basis either. Summarizing i = 1, 2, ..., (2n + 1) in (5.3) and changing $T = W = e_i$, it takes the following form:

$$g(K(e_i, U)\xi, e_i) = g(R(e_i, U)\xi, e_i) - \frac{1}{2n-1} \{S(U, \xi)g(e_i, e_i) - S(e_i, \xi)g(U, e_i) + \eta(U)S(e_i, e_i)\}$$
(5.4)

for $U \in \mathfrak{L}$. By using (2.1), (2.2) we have (5.3).

Theorem 5.3. For the Lorentzian α -Sasakian manifold M^{2n+1} necessary and sufficient condition to be ξ -conharmonically flat is: M^{2n+1} is an η -Einstein manifold.

Proof. For the Lorentzian α -Sasakian manifold M^{2n+1} by using $U = \xi$ in (5.3), it is possible to obtain

$$S(T,W) = (-\alpha^2)g(T,W) + (2n-1)\alpha^2\eta(T)\eta(W)$$
(5.5)

for $T, W \in \mathfrak{L}$. Namely, M^{2n+1} is η -Einstein and vice versa.

6. φ -Conharmonically Flat Lorentzian α -Sasakian Manifold

Definition 6.1. Assume, M^{2n+1} be the Lorentzian α -Sasakian manifold, then M^{2n+1} is called φ -conharmonically flat if

$$g(K(\varphi T, \varphi U)\varphi V, \varphi W) = 0 \tag{6.1}$$

for $T, U, V, W \in \mathfrak{L}$.

Theorem 6.2. The Lorentzian α -Sasakian manifold M^{2n+1} is called φ -conharmonically flat iff the equation (6.2) holds.

$$g(K(\varphi T, \varphi U)\varphi V, \varphi W) = -\frac{1}{2(2n-1)} \{g(\varphi U, \varphi V)g(\varphi T, \varphi W) -g(\varphi T, \varphi V)g(\varphi U, \varphi W)\}$$

$$(6.2)$$

for $T, U, V, W \in \mathfrak{L}$.

Proof. Considering (2.13) for M^{2n+1} , it is possible to have the below relation:

$$S(\varphi T, \varphi W) = g(Q(\varphi T), \varphi W). \tag{6.3}$$

In consequence of this, the equation herein below can be written:

$$g(K(\varphi T, \varphi U)\varphi V, \varphi W) = g(R(\varphi T, \varphi U)\varphi V, \varphi W) - \frac{1}{2n-1} \{S(\varphi Y, \varphi V)g(\varphi T, \varphi W) - S(\varphi T, \varphi V)g(\varphi U, \varphi W) + g(\varphi U, \varphi V)S(\varphi T, \varphi W) - g(\varphi T, \varphi V)S(\varphi U, \varphi W)\}$$
(6.4)

Owing to the fact that $\{e_i\}$ is orthonormal basis, $\{\varphi e_i\}$ is orthonormal basis either. If we summarize i = 1, 2, ..., (2n+1) in (4.3) and take $T = W = e_i$, we have the following relation:

$$g(K(\varphi e_i, \varphi U)\varphi V, \varphi e_i) = g(R(\varphi e_i, \varphi U)\varphi V, \varphi e_i) - \frac{1}{2n-1} \{S(\varphi U, \varphi V)g(\varphi e_i, \varphi e_i) - S(\varphi e_i, \varphi V)g(\varphi U, \varphi e_i) + g(\varphi U, \varphi V)S(\varphi e_i, \varphi e_i) - g(\varphi e_i, \varphi V)S(\varphi U, \varphi e_i)\}$$

$$(6.5)$$

for $U, V \in \mathfrak{L}$. Due to *M* is φ -conharmonically flat, (6.1) holds and by virtue of (6.5),

$$S(\varphi U, \varphi V) = (r - 2n\alpha^2 - 2n + 1)g(\varphi U, \varphi V)$$
(6.6)

holds for $U, V \in \mathfrak{L}$. Then, using (2.4) and (6.1) in (6.4), we get (6.2).

References

- [1] A. Barman, On Lorentzian α -Sasakian Manifolds Admitting a Type of Semi-symmetric Metric Connection, Novi Sad J. Math Vol:44, No.2 (2014),
- [2] A. Bhattacharyya, On a Type of Conharmonically Flat LP-Sasakian Manifold, Anal. Stiin, Ale. Univ." AL. I. CUZA" IASI SI a Mathematica Vol: 47, (2001), 183-188. U.C. De and R.N. Singh and S.K. Pandey, On the Conharmonic Curvature Tensor of Generalized Sasakian-space-forms, International Scholarly Research
- [3] Network ISRN Geometry Vol:2012, (2012), 1-14.
- S. Dey and A. Bhattacharyya, Some curvature properties of Lorentzian α -Sasakian manifolds, Journal of Dynamical Systems and Geometric Theories Vol:14, No.1 (2016), 85-98. [4]
- [5] M.K. Dwivedi and J.S. Kim, On Conharmonic Curvature Tensor in K-contact and Sasakian Manifolds, Bull. Malays. Math. Sci. Soc. (2) Vol:34, No.1 (2011), 171-180.
- SY. Ishi, On Conharmonic Transformation, Tensor NS. Vol:7 (1957), 73-80.
- [7] S. Lokesh and C.S.B. Venkatesha and K.T.P. Kumar, On Lorentzian α -Sasakian Manifolds, Bulletin of the Malaysian Mathematical Sciences Society. Vol:2, No.3 (2012), 177-182.
- D.G. Prakasha and C.S. Bagewadi and N.S. Basavarajappa, On Pseudosymmetric Lorentzian α -Sasakian manifolds, IJPAM. Vol:48, No.1 (2008), 57-65. D.G. Prakasha and V. Chavan, On M-Projective Curvature Tensor of Lorentzian α -Sasakian manifolds, International Journal of Pure Mathematical [8] Ì9Ì Sciences. Vol:18, (2017), 22-31. [10] N.S. Ravikumar and K. Nagana Gouda, Some Results On Lorentzian α-Sasakian manifolds, Mathematica Aertia. Vol:6, No.6 (2016), 867-875
- [11] N.S. Ravikumar and K. Nagana Gouda and N. Srikantha, T Curvature Tensor On Lorentzian α -Sasakian manifolds, JJPAM. Vol:112, No.1 (2017), 81-91. [12] A. Taleshian and N. Asghari, On Lorentzian α -Sasakian manifolds, The Journal of Mathematics and Computer Science. Vol:4, No.3 (2012), 295-300.
- [13] A. Taleshian and D.G. Prakasha and K. Vikas and N. Asghari, On the Conharmonic Curvature Tensor of LP-Sasakian Manifolds, Palestine Journal of Mathematics. Vol:5, No.1 (2016), 177-184.
- [14] A. Yildiz and C. Murathan, On Lorentzian α -Sasakian Manifolds, Kyungpook Mathematical Journal. Vol:45, No.1 (2005), 95-103.