Coefficient Estimates for Certain Subclasses of m-fold Symmetric Bi-univalent Functions Defined by the Q-derivative Operator

F. Müge Sakar ${ }^{{ }^{*}}$ and H. Özlem Güney ${ }^{2}$
${ }^{1}$ Batman University, Faculty of Economics and Administrative Sciences, Batman-Turkey
${ }^{2}$ Dicle University, Faculty of Science, Department of Mathematics, Diyarbakrr-Turkey
*Corresponding author E-mail: mugesakar@hotmail.com

Abstract

In the present study, we introduce two new subclasses of bi-univalent functions based on the q -derivative operator in which both f and f^{-1} are m -fold symmetric analytic functions in the open unit disk. Among other results belonging to these subclasses upper coefficients bounds $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ are obtained in this study. Certain special cases are also indicated.

Keywords: Analytic functions, univalent functions, bi-univalent functions
2010 Mathematics Subject Classification: 30C45, 30C50

1. Introduction

Let \mathscr{A} denote the family of functions analytic in the open unit disk $\mathbb{D}=\{z: z \in \mathbb{C},|z|<1\}$ and normalized by the conditions $f(0)=$ $f^{\prime}(0)-1=0$ and having the form
$f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$.
A function is said to be univalent if it never takes the same value twice, that is $f\left(z_{1}\right)=f\left(z_{2}\right)$ if $z_{1} \neq z_{2}$. We also denote by \mathscr{S} the subclass of functions in \mathscr{A} which are univalent in \mathbb{D} (see for details [7]). From the Koebe $1 / 4$ Theorem (for details, see [7]) every univalent function f has an inverse f^{-1} satisfying
$f^{-1}(f(z))=z \quad(z \in \mathbb{D})$
and
$f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$.
In fact, the inverse function f^{-1} is given by
$g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots$
$=w+\sum_{k=2}^{\infty} b_{k} w^{k}$.
Let $f \in \mathscr{A}$. The function f is said to be bi-univalent in \mathbb{D} if both f and f^{-1} are univalent in \mathbb{D}. Let Σ denote the class of bi-univalent functions in \mathbb{D} given by the Taylor-Maclaurin series expansion given by (1.1). We can accept that the beginning of estimating bounds for the coefficients of classes of bi-univalent functions is the date 1967 [11]. Later the papers of Brannan and Taha [4] and Srivastava et al. [20] were picked up the interest on the coefficient bounds of bi-univalent functions.

For detailed information about the class of Σ was given in the references [4], [11], [14], [20] and [23].
Let $m \in \mathbb{N}=\{1,2,3 \ldots\}$. A domain \mathbb{E} is said to be m-fold symmetric if a rotation of \mathbb{E} about the origin through an angle $2 \pi / m$ carries \mathbb{E} on itself. It follows that, a function f analytic in \mathbb{D} is said to be m -fold symmetric if
$f\left(e^{2 \pi i / m} z\right)=e^{2 \pi i / m} f(z)$.
In particular every f is one-fold symmetric and every odd f is two-fold symmetric. \mathscr{S}_{m} indicate the class of m-fold symmetric univalent functions in \mathbb{D}.
$f \in \mathscr{S}_{m}$ is characterized by having a power series as following normalized form
$f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(z \in \mathbb{D}, m \in \mathbb{N})$.
In [21] Srivastava et al. defined m-fold symmetric bi-univalent function analogues to the concept of m-fold symmetric univalent functions. They introduce some important results, such as each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each ($m \in \mathbb{N}$). In addition, they acquired the series expansion for f^{-1} as follows:

$$
\begin{align*}
g(w) & =w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& =-\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots \\
& =z+\sum_{k=1}^{\infty} A_{m k+1} z^{m k+1} \tag{1.4}
\end{align*}
$$

where $f^{-1}=g$. We denote by Σ_{m} the class of m -fold symmetric bi-univalent functions in \mathbb{D}. For some examples of m -fold symmetric bi-univalent functions, see [21]. The coefficient problem for m -fold symmetric analytic bi-univalent functions is one of the favorite subjects of geometric function theory in these days, see [1], [2], [5], [8], [21], [22]. Here, the aim of this study is to determine upper coefficients bounds $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ are obtained belonging these two new subclasses.

First formulae in what we now call q-calculus were obtained by Euler in the eighteenth century. In the second half of the twentieth century there was a significant increase of activity in the area of the q-calculus. The fractional calculus operators has gained importance and popularity, mainly due to its vast potential of demonstrated applications in various fields of applied sciences, engineering. The application of q-calculus was initiated by Jackson [9].
In the field of geometric function theory, various subclasses of analytic functions have been studied from different viewpoints. The fractional q -calculus is the important tools that are used to investigate subclasses of analytic functions. Historically speaking, a firm footing of the usage of the the q -calculus in the context of geometric function theory was actually provided and the basic (or q -) hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava (see, for details, [19]). In fact, the extension of the theory of univalent functions can be described by using the theory of q-calculus. Furthermore, the q-calculus operators, such as fractional q-integral and fractional q-derivative operators, are used to construct several subclasses of analytic functions (see, [13], [15], [16]). In a recent paper Purohit and Raina [18] investigated applications of fractional q-calculus operators to defined certain new classes of functions which are analytic in the open disk. Later, Mohammed and Darus [12] studied approximation and geometric properties of these q-operators in some subclasses of analytic functions in compact disk. A comprehensive study on applications of q-calculus in operator theory may be found in [3]. For the convenience, we give some basic definitions and concept details of q -calculus which are used in this paper.
For a function $f \in \mathscr{A}$ given by (1.1) and $0<q<1$, the q -derivative of function f is defined by (see [7], [10])
$D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z}, \quad(z \neq 0)$
$D_{q} f(0)=f^{\prime}(0)$ and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. From (1.5), we deduce that
$D_{q} f(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1}$,
where
$[k]_{q}=\frac{1-q^{k}}{1-q}$.
As $q \rightarrow 1^{-},[k]_{q} \rightarrow k$, for a function $g(z)=z^{k}$ we get
$\left.D_{q}\left(z^{k}\right)=[k]\right]_{z^{k-1}}$,
$\lim _{q \rightarrow 1^{-}}\left(D_{q}\left(z^{k}\right)\right)=k z^{k-1}=g^{\prime}(z)$,
where g^{\prime} is the ordinary derivative.
By making use of the q-derivative of a function $f \in \mathscr{A}$, we introduce two new subclasses of the function class Σ_{m} and obtain estimates on the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in these new subclasses of the function class Σ_{m}.
Firstly, in order to derive our main results, we need to following lemma.
Lemma 1.1. [17] If $p \in \mathscr{P}$, then $\left|c_{k}\right| \leq 2$ for each k where \mathscr{P} is the family of all functions p analytic in \mathbb{D} for which
$\mathfrak{R}(p(z))>0, p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$
for $z \in \mathbb{D}$.

2. Definition of the Class $T_{\Sigma, m}^{q, \alpha}$ and Its Coefficient Bounds

Definition 2.1. A function f given by (1.3) is said to be in the class $T_{\Sigma, m}^{q, \alpha}(0<q<1,0<\alpha \leq 1, m \in \mathbb{N})$ if the following condition are satisfied
$f \in \Sigma_{m}$ and $\left|\arg _{q} f(z)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{D})$
and
$\left|\arg D_{q} g(w)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{D})$
where the function g is given by Eq.(1.4).
Remark 2.2. We note that $\lim _{q \rightarrow 1^{-}} T_{\Sigma, m}^{q, \alpha}=T_{\Sigma, m}^{\alpha}$ and for one-fold case $T_{\Sigma, 1}^{\alpha}=T_{\Sigma}^{\alpha}$ introduced by Srivastava et al. [20].
Theorem 2.3. Let the function f given by (1.3) be in the function class $T_{\Sigma, m}^{q, \alpha},(0<q<1,0<\alpha \leq 1, m \in \mathbb{N})$. Then
$\left|a_{m+1}\right| \leq \frac{2 \alpha}{\sqrt{(m+1) \alpha[1+2 m]_{q}-(\alpha-1)[1+m]_{q}^{2}}}$
and
$\left|a_{2 m+1}\right| \leq \frac{2(m+1) \alpha^{2}}{[1+m]_{q}^{2}}+\frac{2 \alpha}{[1+2 m]_{q}}$.
Proof. First of all, it follows from the conditions (2.1) and (2.2) that
$D_{q} f(z)=[p(z)]^{\alpha}, \quad$ and $\quad D_{q} g(w)=[q(w)]^{\alpha}, \quad(z, w \in \mathbb{D})$
Respectively, where $p(z)$ and $q(z)$ are in familiar Caratheodory class \mathscr{P} (see for details [7]) and have the following series statement
$p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots$
and
$q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+q_{3 m} w^{3 m}+\cdots$
Now, comparing the coefficients in (2.5), we have
$[1+m]_{q} a_{m+1}=\alpha p_{m}$
$[1+2 m]_{q} a_{2 m+1}=\alpha p_{2 m}+\frac{\alpha(\alpha-1)}{2} p_{m}^{2}$
$-[1+m]_{q} a_{m+1}=\alpha q_{m}$
$[1+2 m]_{q}\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]=\alpha q_{2 m}+\frac{\alpha(\alpha-1)}{2} q_{m}^{2}$.
From (2.8) and (2.9), we have
$p_{m}=-q_{m}$
and
$2[1+m]_{q}^{2} a_{m+1}^{2}=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right)$.
Furthermore, from Eqs. (2.9), (2.11) and (2.13), we obtain that
$[1+2 m]_{q}(m+1) a_{m+1}^{2}=\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha-1}{\alpha}[1+m]_{q}^{2} a_{m+1}^{2}$.
Therefore, we get
$a_{m+1}^{2}=\frac{\alpha^{2}\left(p_{2 m}+q_{2 m}\right)}{(m+1) \alpha[1+2 m]_{q}-(\alpha-1)[1+m]_{q}^{2}}$.
Note that, according to the Caratheodory lemma [7], $\left|p_{m}\right| \leq 2$ and $\left|q_{m}\right| \leq 2$ for $m \in \mathbb{N}$. Now taking the absolute value of (2.14) and applying the Caratheodory lemma for $p_{2 m}$ and $q_{2 m}$ we have the following inequality
$\left|a_{m+1}\right| \leq \frac{2 \alpha}{\sqrt{(m+1) \alpha[1+2 m]_{q}-(\alpha-1)[1+m]_{q}^{2}}}$.
So, we obtain the desired estimate for $\left|a_{m+1}\right|$ given by (2.3). Next, so as to obtain solution of the coefficient bound on $\left|a_{2 m+1}\right|$, we subtract (2.11) from (2.9). We thus have,
$2[1+2 m]_{q} a_{2 m+1}-(m+1)[1+2 m]_{q} a_{m+1}^{2}$
$=\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right)$.
It follows from (2.13), (2.15) and observing $p_{m}^{2}-q_{m}^{2}$, it gives that
$a_{2 m+1}=\frac{\alpha\left(p_{2 m}-q_{2 m}\right)}{2[1+2 m]_{q}}+\frac{(m+1) \alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{4[1+m]_{q}^{2}}$.
Taking the absolute value of (2.16) and applying Caratheodory lemma again for coefficients $p_{m}, p_{2 m}$ and $q_{2 m}$ we have
$\left|a_{2 m+1}\right| \leq \frac{2(m+1) \alpha^{2}}{[1+m]_{q}^{2}}+\frac{2 \alpha}{[1+2 m]_{q}}$.
So the proof is completed.

Remark 2.4. For one-fold case, we note that $T_{\Sigma, 1}^{q, \alpha}=H_{\Sigma}^{q, \alpha}$ introduced by Bulut [6].
Taking $q \rightarrow 1^{-}$in Theorem 2.1, we have the class, $\lim _{q \rightarrow 1^{-}} T_{\Sigma, m}^{q, \alpha}=H_{\Sigma, m}^{\alpha}$ introduced by Srivastava et al. [21] and obtain the Corollary 2.1 as follows:

Corollary 2.5. [21] Let the function $f \in H_{\Sigma, m}^{\alpha},(0<\alpha \leq 1, m \in \mathbb{N})$ be given (1.3). Then
$\left|a_{m+1}\right| \leq \frac{2 \alpha}{\sqrt{(m+1)(\alpha m+m+1)}}$
and
$\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}}{m+1}+\frac{2 \alpha}{2 m+1}$.
Remark 2.6. For one-fold case, we note that $\lim _{q \rightarrow 1^{-}} T_{\Sigma, 1}^{q, \alpha}=H_{\Sigma}^{\alpha}$ and we can obtain the results of Srivastava et al.[20].

3. Definition of the Class $T_{\Sigma, m}^{q}(\beta)$ and Its Coefficient Bounds

Definition 3.1. A function f given by (1.3) is said to be in the class $T_{\Sigma, m}^{q}(\beta)$,
$1, m \in \mathbb{N})$ if the conditions given below are fulfilled:
$f \in \Sigma_{m}$ and $\mathfrak{R}\left\{D_{q} f(z)\right\}>\beta \quad(z \in \mathbb{D})$
and
$\mathfrak{R}\left\{D_{q} g(w)\right\}>\beta \quad(w \in \mathbb{D})$
where the function g is given by Eq.(1.4).
Remark 3.2. Note that we have the class $\lim _{q \rightarrow 1^{-}} T_{\Sigma, m}^{q, \alpha}=T_{\Sigma, m}^{\alpha}$ and for one-fold case the class $\lim _{q \rightarrow 1^{-}} T_{\Sigma, 1}^{q}(\beta)=T_{\Sigma}(\beta)$ introduced by Srivastava et al. [20].
Theorem 3.3. Let the function f given by (1.3) be in the function class $T_{\Sigma, m}^{q}(\beta)$,
$(0<q<1,0 \leq \beta<1, m \in \mathbb{N})$. Then
$\left|a_{m+1}\right| \leq \min \left\{\frac{2(1-\beta)}{[1+m]_{q}}, 2 \sqrt{\frac{1-\beta}{[1+2 m]_{q}(m+1)}}\right\}$
and
$\left|a_{2 m+1}\right| \leq \frac{2(1-\beta)}{[1+2 m]_{q}}$.
Proof. First of all, it follows from the equations (3.1) and (3.2) that
$D_{q} f(z)=[p(z)]^{\alpha} D_{q} g(w)=[q(w)]^{\alpha}, \quad(z, w \in \mathbb{D})$
respectively, where $p(z)$ and $q(z)$ given by (2.6) and (2.7). Now equating coefficients in (3.5), we obtain
$[1+m]_{q} a_{m+1}=(1-\beta) p_{m}$
$[1+2 m]_{q} a_{2 m+1}=(1-\beta) p_{2 m}$
$-[1+m]_{q} a_{m+1}=(1-\beta) q_{m}$
$[1+2 m]_{q}\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]=(1-\beta) q_{2 m}$.
From Eqs. (3.6) and (3.8), we have
$p_{m}=-q_{m}$
and
$2[1+m]_{q}^{2} a_{m+1}^{2}=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right)$.
Also, from Eqs. (3.7) and (3.9), we obtain
$[1+2 m]_{q}(m+1) a_{m+1}^{2}=(1-\beta)\left(p_{2 m}+q_{2 m}\right)$.
Thus, applying Caratheodory lemma for (3.11) and (3.12) we obtain the coefficient estimate $\left|a_{m+1}\right|$ as follows:
$\left|a_{m+1}^{2}\right| \leq \frac{1-\beta}{[1+2 m]_{q}(m+1)}\left(\left|p_{2 m}\right|+\left|q_{2 m}\right|\right)$
$\left|a_{m+1}\right| \leq 2 \sqrt{\frac{1-\beta}{[1+2 m]_{q}(m+1)}}$
which is desired coefficient bound. Next, so as to obtain bound for coefficient $\left|a_{2 m+1}\right|$ by subtracting (3.9) from (3.7), we have
$-[1+2 m]_{q}(m+1) a_{m+1}^{2}+2[1+2 m]_{q} a_{2 m+1}=(1-\beta)\left(p_{2 m}-q_{2 m}\right)$
or equivalently
$a_{2 m+1}=\frac{(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{2[1+2 m]_{q}}+\frac{m+1}{2} a_{m+1}^{2}$.

Upon substituting the value of a_{m+1}^{2} from (3.11), we obtain
$a_{2 m+1}=\frac{(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{2[1+2 m]_{q}}+\frac{(m+1)(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{4[1+m]_{q}^{2}}$.
Applying Caratheodory lemma for coefficients $p_{m}, q_{m}, p_{2 m}$ and $q_{2 m}$ we obtain
$\left|a_{2 m+1}\right| \leq \frac{2(1-\beta)}{[1+2 m]_{q}}+\frac{2(m+1)(1-\beta)^{2}}{[1+m]_{q}^{2}}$.
On the other hand, by using the equation (3.12) into (3.13), and applying Caratheodory lemma we can obtain the inequality as follows
$\left|a_{2 m+1}\right| \leq \frac{2(1-\beta)}{[1+2 m]_{q}}$
which is the desired bounds on coefficients $\left|a_{2 m+1}\right|$ as given in Theorem 3.1.
Taking $q \rightarrow 1^{-}$in Theorem 3.3, we obtain following corollary.
Corollary 3.4. Let the function f given by (1.3) be in the class $T_{\Sigma, m}(\beta),(0 \leq \beta<1, m \in \mathbb{N})$, Then

$$
\left|a_{m+1}\right| \leq\left\{\begin{array}{l}
2 \sqrt{\frac{1-\beta}{(1+2 m)(1+m)}} ; \quad 0 \leq \beta \leq \frac{m}{1+2 m} \\
\frac{2(1-\beta)}{1+m} ; \quad \frac{m}{1+2 m} \leq \beta<1
\end{array}\right.
$$

and
$\left|a_{2 m+1}\right| \leq \frac{2(1-\beta)}{1+2 m}$.
Remark 3.5. For one fold case, Corollary 3.1 reduces to the following corollary given by Bulut [6] for the bounds on coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

Corollary 3.6. [6] Let the function f given by Taylor-Maclaurin series expansion (1.1) be in the class $H_{\Sigma}(\beta),(0 \leq \beta<1)$. Then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{2(1-\beta)}{3}} ; & 0 \leq \beta \leq \frac{1}{3} \\ 1-\beta ; & \frac{1}{3} \leq \beta<1\end{cases}
$$

and
$\left|a_{3}\right| \leq \frac{2(1-\beta)}{3}$.
Remark 3.7. Corollary 3.2 given above is an improvement of the estimates for coefficients on $\left|a_{2}\right|$ and $\left|a_{3}\right|$ obtained by Srivastava et al [20].
Corollary 3.8. [20] Let the function f given by Taylor-Maclaurin series expansion (1.1) be in the class $H_{\Sigma}(\beta),(0 \leq \beta<1)$. Then
$\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3}} \quad$ and $\quad\left|a_{3}\right| \leq \frac{(1-\beta)(5-3 \beta)}{3}$.

4. Acknowledgement

The present study was supported by Dicle University Scientific Research Coordination Unit. Project Number: FEN.17.027

References

[1] A. Akgül, On the coefficient estimates of analytic and bi-univalent m-fold symmetric functions, Mathematica Aeterna, 7 (3) (2017) 253-260.
[2] Ş. Altınkaya, S. Yalçın, On some subclasses of m-fold symmetric bi-univalent functions, Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 67(1), (2018), 29-36.
[3] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
$[4]$ D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Universitatis Babeş-Bolyai, Mathematica, 31(2), (1986), 70-77.
[5] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions, Turkish J. Math., 40, (2016), 1386-1397.
[6] S. Bulut, Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66(1), (2017), 108-114.
[7] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 1983.
[8] S.G. Hamidi and J.M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Internat. J. Math. 25(7), (2014), 1-8.
[9] F.H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46, (1908), 253-281.
[10] F.H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41, (1910), 193-203.
[11] M. Lewin, On a coefficient problem for bi-univalent functions, Proceedings of the American Mathematical Society, 18, (1967), 63-68.
[12] A. Mohammed and M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik, 65, (2013), 454-465.
[13] G. Murugusundaramoorthy, and T. Janani, Meromorphic parabolic starlike functions associated with q-hypergeometric series, ISRN Mathematical Analysis, (2014), Article ID 923607, 9 pages.
[14] M.E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32, (1969), 100-112.
[15] H.E. Özkan Uçar, Coefficient inequalities for q-starlike functions, Appl. Math. Comp. 276, (2016), 122-126.
[16] Y. Polatoǧlu, Growth and distortion theorems for generalized q-starlike functions, Advances in Mathematics: Scientific Journal, 5, (2016), 7-12.
[17] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen, 1975.
[18] S.D. Purohit and R.K. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica, 55, (2013), 62-74.
[19] H.M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
[20] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23(10), (2010), 1188-1192.
[21] H.M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal, 7(2), (2014), 1-10.
[22] S. Sümer Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J. Math. 40(3), (2016), 641-646.
[23] T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.

