Certain Properties for Spiral-Like Functions Associated with Ruscheweyh-Type q-Difference Operator

G. Murugusundaramoorthy ${ }^{1}$ and Dorina Răducanu ${ }^{2 *}$
${ }^{1}$ Department of Mathematics,School of Advanced Sciences, VIT University,Vellore-632014,India
${ }^{2}$ Faculty of Mathematics and Computer Science, "Transilvania" University of Braşov 500091, Iuliu Maniu, 50, Braşov, Romania
*Corresponding author E-mail: draducanu@unitbv.ro

Abstract

In this paper, making use of the Ruscheweyh- type q-difference operator $\mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)$ we introduce a new subclass of spiral-like functions and discuss some subordination results and Fekete-Szegö problem for this generalized function class. Further, some known and new results which follow as special cases of our results are also mentioned.

Keywords: Convex functions, Fekete-Szegö problem, Hadamard product, Ruschewyh- type q-difference operator, spiral-like functions, starlike functions, subordinating factor sequence, univalent functions.
2010 Mathematics Subject Classification: 30C45.

1. Introduction

Let \mathscr{A} denote the class of functions of the form
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$
which are analytic and univalent in the open disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Let \mathscr{S} denote the subclass of \mathscr{A} consisting of functions that are univalent in \mathbb{U}.
A function $f \in \mathscr{A}$ is said to be in the class of γ-spiral-like functions of order λ in \mathbb{U}, denoted by $\mathscr{S}^{*}(\gamma, \lambda)$ if
$\mathfrak{R}\left(e^{i \gamma} \frac{z f^{\prime}(z)}{f(z)}\right)>\lambda \cos \gamma, \quad z \in \mathbb{U}$
for $0 \leq \lambda<1$ and some real γ with $|\gamma|<\frac{\pi}{2}$. The class $\mathscr{S}^{*}(\gamma, \lambda)$ was studied by Libera [6] and Keogh and Merkes [5]. Note that $\mathscr{S}^{*}(\gamma, 0)$ is the class of spiral-like functions introduced by Špaček [15], $\mathscr{S}^{*}(0, \lambda)=\mathscr{S}^{*}(\lambda)$ is the class of starlike functions of order λ and $\mathscr{S}^{*}(0,0)=\mathscr{S}^{*}$ is the familiar class of starlike functions.
Let \mathscr{B} be the class of all analytic functions w in \mathbb{U} that satisfy the conditions $w(0)=0$ and $|w(z)|<1, z \in \mathbb{U}$.
For functions $f \in \mathscr{A}$ given by (1.1) and $g \in \mathscr{A}$ given by $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$, we define the Hadamard product (or Convolution) of f and g by
$(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}, z \in \mathbb{U}$.
We briefly recall here the notion of q-operators i.e. q-difference operator that play a vital role in the theory of hypergeometric series, quantum physics and in the operator theory. The application of q-calculus was initiated by Jackson [3] (also see [2, 11]). For the applications of q-calculus in geometric function theory, one may see the papers of Mohamad and Darus [7], Purohit and Raina [11], Mohamad and Sokól, [8].
Consider $0<q<1$ and a non-negative integer n. The q-integer number or basic number n is defined by
$[n]_{q}=\frac{1-q^{n}}{1-q}=1+q+q^{2}+\ldots+q^{n-1},[0]_{q}=0$.

For a non-integer number t we will denote $[t]_{q}=\frac{1-q^{t}}{1-q}$.
The q-shifted factorial is defined as follow
$[0]!=1,[n]!=[1]_{q}[2]_{q} \ldots[n]_{q}$.
Note that $\lim _{q \rightarrow 1^{-}}[n]_{q}=n$ and $\lim _{q \rightarrow 1^{-}}[n]!=n!$.
The Jackson's q-derivative operator or q-difference operator for a function $f \in \mathscr{A}$ is defined by
$\mathscr{D}_{q} f(z)= \begin{cases}\frac{f(q z)-f(z)}{z(q-1)} & , z \neq 0 \\ f^{\prime}(0) & , z=0 .\end{cases}$
Note that for $n \in \mathbb{N}=\{1,2, \ldots\}$ and $z \in \mathbb{U}$
$\mathscr{D}_{q} z^{n}=[n]_{q} z^{n-1}$.
For $t \in \mathbb{R}$ and $n \in \mathbb{N}$, the q-generalized Pochhammer symbol is defined by
$[t]_{n}=[t]_{q}[t+1]_{q}[t+2]_{q} \ldots[t+n-1]_{q}$.
Moreover, for $t>0$ the q-Gamma function is given by
$\Gamma_{q}(t+1)=[t]_{q} \Gamma_{q}(t)$ and $\quad \Gamma_{q}(1)=1$.
For details on q-calculus one can refer to $[1,3]$ and also the reference cited therein.
Using the definition of Ruscheweyh differential operator [12], in [4] Kanas and Răducanu introduced the Ruscheweyh q-differential operator defined by
$\mathscr{R}_{q}^{\alpha} f(z)=f(z) * F_{q, \alpha+1}(z) \quad z \in \mathbb{U}, \alpha>-1$
where $f \in \mathscr{A}$ and
$F_{q, \alpha+1}(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma_{q}(n+\alpha)}{[n-1]!\Gamma_{q}(1+\alpha)} z^{n}=z+\sum_{n=2}^{\infty} \frac{[\alpha+1]_{n-1}}{[n-1]!} z^{n}, \quad z \in \mathbb{U}$.
From (1.6) we have
$\mathscr{R}_{q}^{0} f(z)=f(z), \quad \mathscr{R}_{q}^{1} f(z)=z \mathscr{D}_{q} f(z)$
and
$\mathscr{R}_{q}^{m} f(z)=\frac{\mathscr{Z}_{q}^{m}\left(z^{m-1} f(z)\right)}{[m]!} \quad m \in \mathbb{N}$.
For $f \in \mathscr{A}$ given by (1.1), in view of (1.6) and (1.7), we obtain
$\mathscr{R}_{q}^{\alpha} f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma_{q}(n+\alpha)}{[n-1]!\Gamma_{q}(1+\alpha)} a_{n} z^{n}=z+\sum_{n=2}^{\infty} \frac{[\alpha+1]_{n-1}}{[n-1]!} a_{n} z^{n} \quad z \in \mathbb{U}$.
It is easy to check that
$\lim _{q \rightarrow 1^{-}} F_{q, \alpha+1}(z)=\frac{z}{(1-z)^{\alpha+1}}$
and
$\lim _{q \rightarrow 1^{-}} \mathscr{R}_{q}^{\alpha} f(z)=f(z) * \frac{z}{(1-z)^{\alpha+1}}$.
From (1.8) we get
$\mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)=1+\sum_{n=2}^{\infty}[n]_{q} \Psi_{q}(n, \alpha) a_{n} z^{n-1}$
where
$\Psi_{q}(n, \alpha)=\frac{\Gamma_{q}(n+\alpha)}{[n-1]!\Gamma_{q}(1+\alpha)}=\frac{[\alpha+1]_{n-1}}{[n-1]!}$.
Making use of the generalized Ruscheweyh q-differential operator $\mathscr{R}_{q}^{\alpha} f(z)$, we introduce a new subclass of spiral-like functions.
For $0 \leq \lambda \leq 1,0 \leq \gamma<1$ and $\frac{-\pi}{2}<\eta<\frac{\pi}{2}$, we let $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$ be the subclass of A consisting of functions of the form (1.1) and satisfying the analytic condition:
$\Re\left(e^{i \eta} \frac{z \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)}{(1-\lambda) z+\lambda \mathscr{R}_{q}^{\alpha} f(z)}\right)>\gamma \cos \eta, \quad z \in \mathbb{U}$,
where $\mathscr{D}_{q}\left(R_{q}^{\alpha} f(z)\right)$ is given by (1.9).

Example 1.1. For $\lambda=1,0 \leq \gamma<1$ and $\frac{-\pi}{2}<\eta<\frac{\pi}{2}$, we let $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, 1) \equiv \mathscr{S}_{q}^{\alpha}(\eta, \gamma)$ be the subclass of \mathscr{A} consisting of functions of the form (1.1) and satisfying the analytic condition:
$\mathfrak{R}\left(e^{i \eta} \frac{z \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)}{\mathscr{R}_{q}^{\alpha} f(z)}\right)>\gamma \cos \eta, \quad z \in \mathbb{U}$,
where $\mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)$ is given by (1.9).
Example 1.2. For $\lambda=0,0 \leq \gamma<1$ and $\frac{-\pi}{2}<\eta<\frac{\pi}{2}$, we let $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, 0) \equiv \mathscr{R}_{q}^{\alpha}(\eta, \gamma)$ be the subclass of \mathscr{A} consisting of functions of the form (1.1) and satisfying the analytic condition:
$\mathfrak{R}\left(e^{i \eta} \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)\right)>\gamma \cos \eta, z \in \mathbb{U}$,
where $\mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)$ is given by (1.9).
The object of the present paper is to investigate the coefficient estimates and subordination properties for the class of functions $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$. Some interesting consequences of the results are also pointed out.

2. Membership characterizations

In this section we obtain several sufficient conditions for a function $f \in \mathscr{A}$ to be in the class $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$.
Theorem 2.1. Let $f \in \mathscr{A}$ and let δ be a real number with $0 \leq \delta<1$. If
$\left|\frac{z \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)}{(1-\lambda) z+\lambda \mathscr{R}_{q}^{\alpha} f(z)}-1\right| \leq 1-\delta, z \in \mathbb{U}$
then $f \in \mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$ provided that

$$
|\gamma| \leq \cos ^{-1}\left(\frac{1-\delta}{1-\lambda}\right)
$$

Proof. From (2.1) it follows that

$$
\frac{z \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)}{(1-\lambda) z+\lambda \mathscr{R}_{q}^{\alpha} f(z)}=1+(1-\delta) w(z),
$$

where $w(z) \in \mathscr{B}$. We have

$$
\begin{aligned}
\Re\left(e^{i \eta} \frac{z \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)}{(1-\lambda) z+\lambda \mathscr{R}_{q}^{\alpha} f(z)}\right) & =\Re\left[e^{i \eta}(1+(1-\delta) w(z))\right] \\
& =\cos \eta+(1-\delta) \Re\left(e^{i \eta} w(z)\right) \\
& \geq \cos \eta-(1-\delta)\left|e^{i \eta} w(z)\right| \\
& >\cos \eta-(1-\delta) \\
& \geq \gamma \cos \eta,
\end{aligned}
$$

provided that $|\eta| \leq \cos ^{-1}\left(\frac{1-\delta}{1-\gamma}\right)$. Thus, the proof is completed.
If in Theorem 2.1 we take $\delta=1-(1-\gamma) \cos \eta$ we obtain the following result.
Corollary 2.2. Let $f \in \mathscr{A}$. If
$\left|\frac{z \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)}{(1-\lambda) z+\lambda \mathscr{R}_{q}^{\alpha} f(z)}-1\right| \leq(1-\gamma) \cos \eta, \quad z \in \mathbb{U}$
then $f \in \mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$.
In the following theorem, we obtain a sufficient condition for f to be in $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$.
Theorem 2.3. A function $f(z)$ of the form (1.1) is in $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$ if
$\sum_{n=2}^{\infty}\left[\left([n]_{q}-\lambda\right) \sec \eta+(1-\gamma) \lambda\right] \Psi_{q}(n, \alpha)\left|a_{n}\right| \leq 1-\gamma$,
where $|\eta|<\frac{\pi}{2}, 0 \leq \lambda \leq 1,0 \leq \gamma<1$ and $\Psi_{q}(n, \alpha)$ is given by (1.10).

Proof. In virtue of Corollary 2.2, it suffices to show that the condition (2.3) is satisfied. We have
$\left|\frac{z \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)}{(1-\lambda) z+\lambda \mathscr{R}_{q}^{\alpha} f(z)}-1\right|$
$=\left|\frac{\sum_{n=2}^{\infty}\left([n]_{q}-\lambda\right) \Psi_{q}(n, \alpha) a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty} \lambda \Psi_{q}(n, \alpha) a_{n} z^{n-1}}\right|$
$<\frac{\sum_{n=2}^{\infty}\left([n]_{q}-\lambda\right) \Psi_{q}(n, \alpha)\left|a_{n}\right|}{1-\sum_{n=2}^{\infty} \lambda \Psi_{q}(n, \alpha)\left|a_{n}\right|}$.
The last expression is bounded above by $(1-\gamma) \cos \eta$, if
$\sum_{n=2}^{\infty}\left([n]_{q}-\lambda\right) \Psi_{q}(n, \alpha)\left|a_{n}\right| \leq(1-\gamma) \cos \eta\left(1-\sum_{n=2}^{\infty} \lambda \Psi_{q}(n, \alpha)\left|a_{n}\right|\right)$
which is equivalent to

$$
\sum_{n=2}^{\infty}\left[\left([n]_{q}-\lambda\right) \sec \eta+(1-\gamma) \lambda\right] \Psi_{q}(n, \alpha)\left|a_{n}\right| \leq 1-\gamma .
$$

This completes the proof of the Theorem 2.3.
In view of Examples 1.1 and 1.2, we state the following corollaries.
Corollary 2.4. A function $f(z)$ of the form (1.1) is in $\mathscr{S}_{q}^{\alpha}(\eta, \gamma)$ if
$\sum_{n=2}^{\infty}\left(\left([n]_{q}-1\right) \sec \eta+(1-\gamma)\right) \Psi_{q}(n, \alpha)\left|a_{n}\right| \leq 1-\gamma$,
where $|\eta|<\frac{\pi}{2}$, and $0 \leq \gamma<1$.
Corollary 2.5. A function $f(z)$ of the form (1.1) is in $\mathscr{R}_{q}^{\alpha}(\eta, \gamma)$ if
$\sum_{n=2}^{\infty}\left([n]_{q} \sec \eta\right) \Psi_{q}(n, \alpha)\left|a_{n}\right| \leq 1-\gamma$,
where $|\eta|<\frac{\pi}{2}$ and $0 \leq \gamma<1$.
Remark 2.6. We observe that Corollary 2.4, yields the result of Silverman [13] for special values of η and γ.

3. Subordination result

Before stating and proving our subordination result for the class $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$, we need the following definitions and a lemma due to Wilf [17].
Definition 3.1. Let $g, h \in \mathscr{A}$. The function g is said to be subordinate to the function h, denoted by $g \prec h$, if there exists a function $w \in \mathscr{B}$ such that $g(z)=h(w(z))$, for all $z \in \mathbb{U}$.
Definition 3.2. [17]. A sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if, whenever $f(z)=$ $\sum_{n=1}^{\infty} a_{n} z^{n}, a_{1}=1$ is regular, univalent and convex in \mathbb{U}, we have
$\sum_{n=1}^{\infty} b_{n} a_{n} z^{n} \prec f(z), z \in \mathbb{U}$.
Lemma 3.3. [17] The sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a subordinating factor sequence if and only if
$\mathfrak{\Re}\left\{1+2 \sum_{n=1}^{\infty} b_{n} z^{n}\right\}>0, z \in \mathbb{U}$.
Theorem 3.4. Let $f \in \mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$ and $g(z)$ be any function in the usual class of convex functions C, then
$\frac{\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)}{2\left[1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)\right]}(f * g)(z) \prec g(z)$
where $|\eta|<\frac{\pi}{2}, 0 \leq \gamma<1,0 \leq \lambda<1$, with
$\Psi_{q}(2, \alpha)=\frac{\Gamma_{q}(2+\alpha)}{\Gamma_{q}(1+\alpha)}$
and
$\mathfrak{\Re}\{f(z)\}>-\frac{1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)}{\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)}, z \in \mathbb{U}$.
The constant factor $\frac{\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma) \Psi_{q}(2, \alpha)\right.}{\left.2\left[1-\gamma+\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)\right]}$ in (3.3) cannot be replaced by a larger number.
Proof. Let $f \in \mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$ satisfy the coefficient inequality (2.3) and suppose that $g(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n} \in C$. Then, by Definition 3.2, the subordination (3.3) of our theorem will hold true if the sequence
$\left\{\frac{\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)}{2\left[1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)\right]} a_{n}\right\}_{n=1}^{\infty}$
is a subordinating factor sequence, with $a_{1}=1$. In view of Lemma 3.3, it is equivalent to the inequality
$\mathfrak{R}\left\{1+\sum_{n=1}^{\infty} \frac{\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)}{1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)} a_{n} z^{n}\right\}>0, z \in \mathbb{U}$.
By noting the fact that $\frac{\left[\left[[n]_{q}-\lambda\right) \sec \eta+(1-\gamma) \lambda\right] \Psi_{q}(n, \alpha)}{(1-\gamma)}$ is an increasing function for $n \geq 2$ and in view of (2.3), when $|z|=r<1$, we obtain

$$
\begin{aligned}
& \Re\left\{1+\frac{\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)}{1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)} \sum_{n=1}^{\infty} a_{n} z^{n}\right\} \\
& \geq 1-\frac{\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)}{1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)} r \\
& -\frac{1-\gamma}{1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)} r>0,|z|=r<1 .
\end{aligned}
$$

This evidently proves the inequality (3.6) and hence also the subordination result (3.3) asserted by Theorem 3.4. The inequality (3.5) follows from (3.3) by taking $g(z)=\frac{z}{1-z}=z+\sum_{n=2}^{\infty} z^{n} \in C$.
The sharpness of the multiplying factor in (3.3) can be established by considering a function
$F(z)=z-\frac{1-\gamma}{1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma) \Psi_{q}(2, \alpha)\right.} z^{2}$, where $|\eta|<\frac{\pi}{2}, 0 \leq \gamma<1,0 \leq \lambda \leq 1$ and $\Psi_{q}(2, \alpha)$ is given by (3.4). Clearly $F \in \mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$. Using (3.3) we infer that
$\frac{\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)}{2\left[1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)\right]} F(z) \prec \frac{z}{1-z}$,
and it follows that
$\min \left\{\Re\left(\frac{\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)}{2\left[1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma)\right) \Psi_{q}(2, \alpha)\right]} F(z)\right)\right\}=-\frac{1}{2}, z \in \mathbb{U}$.
This shows that the constant $\frac{\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma) \Psi_{q}(2, \alpha)\right.}{2\left[1-\gamma+\left(\left([2]_{q}-\lambda\right) \sec \eta+\lambda(1-\gamma) \Psi_{q}(2, \alpha)\right]\right.}$ cannot be replaced by any larger one.
For $\lambda=1$, we state the following corollary.
Corollary 3.5. If $f \in \mathscr{S}_{q}^{\alpha}(\eta, \gamma)$, then
$\frac{(q \sec \eta+(1-\gamma)) \Psi_{q}(2, \alpha)}{2\left[1-\gamma+(q \sec \eta+(1-\gamma)) \Psi_{q}(2, \alpha)\right]}(f * g)(z) \prec g(z)$
where $|\eta|<\frac{\pi}{2}, 0 \leq \gamma<1, g \in C$ and
$\mathfrak{R}\{f(z)\}>-\frac{1-\gamma+(q \sec \eta+(1-\gamma)) \Psi_{q}(2, \alpha)}{(q \sec \eta+(1-\gamma)) \Psi_{q}(2, \alpha)}, z \in \mathbb{U}$.
The constant factor $\frac{(q \sec \eta+(1-\gamma)) \Psi_{q}(2, \alpha)}{2\left[1-\gamma+(q \sec \eta+(1-\gamma)) \Psi_{q}(2, \alpha)\right]}$ in (3.7) cannot be replaced by a larger one.
By taking $\lambda=0$, we state the next corollary.
Corollary 3.6. If $f \in \mathscr{R}_{q}^{\alpha}(\eta, \gamma, \lambda)$, then
$\frac{(1+q) \sec \eta \Psi_{q}(2, \alpha)}{2\left[1-\gamma+(1+q) \sec \eta \Psi_{q}(2, \alpha)\right]}(f * g)(z) \prec g(z)$
where $|\eta|<\frac{\pi}{2}, 0 \leq \gamma<1, g \in C$ and
$\Re\{f(z)\}>-\frac{1-\gamma+(1+q) \sec \eta \Psi_{q}(2, \alpha)}{(1+q) \sec \eta \Psi_{q}(2, \alpha)}, z \in \mathbb{U}$.
The constant factor $\frac{(1+q) \sec \eta \Psi_{q}(2, \alpha)}{2\left[1-\gamma+(1+q) \sec \eta \Psi_{q}(2, \alpha)\right]}$ in (3.8) cannot be replaced by a larger one.

4. The Fekete-Szegö problem

The Fekete-Szegö problem consists in finding sharp upper bounds for the functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for various subclasses of \mathscr{A} (see [10], [16]). In order to obtain sharp upper-bounds for $\left|a_{3}-\mu a_{2}^{2}\right|$ for the class $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$ the following lemma is required (see, e.g., [9], p.108).

Lemma 4.1. Let the function $w \in \mathscr{B}$ be given by

$$
w(z)=\sum_{n=1}^{\infty} w_{n} z^{n}, z \in \mathbb{U}
$$

Then
$\left|w_{1}\right| \leq 1$ and $\left|w_{2}\right| \leq 1-\left|w_{1}\right|^{2}$
and
$\left|w_{2}-s w_{1}^{2}\right| \leq \max \{1,|s|\}$ for any complex number s.
The functions $w(z)=z$ and $w(z)=z^{2}$ or one of their rotations show that both inequalities (4.1) and (4.2) are sharp.
For the constants γ, η with $0 \leq \gamma<1$ and $|\eta|<\frac{\pi}{2}$ denote
$p_{\gamma, \eta}(z)=\frac{1+e^{-i \eta}\left(e^{-i \eta}-2 \gamma \cos \eta\right) z}{1-z}, z \in \mathbb{U}$.
The function $p_{\gamma, \eta}(z)$ maps the open unit disk onto the half-plane

$$
H_{\gamma, \eta}=\left\{z \in \mathbb{C}: \mathfrak{R}\left(e^{i \eta} z\right)>\gamma \cos \eta\right\}
$$

If

$$
p_{\gamma, \eta}(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

then it is easy to check that
$p_{n}=2 e^{-i \eta}(1-\gamma) \cos \eta$, for all $n \geq 1$.
First we obtain sharp upper-bounds for the Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ with μ real parameter .
Theorem 4.2. Let $f \in \mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$ be given by (1.1) and let μ be a real number. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq
$$

$$
\begin{cases}\frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha)}\left[1+\frac{2(1-\gamma) \lambda}{1+q-\lambda}-\mu \frac{2(1-\gamma)\left(1+q+q^{2}-\lambda\right)}{(1+q-\lambda)^{2}} \cdot \frac{\Psi_{q}(3, \alpha)}{\Psi_{q}^{2}(2, \alpha)}\right], & \text { if } \mu \leq \sigma_{1} \tag{4.5}\\ \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha)}, & \text { if } \sigma_{1} \leq \mu \leq \sigma_{2} \\ \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha)}\left[\mu \frac{2(1-\gamma)\left(1+q+q^{2}-\lambda\right)}{(1+q-\lambda)^{2}} \cdot \frac{\Psi_{q}(3, \alpha)}{\Psi_{q}^{2}(2, \alpha)}+\frac{2(1-\gamma) \lambda}{1+q-\lambda}-1\right], & \text { if } \mu \geq \sigma_{2}\end{cases}
$$

where
$\sigma_{1}=\frac{\lambda(1+q-\lambda)}{1+q+q^{2}-\lambda} \cdot \frac{\Psi_{q}^{2}(2, \alpha)}{\Psi_{q}(3, \alpha)}$
$\sigma_{2}=\frac{(1+q-\lambda)(1+q-\lambda \gamma)}{(1-\gamma)\left(1+q+q^{2}-\lambda\right)} \cdot \frac{\Psi_{q}^{2}(2, \alpha)}{\Psi_{q}(3, \alpha)}$
and $\Psi_{q}(2, \alpha), \Psi_{q}(3, \alpha)$ are defined by (1.10) with $n=2$ and $n=3$ respectively. All estimates are sharp.
Proof. Suppose that $f \in \mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$ is given by (1.1). Then, from the definition of the class $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$, there exists $w \in \mathscr{B}, w(z)=$ $w_{1} z+w_{2} z^{2}+w_{3} z^{3}+\ldots$ such that
$\frac{z \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)}{(1-\lambda) z+\lambda \mathscr{R}_{q}^{\alpha} f(z)}=p_{\gamma, \eta}(w(z)), \quad z \in \mathbb{U}$.
We have

$$
\frac{z \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)}{(1-\lambda) z+\lambda \mathscr{R}_{q}^{\alpha} f(z)}
$$

$=1+\left([2]_{q}-\lambda\right) \Psi_{q}(2, \alpha) a_{2} z+\left[\left(\lambda^{2}-[2]_{q} \lambda\right) \Psi_{q}^{2}(2, \alpha) a_{2}^{2}+\left([3]_{q}-\lambda\right) \Psi_{q}(3, \alpha) a_{3}\right] z^{2}+\ldots$
or

$$
\frac{z \mathscr{D}_{q}\left(\mathscr{R}_{q}^{\alpha} f(z)\right)}{(1-\lambda) z+\lambda \mathscr{R}_{q}^{\alpha} f(z)}
$$

$=1+(1+q-\lambda) \Psi_{q}(2, \alpha) a_{2} z+\left[\left(\lambda^{2}-q \lambda-\lambda\right) \Psi_{q}^{2}(2, \alpha) a_{2}^{2}+\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha) a_{3}\right] z^{2}+\ldots$.
Set $p_{\gamma, \eta}(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots$. From (4.4) we have

$$
p_{1}=p_{2}=2 e^{-i \eta}(1-\gamma) \cos \eta
$$

Equating the coefficients of z and z^{2} on both sides of (4.8) and taking into account (4.9), we obtain

$$
a_{2}=\frac{p_{1} w_{1}}{(1+q-\lambda) \Psi_{q}(2, \alpha)} \text { and } a_{3}=\frac{1}{\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha)}\left[p_{1} w_{2}+\left(p_{2}+\frac{\lambda}{1+q-\lambda} p_{1}^{2}\right) w_{1}^{2}\right]
$$

and thus we obtain
$a_{2}=\frac{2 e^{-i \eta}(1-\gamma) \cos \eta}{(1+q-\lambda) \Psi_{q}(2, \alpha)} w_{1}$
and
$a_{3}=\frac{2 e^{-i \eta}(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha)}\left[w_{2}+\left(1+\frac{2 \lambda e^{-i \eta}(1-\gamma) \cos \eta}{1+q-\lambda}\right) w_{1}^{2}\right]$.
It follows
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha)}$
$\times\left\{\left|w_{2}\right|+\left|1+\frac{2 e^{-i \eta}(1-\gamma) \cos \eta}{1+q-\lambda}\left(\lambda-\mu \frac{1+q+q^{2}-\lambda}{1+q-\lambda} \cdot \frac{\Psi_{q}(3, \alpha)}{\Psi_{q}^{2}(2, \alpha)}\right)\right|\left|w_{1}\right|^{2}\right\}$.
Making use of Lemma 4.1 (4.1) we have
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha)}$
$\times\left\{1+\left[\left|1+\frac{2 e^{-i \eta}(1-\gamma) \cos \eta}{1+q-\lambda}\left(\lambda-\mu \frac{1+q+q^{2}-\lambda}{1+q-\lambda} \cdot \frac{\Psi_{q}(3, \alpha)}{\Psi_{q}^{2}(2, \alpha)}\right)\right|-1\right]\left|w_{1}\right|^{2}\right\}$.
or
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\eta\right) \Psi_{q}(3, \alpha)}\left[1+\left(\sqrt{1+M(2+M) \cos ^{2} \eta}-1\right)\left|w_{1}\right|^{2}\right]$,
where
$M=\frac{2(1-\gamma)}{1+q-\lambda}\left(\lambda-\mu \frac{1+q+q^{2}-\lambda}{1+q-\lambda} \cdot \frac{\Psi_{q}(3, \alpha)}{\Psi_{q}^{2}(2, \alpha)}\right)$.
Denote by
$F(x, y)=1+\left(\sqrt{1+M(2+M) x^{2}}-1\right) y^{2}$ where $x=\cos \eta, y=\left|w_{1}\right|$ and $(x, y) \in[0,1] \times[0,1]$.
Simple calculation shows that the function $F(x, y)$ does not have a local maximum at any interior point of the open rectangle $(0,1) \times(0,1)$. Thus, the maximum must be attained at a boundary point. Since $F(x, 0)=1, F(0, y)=1$ and $F(1,1)=|1+M|$, it follows that the maximal value of $F(x, y)$ may be $F(0,0)=1$ or $F(1,1)=|1+M|$.
Therefore, from (4.12) we obtain
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\eta\right) \Psi_{q}(3, \alpha)} \max \{1,|1+M|\}$.
where M is given by (4.13).
Consider first the case $|1+M| \geq 1$. If $\mu \leq \sigma_{1}$, where σ_{1} is given by (4.6), then $M \geq 0$ and from (4.14) we obtain

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha)}\left[1+\frac{2(1-\gamma) \lambda}{1+q-\lambda}-\mu \frac{2(1-\gamma)\left(1+q+q^{2}-\lambda\right)}{(1+q-\lambda)^{2}} \cdot \frac{\Psi_{q}(3, \alpha)}{\Psi_{q}^{2}(2, \alpha)}\right]
$$

which is the first part of the inequality (4.5). If $\mu \geq \sigma_{2}$, where σ_{2} is given by (4.7), then $M \leq-2$ and it follows from (4.14) that $\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha)}\left[\mu \frac{2(1-\gamma)\left(1+q+q^{2}-\lambda\right)}{(1+q-\lambda)^{2}} \cdot \frac{\Psi_{q}(3, \alpha)}{\Psi_{q}^{2}(2, \alpha)}+\frac{2(1-\gamma) \lambda}{1+q-\lambda}-1\right]$
and this is the third part of (4.5).
Next, suppose $\sigma_{1} \leq \mu \leq \sigma_{2}$. Then, $|1+M| \leq 1$ and thus, from (4.14) we obtain
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\lambda\right) \Psi_{q}(3, \alpha)}$
which is the second part of the inequality (4.5).
In view of Lemma 4.1, the results are sharp for $w(z)=z$ and $w(z)=z^{2}$ or one of their rotations.
Next, we consider the Fekete-Szegö problem for the class $\mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$ with μ complex parameter.
Theorem 4.3. Let $f \in \mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$ be given by (1.1) and let μ be a complex number. Then,
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\eta\right) \Psi_{q}(3, \alpha)}$
$\times \max \left\{1,\left|\frac{2(1-\gamma) \cos \eta}{1+q-\lambda}\left(\mu \frac{1+q+q^{2}-\lambda}{1+q-\lambda} \cdot \frac{\Psi_{q}(3, \alpha)}{\Psi_{q}^{2}(2, \alpha)}-\lambda\right)-e^{i \eta}\right|\right\}$
The result is sharp.
Proof. Assume that $f \in \mathscr{G}_{q}^{\alpha}(\eta, \gamma, \lambda)$. Making use of (4.10) and (4.11) we obtain
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2(1-\gamma) \cos \eta}{\left(1+q+q^{2}-\eta\right) \Psi_{q}(3, \alpha)}$
$\times\left|w_{2}-\left[-\frac{2 e^{-i \eta}(1-\gamma) \cos \eta}{1+q-\lambda}\left(\lambda-\mu \frac{1+q+q^{2}-\lambda}{1+q-\lambda} \cdot \frac{\Psi_{q}(3, \alpha)}{\Psi_{q}^{2}(2, \alpha)}\right)-1\right] w_{1}^{2}\right|$
The inequality (4.15) follows as an application of Lemma 4.1(4.2) with
$s=\frac{2 e^{-i \eta}(1-\gamma) \cos \eta}{1+q-\lambda}\left(\mu \frac{1+q+q^{2}-\lambda}{1+q-\lambda} \cdot \frac{\Psi_{q}(3, \alpha)}{\Psi_{q}^{2}(2, \alpha)}-\lambda\right)-1$.

Remark 4.4. By specializing the parameters $\lambda=0$ and $\lambda=1$ one can state the above discussed results for function f in the subclasses defined in Example 1.1 and 1.2 respectively.

References

[1] S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain (p, q)-derivative operator and associated divided differences, J. Inequal. Appl., (2016) 2016:301.
[2] A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, 2013.
[3] F. H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1908), 253-281.
[4] S. Kanas, D. Răducanu, Some subclass of analytic functions related to conic domains, Math. Slovaca, 64(5)(2014), 1183-1196.
[5] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[6] R. J. Libera, Univalent α-spiral functions, Canad. J. Math., 19 (1967), 449-456.
[7] A. Mohammed, M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik, 65(4) (2013), 454-464.
[8] S. Mahmood, J. Sokól, New subclasses of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 71 (2017), 1345-1357.
[9] Z. Nehari, Conformal mapping, McGraw-Hill, New-York, 1952.
[10] H. Orhan, D. Răducanu, M. Caglar, M. Rayram, Coefficient estimates and other properties for a class of spirallike functions associated with a differential operator, Abstr. Anal. Appl., vol.2013, Art. ID415319, 7pp.
[11] S. D. Purohit, R. K. Raina, Fractional q-calculus and certain subclasses of univalent analytic functions, Mathematica, 55(78), no.1 (2013), 62-74.
[12] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
[13] H. Silverman, Sufficient conditions for spiral-likeness, Internat. J. Math. Sci., 12(4) (1989), 641-644.
[14] S. Singh, A subordination theorem for spiral-like functions, Internat. J. Math. Math. Sci., 24(7) (2000), 433-435.
[15] L. Špaček, Contribution à la theorie des fonctions univalents, Cas. Mat. Fys., 62(2) (1932), 12-19.
[16] H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Var. Theory Appl., 44 (2001), 145-163.
[17] H. S. Wilf, Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689-693.

