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Abstract

In this paper, we define a new subclass of analytic functions with negative coefficients involving Salagean type q− difference operator and
discuss certain characteristic properties and inclusion relations involving Nδ (e) of this generalized function class. Further, we determine
partial sums results for the function class. The usefulness of the main result not only provide the unification of the results discussed in the
literature but also generate certain new results.
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1. Introduction and Preliminaries

Let A denote the class of functions of the form

f (z) = z+
∞

∑
n=2

anzn (1.1)

which are analytic and univalent in the open disc U = {z ∈ C : |z| < 1}. We also denote T a subclass of A introduced and studied by
Silverman [17], consisting of functions of the form

f (z) = z−
∞

∑
n=2

anzn, an > 0; z ∈ U. (1.2)

For functions f ∈A given by (1.1) and g ∈A given by g(z) = z+
∞

∑
n=2

bnzn, we define the Hadamard product (or Convolution ) of f and g

by ( f ∗g)(z) = z+
∞

∑
n=2

anbnzn, z ∈ U.

We briefly recall here the notion of q-operators i.e. q-difference operator that play vital role in the theory of hypergeometric series, quantum
physics and in the operator theory. The application of q-calculus was initiated by Jackson [8] and Kanas and Răducanu [9] have used the
fractional q-calculus operators in investigations of certain classes of functions which are analytic in U. For details on q-calculus one can
refer [1, 2, 3, 4, 8, 9, 10, 11, 13, 21, 22] and also the reference cited therein. For the convenience, we provide some basic definitions and
concept details of q-calculus which are used in this paper. We suppose throughout the paper that 0 < q < 1.
For 0 < q < 1 the Jackson’s q-derivative of a function f ∈A is, by definition, given as follows [8]

Dq f (z) =


f (z)− f (qz)
(1−q)z

f or z 6= 0,

f ′(0) f or z = 0,
(1.3)

and

D2
q f (z) = Dq(Dq f (z)).

Email addresses: , kvijaya@vit.ac.in (Kalippan Vijaya), gmsmoorthy@yahoo.com (Gangadharan Murugusundaramoorthy), syalcin@uludag.edu.tr (Sibel Yalçın)
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From (1.3), we have

Dq f (z) = 1+
∞

∑
n=2

[n]anzn−1 (1.4)

where

[n] = [n]q =
1−qn

1−q
, (1.5)

is sometimes called the basic number n. If q→ 1−, [n]→ n.
For a function h(z) = zn, we obtain Dqh(z) = Dqzn = 1−qn

1−q zn−1 = [n]zn−1, and limq→1− Dqh(z) = limq→1−
(
[n]zn−1)= nzn−1 = h′(z), where

h′ is the ordinary derivative. Recently for f ∈A , Govindaraj and Sivasubramanian [11] defined and discussed the Salagean q-differential
operator as given below:

D0
q f (z) = f (z)

D1
q f (z) = zDq f (z)

Dm
q f (z) = zDq(D

m−1
q f (z))

Dm
q f (z) = z+

∞

∑
n=2

[n]manzn (m ∈ N0,z ∈ U). (1.6)

We note that limq→1−

Dm f (z) = z+
∞

∑
n=2

nmanzn (m ∈ N0, z ∈ U) (1.7)

the familiar Salagean derivative[16].
In this paper, we define a new subclass of analytic functions with negative coefficients involving Salagean type q− difference operator and
discuss certain characteristic properties of this generalized function class and inclusion relations involving Nδ (e) for the function class.

Further by letting fk(z) = z+
k
∑

n=2
anzn be the sequence of partial sums of the analytic function f (z) = z+

∞

∑
n=2

anzn we determine new sharp

lower bounds ℜ

(
f (z)
fk(z)

)
, ℜ

(
fk(z)
f (z)

)
, ℜ

(
f ′(z)
f ′k(z)

)
, ℜ

(
f ′k(z)
f ′(z)

)
. The usefulness of the main result not only provide the unification of the results

discussed in the literature but also generate certain new results.
For 0 ≤ µ ≤ 1, 0 ≤ α < 1, β ≥ 0 and m ∈ N0, we let J m

q (µ,α,β ) be the subclass of A consisting of functions of the form (1.1) and
satisfying the analytic criterion

ℜ

(
Dm+1

q f (z)
(1−µ)z+µDm

q f (z)
−α

)
> β

∣∣∣∣∣ Dm+1
q f (z)

(1−µ)z+µDm
q f (z)

−1

∣∣∣∣∣ , z ∈ U, (1.8)

where Dm
q f (z) is given by (1.6). We further let T J m

q (µ,α,β ) = J m
q (µ,α,β )∩T .

Remark 1.1. By taking µ = 1, 0≤ α < 1,β ≥ 0 and m ∈ N0, we let T J m
q (1,α,β )≡T S Pm

q (α,β ) be the subclass of A consisting of
functions of the form (1.1) and satisfying the analytic criterion

ℜ

(
Dm+1

q f (z)
Dm

q f (z)
−α

)
> β

∣∣∣∣∣ Dm+1
q f (z)
Dm

q f (z)
−1

∣∣∣∣∣ , z ∈ U, (1.9)

studied by Govindaraj and Sivasubramanian [9] for subordination results in conic domain.

Remark 1.2. By taking µ = 0, m ∈ N0, 0 ≤ α < 1 and β ≥ 0, let T J m
q (0,α,β ) ≡U S Dm

q (α,β ) be the subclass of A consisting of
functions of the form (1.1) and satisfying the analytic criterion

ℜ

(
Dm+1

q f (z)
z

−α

)
> β

∣∣∣∣∣Dm+1
q f (z)

z
−1

∣∣∣∣∣ , z ∈ U,

where Dm
q f (z) is given by (1.6).

Remark 1.3. For µ = 0, β = 0, 0≤ α < 1 and m ∈ N0, let T J m
q (0,α,0)≡Rm

q (α) be the subclass of A consisting of functions of the
form (1.1) and satisfying the analytic criterion

ℜ

(
Dm+1

q f (z)
z

)
> α z ∈ U,

where Dm
q f (z) is given by (1.6).

Remark 1.4. As limq→1− and suitably specializing the parameter (as mentioned in the above remarks) we can deduce an interesting
subclasses of A denoted by S m(µ,α,β ), satisfying the analytic criterion

ℜ

(
Dm+1 f (z)

(1−µ)z+µDm f (z)
−α

)
> β

∣∣∣∣ Dm+1 f (z)
(1−µ)z+µDm f (z)

−1
∣∣∣∣ , z ∈ U, (1.10)

where Dm f (z) is given by (1.7).
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2. Basic Properties

In this section we obtain the characterization properties for the classes T J m
q (µ,α,β ).

Theorem 2.1. A function f (z) of the form (1.1) is in J m
q (µ,α,β ) if

∞

∑
n=2

[n]m([n](1+β )−µ(α +β )) |an| ≤ 1−α, (2.1)

where 0≤ µ ≤ 1, 0≤ α < 1,β ≥ 0 and m ∈ N0. The result is sharp for the function

fn(z) = z− 1−α

[n]m([n](1+β )−µ(α +β ))
zn.

Proof. It suffices to show that

β

∣∣∣∣∣ Dm+1
q f (z)

(1−µ)z+µDm
q f (z)

−1

∣∣∣∣∣−ℜ

(
Dm+1

q f (z)
(1−µ)z+µDm

q f (z)
−1

)
≤ 1−α.

We have

β

∣∣∣∣∣ Dm+1
q f (z)

(1−µ)z+µDm
q f (z)

−1

∣∣∣∣∣−ℜ

(
Dm+1

q f (z)
(1−µ)z+µDm

q f (z)
−1

)

≤ (1+β )

∣∣∣∣∣ Dm+1
q f (z)

(1−µ)z+µDm
q f (z)

−1

∣∣∣∣∣
≤

(1+β )
∞

∑
n=2

[n]m([n]−µ)|an||z|n−1

1−
∞

∑
n=2

[n]mµ|an||z|n−1
.

As |z| → 1−, the last expression is bounded above by 1−α if (2.1) holds. It is obvious that the function fn satisfies the inequality (2.1),and
thus 1−α cannot be replaced by a larger number. Therefore we need only to prove that f ∈T J m

q (µ,α,β ). Since

ℜ

1−
∞

∑
n=2

[n]m+1 anzn−1

1−
∞

∑
n=2

[n]mµ anzn−1
−α

> β

∣∣∣∣∣∣∣∣
∞

∑
n=2

[n]m([n]−µ)anzn−1

1−
∞

∑
n=2

[n]mµanzn−1

∣∣∣∣∣∣∣∣ .
Letting z→ 1− along the real axis, we obtain the desired inequality given in (2.1).

Corollary 2.2. If f ∈T J m
q (µ,α,β ), then

|an| ≤
1−α

[n]m([n](1+β )−µ(α +β ))
, (2.2)

Equality holds for the function f (z) = z− 1−α

[n]m([n](1+β )−µ(α+β ))
zn.

Corollary 2.3. A function f (z) of the form (1.1) is in T S Pm
q (α,β ) if

∞

∑
n=2

[n]m([n](1+β )− (α +β )) |an| ≤ 1−α, (2.3)

where 0≤ α < 1, β ≥ 0 and m ∈ N0. The result is sharp for the function

fn(z) = z− 1−α

[n]m([n](1+β )− (α +β ))
zn.

Corollary 2.4. A function f (z) of the form (1.1) is in U S Dm
q (α,β ) if

∞

∑
n=2

[n]m+1(1+β ) |an| ≤ 1−α, (2.4)

where 0≤ α < 1, β ≥ 0 and m ∈ N0. The result is sharp for the function

fn(z) = z− 1−α

[n]m+1(1+β )
zn.

.
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Corollary 2.5. A function f (z) of the form (1.1) is in Rm
q (α) if

∞

∑
n=2

[n]m+1 |an| ≤ 1−α, (2.5)

where 0≤ α < 1 and m ∈ N0. The result is sharp for the function

fn(z) = z− 1−α

[n]m+1 zn.

.

Corollary 2.6. A function f (z) of the form (1.1) is in S m(µ,α,β ) if

∞

∑
n=2

nm(n(1+β )−µ(α +β )) |an| ≤ 1−α, (2.6)

where 0≤ µ ≤ 1, 0≤ α < 1,β ≥ 0 and m ∈ N0. The result is sharp for the function

fn(z) = z− 1−α

nm(n(1+β )−µ(α +β ))
zn.

Adopting the techniques of Silvia [20] one can prove the results on distortion bounds, extreme points, radii of convexity and starlikeness for
functions f (z) ∈T J m

q (µ,α,β ) we skip the details.

3. Inclusion relations involving Nδ (e).

In this section following [7, 12, 15], we define the n, δ neighborhood of function f (z) ∈T and discuss the inclusion relations involving
Nδ (e).

Nδ ( f ) =

{
g ∈T : g(z) = z−

∞

∑
n=2

bnzn and
∞

∑
n=2

n|an−bn| ≤ δ

}
. (3.1)

Particularly for the identity function e(z) = z, we have

Nδ (e) =

{
g ∈T : g(z) = z−

∞

∑
n=2

bnzn and
∞

∑
n=2

n|bn| ≤ δ

}
. (3.2)

Theorem 3.1. Let

δ =
1−α

[2]m([2](1+β )−µ(α +β ))
. (3.3)

Then T J m
q (µ,α,β )⊂ Nδ (e).

Proof. For f ∈T J m
q (µ,α,β ), Theorem 2.1, yields

[2]m([2](1+β )−µ(α +β ))
∞

∑
n=2

an ≤ 1−α

so that

∞

∑
n=2

an ≤
1−α

[2]m([2](1+β )−µ(α +β ))
. (3.4)

On the other hand, from (2.1) and (3.4) we have

[2]m(1+β )
∞

∑
n=2

[n]an ≤ 1−α +[2]mµ(α +β )
∞

∑
n=2

an

≤ 1−α +
[2]mµ(α +β )(1−α)

[2]m([2](1+β )−µ(α +β ))

≤ [2]m(1+β )(1−α)

[2](1+β )−µ(α +β )
,

∞

∑
n=2

[n]an ≤ 1−α

[2](1+β )−µ(α +β )
. (3.5)
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Now we determine the neighborhood for each of the class T J m
q (µ,α,β ) which we define as follows.

A function f ∈T is said to be in the class T J m
q (µ,α,β ) if there exists a function g ∈T J m

q (µ,α,β ,η) such that∣∣∣∣ f (z)
g(z)
−1
∣∣∣∣< 1−η , (z ∈ U, 0≤ η < 1). (3.6)

Theorem 3.2. If g ∈T J m
q (µ,α,β ) and

η = 1− δ [2]m([2](1+β )−µ(α +β ))

2 [[2]m([2](1+β )−µ(α +β ))− (1−α)]
. (3.7)

Then Nδ (g)⊂T J m
q (µ,α,β ,η).

Proof. Suppose that f ∈ Nδ (g) then we find from (3.5) that

∞

∑
n=2

n|an−bn| ≤ δ

which implies that the coefficient inequality

∞

∑
n=2
|an−bn| ≤

δ

2
.

Next, since g ∈T J m
q (µ,α,β ), we have

∞

∑
n=2

bn ≤
1−α

[2]m([2](1+β )−µ(α +β ))
.

So that

∣∣∣∣ f (z)
g(z)
−1
∣∣∣∣ <

∞

∑
n=2
|an−bn|

1−
∞

∑
n=2

bn

≤ δ

2
× [2]m([2](1+β )−µ(α +β ))

[2]m([2](1+β )−µ(α +β ))− (1−α)

≤ 1−η .

provided that η is given precisely by (3.7). Thus by definition, f ∈T J m
q (µ,α,β ,η) for η given by (3.7), which completes the proof.

4. Partial Sums

Silverman [18] determined sharp lower bounds on the real part of the quotients between the normalized starlike or convex functions and their
sequences of partial sums. In this section following the earlier work by Silverman [18] and also the works cited in [5, 6, 14, 19] on partial
sums of analytic functions, we study the ratio of a function of the form (1.1) to its sequence of partial sums of the form

fk(z) = z+
k

∑
n=2

anzn

when the coefficients of f (z) are satisfy the condition (2.1).
Throughout this section for our convenience, unless otherwise stated, we let

Φ
m
n = Φ

m(µ,α,β ) = [n]m([n](1+β )−µ(α +β )). (4.1)

where 0≤ µ ≤ 1, 0≤ α < 1,β ≥ 0 and m ∈ N0.

Theorem 4.1. If f ∈A of the form (1.1) satisfies the condition (2.1), then

ℜ

(
f (z)
fk(z)

)
≥

Φm
k+1−1+α

Φm
k+1

(z ∈ U) (4.2)

where

Φ
m
k = Φ

m(µ,α,β )≥
{

1−α, i f n = 2,3, . . . ,k
Φm

k+1, i f n = k+1,k+2, . . . . (4.3)

The result (4.2) is sharp with the function given by

f (z) = z+
1−α

Φm
k+1

zk+1. (4.4)
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Proof. Define the function w(z) by

1+w(z)
1−w(z)

=
Φm

k+1
1−α

[
f (z)
fk(z)

−
Φm

k+1−1+α

Φm
k+1

]

=

1+
k
∑

n=2
anzn−1 +

(
Φm

k+1
1−α

) ∞

∑
n=k+1

anzn−1

1+
k
∑

n=2
anzn−1

. (4.5)

It suffices to show that |w(z)| ≤ 1. Now, from (4.5) we can write

w(z) =

(
Φm

k+1
1−α

) ∞

∑
n=k+1

anzn−1

2+2
k
∑

n=2
anzn−1 +

(
Φm

k+1
1−α

) ∞

∑
n=k+1

anzn−1
.

Hence we obtain

|w(z)| ≤

(
Φm

k+1
1−α

) ∞

∑
n=k+1

|an|

2−2
k
∑

n=2
|an|−

(
Φm

k+1
1−α

) ∞

∑
n=k+1

|an|
.

Now |w(z)| ≤ 1 if and only if

2
(

Φm
k+1

1−α

)
∞

∑
n=k+1

|an| ≤ 2−2
k

∑
n=2
|an|

or, equivalently,

k

∑
n=2
|an|+

∞

∑
n=k+1

Φm
k+1

1−α
|an| ≤ 1.

From the condition (2.1), it is sufficient to show that

k

∑
n=2
|an|+

∞

∑
n=k+1

Φm
k+1

1−α
|an| ≤

∞

∑
n=2

Φm
n

1−α
|an|

which is equivalent to

k

∑
n=2

(
Φm

n −1+α

1−α

)
|an|+

∞

∑
n=k+1

(
Φm

n −Φm
k+1

1−α

)
|an| ≥ 0. (4.6)

To see that the function given by (4.4) gives the sharp result, we observe that for z = reiπ/n

f (z)
fk(z)

= 1+
1−α

Φm
k+1

zn→ 1− 1−α

Φm
k+1

=
Φm

k+1−1+α

Φm
k+1

when r→ 1−.

We next determine bounds for fk(z)/ f (z).

Theorem 4.2. If f ∈A of the form (1.1) satisfies the condition (2.1), then

ℜ

(
fk(z)
f (z)

)
≥

Φm
k+1

Φm
k+1 +1−α

(z ∈ U), (4.7)

where Φm
k+1 ≥ 1−α and

Φ
m
n ≥

{
1−α, i f n = 2,3, . . . ,k
Φm

k+1, i f n = k+1,k+2, . . . . (4.8)

The result (4.7) is sharp with the function given by (4.4).
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Proof. The proof follows by defining

1+w(z)
1−w(z)

=
Φm

k+1 +1−α

1−α

[
fk(z)
f (z)

−
Φm

k+1
Φm

k+1 +1−α

]

and much akin to similar arguments in Theorem 4.1.

We next turns to ratios involving derivatives.

Theorem 4.3. If f ∈A of the form (1.1) satisfies the condition (2.1), then

ℜ

(
f ′(z)
f ′k(z)

)
≥

Φm
k+1− (k+1)(1−α)

Φm
k+1

(z ∈ U) (4.9)

and

ℜ

(
f ′k(z)
f ′(z)

)
≥

Φm
k+1

Φm
k+1 +(k+1)(1−α)

(z ∈ U) (4.10)

where Φm
k+1 ≥ (k+1)(1−α) and

Φ
m
n ≥

{
n(1−α), i f n = 2,3, . . . ,k

n
(

Φm
k+1

k+1

)
, i f n = k+1,k+2, . . . .

. (4.11)

The results are sharp with the function given by (4.4).

Proof. We write

1+w(z)
1−w(z)

=
Φm

k+1
(k+1)(1−α)

[
f ′(z)
f ′k(z)

−

(
Φm

k+1− (k+1)(1−α)

Φm
k+1

)]

where

w(z) =

(
Φm

k+1
(k+1)(1−α)

) ∞

∑
n=k+1

anzn−1

2+2
k
∑

n=2
nanzn−1 +

(
Φm

k+1
(k+1)(1−α)

) ∞

∑
n=k+1

nanzn−1
.

Now |w(z)| ≤ 1 if and only if

k

∑
n=2

n |an|+
Φm

k+1
(k+1)(1−α)

∞

∑
n=k+1

n |an| ≤ 1.

From the condition (2.1), it is sufficient to show that

k

∑
n=2

n |an|+
Φm

k+1
(k+1)(1−α)

∞

∑
n=k+1

n |an| ≤
∞

∑
n=2

Φm
n

1−α
|an|

which is equivalent to

k

∑
n=2

(
Φm

n −n(1−α)

1−α

)
|an|+

∞

∑
n=k+1

(k+1)Φm
n −nΦm

k+1
(k+1)(1−α)

|an| ≥ 0.

To prove the result (4.10), define the function w(z) by

1+w(z)
1−w(z)

=
(k+1)(1−α)+Φm

k+1
(1−α)(k+1)

[
f ′k(z)
f ′(z)

−
Φm

k+1
(k+1)(1−α)+Φm

k+1

]

and by similar arguments in first part we get desired result.

Concluding Remark: As a special cases of the above theorems on partial sums , we can determine new sharp lower bounds for ℜ

(
f (z)
fk(z)

)
,

ℜ

(
fk(z)
f (z)

)
, ℜ

(
f ′(z)
f ′k(z)

)
, ℜ

(
f ′k(z)
f ′(z)

)
and also the inclusion relations involving Nδ (e) for various function classes stated in Remark 1.1-1.4.
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