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Abstract

In this paper, making use of the Ruscheweyh- type g-difference operator %, (% f(z)) we introduce a new subclass of spiral-like functions
and discuss some subordination results and Fekete-Szego problem for this generalized function class. Further, some known and new results
which follow as special cases of our results are also mentioned.
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1. Introduction

Let o7 denote the class of functions of the form
f@)=z+) and" (1.1)
n=2

which are analytic and univalent in the open disc U= {z € C: |z| < 1}. Let . denote the subclass of < consisting of functions that are
univalent in U.
A function f € & is said to be in the class of y-spiral-like functions of order A in U, denoted by .*(y,A) if

/

%(e"yzf (Z)> >Acosy, z€U (1.2)
[

for 0 <A < 1 and some real y with |y| < 5. The class *(y,A) was studied by Libera [6] and Keogh and Merkes [5]. Note that

*(7,0) is the class of spiral-like functions introduced by Spacek [15], .#*(0,4) = .7*(A) is the class of starlike functions of order A and

7%(0,0) = . is the familiar class of starlike functions.

Let A be the class of all analytic functions w in U that satisfy the conditions w(0) = 0 and |w(z)| < 1,z € U.

For functions f € o7 given by (1.1) and g € &7 given by g(z) =z+ Y, bpz", we define the Hadamard product (or Convolution ) of f and g
n=2
by

(f*8)(2) =z+ ) anbp?", z€U. (1.3)
n=2
We briefly recall here the notion of g-operators i.e. g-difference operator that play a vital role in the theory of hypergeometric series, quantum
physics and in the operator theory. The application of g-calculus was initiated by Jackson [3] (also see [2, 11]). For the applications of
g-calculus in geometric function theory, one may see the papers of Mohamad and Darus [7], Purohit and Raina [11], Mohamad and Sokdl,
[8].

Consider 0 < g < 1 and a non-negative integer n. The g-integer number or basic number 7 is defined by

_1-4

], = 1oy l+qg+q*+... 44", [0, =0.
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For a non-integer number ¢ we will denote [t], =

The g-shifted factorial is defined as follow

O]'=1, [n)! =[1]4[2]4. - [nq-
Note that 11m | [n]y =n and hnll [n]! =n!.
e
The Jackson S g- derivative operator or g-difference operator for a function f € o/ is defined by

flqz) - f(2)
D4f(2) = 2(g—1) 270 (1.4)
7(0) L 2=0.

Note that forn e N={1,2,...} andz € U

D" = [ " (1.5)
Fort € R and n € N, the g-generalized Pochhammer symbol is defined by

[t = [t)glt +1]glt +2]g... [t +n—1],.

Moreover, for t > 0 the g-Gamma function is given by

Ty(t+1)=[t];T4(r) and Ty(1)=1.

For details on g-calculus one can refer to [1, 3] and also the reference cited therein.
Using the definition of Ruscheweyh differential operator [12], in [4] Kanas and Raducanu introduced the Ruscheweyh g-differential operator
defined by

Ry f(2) = f(2)#Fpar1(z) zeUa>-1 (1.6)
where f € o and

n+0£) o [a+1]n71

F, A — — " . 1.
wa+1(z z+2[n71] (1+a)z z+n;2 1! 7', zeU (1.7)
From (1.6) we have
B =1@),  Rf(2) =224/ (2)
and
B () — 270 (1 f(2)) N

/qf(Z)—T me N.
For f € o given by (1.1), in view of (1.6) and (1.7), we obtain

n+a) S (a+1],-1 -
= —_— = . 1.
Z+Z nfl (o) an?" z+n§2 1)1 ap’ z€U (1.8)
It is easy to check that
z

lim F, =
Jm g.04+1(2) (1—)oi
and
lim 2% S —
Jim g Ry [(2) = f(2)* gt
From (1.8) we get

Dy (RS ( —1+Z[n]q (n,a)anz" ! (1.9)
where

I _

W, (n, o) = gt et (1.10)

mn—1T,(1+a)  [n—1]!

Making use of the generalized Ruscheweyh g-differential operator 9?(‘;‘ f(z), we introduce a new subclass of spiral-like functions.
For0<A<1,0<y<land 5* <n <7, welet4*(n,7,4) be the subclass of A consisting of functions of the form (1.1) and satisfying
the analytic condition:

g [ o 29q(%§ £(2))
(1=A)z+AZ%8 f(2)

) >vycosn, ze€U, (1.11)

where 7, (R f(z)) is given by (1.9).
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Example 1.1. ForA =1,0<y<land 7 <n <, welet4*(n,v,1) = 7(n,7) be the subclass of </ consisting of functions of the
form (1.1) and satisfying the analytic condition:

( 2 1)

«%Jf]xf(z) ) >vycosn, z€U, (1.12)

where D4(%g f(2)) is given by (1.9).

T

Example 1.2. ForA =0,0<y<land 3% <n <%, we let %q“(m 7,0) = %g(n,}/) be the subclass of </ consisting of functions of the
form (1.1) and satisfying the analytic condition:

9?(6“7 .@A%’gf(@)) >ycosn, z€ U, (1.13)

where D4(%q f(2)) is given by (1.9).

The object of the present paper is to investigate the coefficient estimates and subordination properties for the class of functions %q“(n, Y,A).
Some interesting consequences of the results are also pointed out.

2. Membership characterizations
In this section we obtain several sufficient conditions for a function f € 27 to be in the class gq"‘(n, Y, A).
Theorem 2.1. Let f € of and let § be a real number with 0 < § < 1. If

2 Dq(%5 f(2))

—1|<1-8, zeU 2.1
(= Ap+Arzefe) |5 7% € @D

then f € 4 (n,y,A) provided that
1-6
<cos ' — ).
|| < cos <lfl)

29y(%4f(2))
(1-2A)z+ A% (2)

Proof. From (2.1) it follows that

=1+4+(1-8)w(z),

where w(z) € . We have

% (an 2D4(RE1(2))
(

- x)zm%gf(z)) =R (1+ (1= 8)w(2))

=cosn+ (1—8)R(eMw(z))
> cosn — (1= 8)[eMw(z)]

>cosn —(1—9)
> ycosmn,
provided that |17| < cos™! <11;_‘;) Thus, the proof is completed. O

If in Theorem 2.1 we take § = 1 — (1 — ) cosn we obtain the following result.
Corollary 2.2. Let f € <. If

29q(%4 £(2))

(1—2)z+ A% f(2) -1

<(l—y)cosn, zeU 2.2)

then f € 47 (n,7,7).

In the following theorem, we obtain a sufficient condition for f to be in 4* (1, 7,4).

Theorem 2.3. A function f(z) of the form (1.1) is in gqa(m Y,A) if

Y [([nlg = A)secn + (1 = YA ¥q(n, &) an| <17, 23)

n=2

where || < %,0< 24 <1,0<y < 1and ¥y(n,a) is given by (1.10).
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Proof. In virtue of Corollary 2.2, it suffices to show that the condition (2.3) is satisfied. We have

29y(#4 1 (2))
(- A)z+ AZ%f(2)

-1

=

;(Mq —A)¥y(n, @)an" !

1+ Y A%, (n, a)an™!
n=2

o

Y ([nlg = A)¥q(n, @) an|

n=2

1— Z A, (n, o) ay|
n=2

<

The last expression is bounded above by (1 — y)cosn, if

Y. ([nlg — A)¥q(n.@)lan| < (1—7)cosn (1 ~ Y A% a)an|>

n=2 n=2

which is equivalent to
Y [(fnly — ) secn + (1= 1) A (n, @)as] < 1-7.
n=2

This completes the proof of the Theorem 2.3.

In view of Examples 1.1 and 1.2, we state the following corollaries.

Corollary 2.4. A function f(z) of the form (1.1) is in ZF(n,7) if

=

Z,z(([n]q— Dsecn +(1-7)¥(n,a)la,| <1-7,

where | < Z,and 0 <y < 1.
Corollary 2.5. A function f(z) of the form (1.1) is in Z¢(n,7) if

=

Y ([nlgsecn)¥y(n,a)|an| < 1-7,

n=2

where |n| < % and 0 <y < 1.

Remark 2.6. We observe that Corollary 2.4, yields the result of Silverman [13] for special values of | and 7.

3. Subordination result

Before stating and proving our subordination result for the class gqo‘(m ¥, 1), we need the following definitions and a lemma due to Wilf

[17].

Definition 3.1. Ler g,h € 7. The function g is said to be subordinate to the function h, denoted by g < h, if there exists a function w € 5

such that g(z) = h(w(z)), for all z € U.

Definition 3.2. [17]. A sequence {bn}::1 of complex numbers is said to be a subordinating factor sequence if, whenever f(z) =

0
Y anz",ay =1 is regular, univalent and convex in U, we have
n=1

Y bnand < f(z), z€U.
n=1

Lemma 3.3. [17] The sequence {b,};_, is a subordinating factor sequence if and only if

9({1+22b,,z”}>0,z€[[}.

n=1

Theorem 3.4. Let f € 9*(n,v,A) and g(z) be any function in the usual class of convex functions C, then

(([2]g —A)secn +A(1—7))¥,(2, @)
21 —y+(([2]g — A)secn + A(1 — ) ¥y (2, )]

(fxg)(z) < g(2)

where | < Z,0<y<1,0< A <1, with

,2+a)

R VIR

3.1)

3.2)

(3.3)

34)
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and

+ (([2lg =A)secn + A (1 - 7)) ¥y (2, @)
(([2lg —A)secn + A (1 —7))¥,(2, )

9?{]”(z)}>—1 ,ze€U. (3.5)

(([2)g—A)seen+A(1—7))'¥ q(27oE)

The constant factor 5 A=y (2, —A) s+ A (17, (Z.a)] i1 (3.3) cannot be replaced by a larger number.

Proof. Let f € 9*(n,7,1) satisfy the coefficient inequality (2.3) and suppose that g(z) = z+ ¥ cu2" € C. Then, by Definition 3.2, the
n=2
subordination (3.3) of our theorem will hold true if the sequence

{ (([2lg —A)secn +A(1-7)¥(2,0) }w
201 —y+((2g = A)seen +A(1—9)¥g(2,0)] " f

is a subordinating factor sequence, with a; = 1. In view of Lemma 3.3, it is equivalent to the inequality

(2lg=A)secn +A(1—7)¥(2.0)
{”Z Ty + (2l Ayseen + A(1— 1) Fy2.0) "

z"} >0,zcU. (3.6)

[([n]y—A) secn+(1=y)A]¥y (n,0)

By noting the fact that =)

is an increasing function for n > 2 and in view of (2.3), when |z| = r < 1, we obtain

(Rl —A)seen+2A(1-1)¥(2,0) ¢,
9‘{” =7+ ( [2]qfl)secn+l(177/))‘{—’(](2,06)V;anz }

_ (Rlg—A)seen +A(1=7))¥(2,0)
T 1=r+((Rlg = A)seen +A(1-7)) Wy (2, @)
1-7
1y (2l A)seen +A(1-7)¥ (2. @)
This evidently proves the inequality (3.6) and hence also the subordination result (3.3) asserted by Theorem 3.4. The inequality (3.5) follows from (3.3) by
taking g(z) = 1%, =z + E 'eC.

r>0,lzl=r<1l.

The sharpness of the muluplymg factor in (3. 3) can be established by considering a function
F(z)=z— = 22, where || < 5,0 <y<1,0<A < 1and ¥,(2,) is given by (3.4). Clearly F € 4%(1,7,4). Using (3.3) we
infer that
((12g —A)secn + A (1 —7))¥y(2, ) z
21 =y +(([2g = A)secn + A (1-7))¥y (2, )] -z

and it follows that

min (124 —A)seen + A(1—7)¥,(2,) 1
{EK (2[1 =Y+ (([2lg —A)seen +A(1 7)) ¥,(2, )] F(Z)> } 5 €l

1=+~ )secn+l(l )% (2,0)

. (1214 —=A) secn+A(1-7)) ¥, (2,0)
This shows that the constant 2[17y+((2[2]q71)secn+l(1*7;i)‘yq(2va>]

cannot be replaced by any larger one. O

For A = 1, we state the following corollary.

Corollary 3.5. If f € /%(n,7), then

(gsecn +(1—-7))¥,(2,a)
2[1 —y+(gsecn + (1 —7))¥4(2, )]

(fxg)(z) < g(2) (3.7

where 0| < %,0<y<1,geCand

— Y+ (gsecn +(1-7))¥,

1 (
RO > = een + (1), .0

2,0
) ),ZGU

(gsecn+(1-7))¥,(2,)
1=7+(gsecn+(1-7))¥,(2,0)]

The constant factor T in (3.7) cannot be replaced by a larger one.

By taking A = 0, we state the next corollary.

Corollary 3.6. If f € ZJ(n,Y, 1), then

(1+qg)secn¥,(2, o)
2[1—y+(1+q)secn¥ (2, o))

(fx8)(z) < g(2) (3.8)

where 0| < $,0<y<1,geCand

1—7+(14+q)secn'¥(2,a)
(1+g)secn¥,(2, )

R{f@}> - ,z€U.

(L+q)seen, (2.0) ) in (3.8) cannot be replaced by a larger one.

The constant factor =7+ (1+q)secn %, (Z.a)]
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4. The Fekete-Szego problem
The Fekete-Szeg6 problem consists in finding sharp upper bounds for the functional |a3 — ,ua%\ for various subclasses of .27 (see [10], [16]).
In order to obtain sharp upper-bounds for |a3 — a3 for the class 4. (n,7,A) the following lemma is required (see, e.g., [9], p.108).

Lemma 4.1. Let the function w € % be given by
wz) =Y wad, z€U.

n=1

Then

wil <1 and |wa| < 1—|w;|? .1
and

lwy —sw?| <max{1,|s|} for any complex number s. 4.2)

2

The functions w(z) = z and w(z) = z= or one of their rotations show that both inequalities (4.1) and (4.2) are sharp.

For the constants ¥,1 with 0 < y < 1 and |n| < g denote

1+e M (e™™M —2ycos
pya(2) = ( - reosn): ey, 43)

The function py 5, (z) maps the open unit disk onto the half-plane
Hyn = {Z €C:R(eMz) > ycosn} ,

It .
prn(R) =1+Y pad*

n=1

then it is easy to check that
pn=2¢"M(1—7)cosn, forall n>1. (4.4)
First we obtain sharp upper-bounds for the Fekete-Szegé functional a3 — ua%\ with u real parameter .

Theorem 4.2. Let f € 4.7(1,7,A) be given by (1.1) and let |1 be a real number. Then

a3 — pa3| <
2(1—7)cosn 21-nr  20-9N(+g+5—1) ¥G.a) .
(I4+q+¢* = 1)¥,(3,0) { * l4+q—2 (14+g—21)2 w2020 | fuso
2(1—1y)cosn )
(I+q+@ - 1)¥,(3,a) for<u<o 4.5)
2(1—7y)cosn 2(1-7)(1+q+q¢*—24) ¥(G.a) 2(1-pAi .
(1+q+q21)‘1’q(3,a){ (1+q-2)7  W@a) 1+g-2 |0 TH=®
where
_ Al+g-2) ¥(2a)
N ¥,(3,a) (4.6)
- - 22,0

(1=1(1+g+q>=1) ¥(3,a)
and ¥4(2,00), W, (3, ) are defined by (1.10) with n = 2 and n = 3 respectively. All estimates are sharp.

Proof. Suppose that f € 4 (n,y,4) is given by (1.1). Then, from the definition of the class %,*(1,7,1), there exists w € %, w(z) =
w1Z+waz? + w322 + ... such that

Dg(RGf(2)
(= Azt AZgfz) P

(w(z)), zeU. (4.83)

We have
294(%§ f(2))

(1-A)z+ AZZf ()
=1+ ([2]g = 2)¥q(2, @)arz + (A% — 2]gA)¥5(2, @)a3 + (3¢ — 1) ¥q (3, @)as]z + ..
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or

2Dq(#] f(2))
(1=A)z+A%& f(2)

=1+ (1+q— )% (2, Q)az+[(A* —gA — A)¥3 (2, c)a5 + (1 +q+q° — 1) ¥4(3,@)az]® + ... (4.9)
Set pyn(z) =1 + piz+ paz® + p3z> +.... From (4.4) we have

p1=p2=2¢""(1—7y)cosn.
Equating the coefficients of z and Z2 on both sides of (4.8) and taking into account (4.9), we obtain

P11 and az = ! piwa+ | p —0—7/1 p2 "
1+g—A)¥,(2, 3 1+q+q>—2)¥,(3,a) | 2 2 L+g—A"1) "
q q

aj) =

and thus we obtain

2¢~M(1—y)cosn

= 4.1
S Mg wza" 10
and

2¢7M(1—17)cosn 22e”M(1—7)cosn\ ,

= 1 . 4.11
3 (1+9+4*>—2)¥,(3,0) w2t (1 l+g—2 "1 1D
It follows

2(1—1y)cosn

—udll <

e S L =¥, ()

1+

X{W2+

Making use of Lemma 4.1 (4.1) we have

2¢~M(1—7y)cosn 4 l+q+q4* -4 ¥(,0)
1+g—2 l+g—-1 ¥2(2,a)

|W12}~

2(1—1y)cosn
—udll <
kel S T - 09,6
2¢~M (1 —7)cosn 14+g+¢>—2 ¥,(3,a) 2
x{l—i— 1+ - A ) \Pé(z,a) L wi]*p.
or
2(1—17)cosn
—udd| < 1 1+M((24M)cos2n —1 2 4.12
jos el < e | (VM@ Mo =1 ) i @12)
where
2(1—y) l+g+q* -2 ¥(3.a)
M= — . . 4.1
l+g—24 (l I+g-2 ¥i(2,a) “-13)
Denote by

F(x,y) = 1+( 1+M(Q2+M)x%— l)y2 where x =cosn, y=|w;| and (x,y) € [0,1] x [0,1].

Simple calculation shows that the function F(x,y) does not have a local maximum at any interior point of the open rectangle (0,1) x (0,1).
Thus, the maximum must be attained at a boundary point. Since F(x,0) = 1,F(0,y) =1 and F(1,1) = |1 4+ M|, it follows that the maximal
value of F(x,y) may be F(0,0) =1or F(1,1) =|1+M]|.

Therefore, from (4.12) we obtain

2(1—17)cosn
(1+q+4¢>=1)¥(3,)

where M is given by (4.13).
Consider first the case |1+M| > 1. If u < o7, where o is given by (4.6), then M > 0 and from (4.14) we obtain

‘@—ﬂa%‘ < max {1, |1+M]}. 4.14)

A=A 2=+t =R) ¥y(a)
l+g—2 (14+g—1)? w2 (2,a)

2(1—1y)cosn
14+q+q>—21)¥,(3,a)

‘03 —[.La%| < (

which is the first part of the inequality (4.5). If u > 0,, where 0, is given by (4.7), then M < —2 and it follows from (4.14) that

21-ypeosn [ 20-9)(1+g+4—2) P,G,0) 201-9A
T+q+q2—A)%(3,a) | (I+q—2)? ¥2(2.a)  1+q—A

‘a3 7”61%' < (
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and this is the third part of (4.5).
Next, suppose 0] < it < 0,. Then, |14+ M| < 1 and thus, from (4.14) we obtain

2(1—17)cosn
I+q+4¢>—1)¥,(3,)

‘%*Mﬂl%‘ < (

which is the second part of the inequality (4.5).

In view of Lemma 4.1, the results are sharp for w(z) = z and w(z) = 2>

or one of their rotations. O
Next, we consider the Fekete-Szego problem for the class %qo‘ (n,7,A) with u complex parameter.

Theorem 4.3. Let f € 4*(n,v,A) be given by (1.1) and let u be a complex number. Then,

2(1—17)cosn
(1+g+4q>—1)¥(3,a)

‘613 *#a%‘ <

><ma)<{17

The result is sharp.

21-yjcosn ([ 1+g+g =2 ¥,B.a) .\
l+g—-A l+g—2 ¥i(2,a)

} (4.15)

Proof. Assume that f € gqo‘(n,y,)u). Making use of (4.10) and (4.11) we obtain

2(1—17y)cosn
(I+q+4>—1)¥(3,a)

o [aemapeosn (gt -n BG@) ]
2 l+g—A l+g—24  ¥i(2,a) !

‘03 —HG%‘ <

X

The inequality (4.15) follows as an application of Lemma 4.1(4.2) with

2¢7M(1—17)cosn 1+g+¢ -1 ¥,03,0) A 1
s= . a1
l+g—24 l+g—2 ¥i(2,0)

O

Remark 4.4. By specializing the parameters A = 0 and A = 1 one can state the above discussed results for function f in the subclasses
defined in Example 1.1 and 1.2 respectively.
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