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Abstract

In the present study, we introduce two new subclasses of bi-univalent functions based on the q-derivative operator in which both f and f−1

are m-fold symmetric analytic functions in the open unit disk. Among other results belonging to these subclasses upper coefficients bounds
|am+1| and |a2m+1| are obtained in this study. Certain special cases are also indicated.
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1. Introduction

Let A denote the family of functions analytic in the open unit disk D = {z : z ∈ C, |z|< 1} and normalized by the conditions f (0) =
f ′(0)−1 = 0 and having the form

f (z) = z+
∞

∑
k=2

akzk. (1.1)

A function is said to be univalent if it never takes the same value twice, that is f (z1) = f (z2) if z1 6= z2. We also denote by S the subclass of
functions in A which are univalent in D (see for details [7]). From the Koebe 1/4 Theorem (for details, see [7]) every univalent function f
has an inverse f−1 satisfying

f−1 ( f (z)) = z (z ∈ D)

and

f
(

f−1(w)
)
= w

(
|w|< r0( f ), r0( f )≥ 1

4

)
.

In fact, the inverse function f−1 is given by

g(w) = f−1(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + · · ·

= w+
∞

∑
k=2

bkwk. (1.2)

Let f ∈ A . The function f is said to be bi-univalent in D if both f and f−1 are univalent in D. Let Σ denote the class of bi-univalent
functions in D given by the Taylor-Maclaurin series expansion given by (1.1). We can accept that the beginning of estimating bounds for the
coefficients of classes of bi-univalent functions is the date 1967 [11]. Later the papers of Brannan and Taha [4] and Srivastava et al. [20]
were picked up the interest on the coefficient bounds of bi-univalent functions.
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For detailed information about the class of Σ was given in the references [4], [11], [14], [20] and [23].
Let m ∈ N= {1,2,3...}. A domain E is said to be m-fold symmetric if a rotation of E about the origin through an angle 2π/m carries E on
itself. It follows that, a function f analytic in D is said to be m-fold symmetric if

f
(

e2πi/mz
)
= e2πi/m f (z).

In particular every f is one-fold symmetric and every odd f is two-fold symmetric. Sm indicate the class of m-fold symmetric univalent
functions in D.

f ∈Sm is characterized by having a power series as following normalized form

f (z) = z+
∞

∑
k=1

amk+1zmk+1 (z ∈ D, m ∈ N) . (1.3)

In [21] Srivastava et al. defined m-fold symmetric bi-univalent function analogues to the concept of m-fold symmetric univalent functions.
They introduce some important results, such as each function f ∈ Σ generates an m-fold symmetric bi-univalent function for each (m ∈ N).
In addition, they acquired the series expansion for f−1 as follows:

g(w) = w−am+1wm+1 +
[
(m+1)a2

m+1−a2m+1

]
w2m+1

=−
[

1
2
(m+1)(3m+2)a3

m+1− (3m+2)am+1a2m+1 +a3m+1

]
w3m+1 + · · ·

= z+
∞

∑
k=1

Amk+1zmk+1 (1.4)

where f−1 = g. We denote by Σm the class of m-fold symmetric bi-univalent functions in D. For some examples of m-fold symmetric
bi-univalent functions, see [21]. The coefficient problem for m-fold symmetric analytic bi-univalent functions is one of the favorite subjects
of geometric function theory in these days, see [1], [2], [5], [8], [21], [22]. Here, the aim of this study is to determine upper coefficients
bounds |am+1| and |a2m+1| are obtained belonging these two new subclasses.

First formulae in what we now call q-calculus were obtained by Euler in the eighteenth century. In the second half of the twentieth century
there was a significant increase of activity in the area of the q-calculus. The fractional calculus operators has gained importance and
popularity, mainly due to its vast potential of demonstrated applications in various fields of applied sciences, engineering. The application of
q-calculus was initiated by Jackson [9].
In the field of geometric function theory, various subclasses of analytic functions have been studied from different viewpoints. The fractional
q-calculus is the important tools that are used to investigate subclasses of analytic functions. Historically speaking, a firm footing of the
usage of the the q-calculus in the context of geometric function theory was actually provided and the basic (or q-) hypergeometric functions
were first used in geometric function theory in a book chapter by Srivastava (see, for details, [19]). In fact, the extension of the theory of
univalent functions can be described by using the theory of q-calculus. Furthermore, the q-calculus operators, such as fractional q-integral
and fractional q-derivative operators, are used to construct several subclasses of analytic functions (see, [13], [15], [16]). In a recent paper
Purohit and Raina [18] investigated applications of fractional q-calculus operators to defined certain new classes of functions which are
analytic in the open disk. Later, Mohammed and Darus [12] studied approximation and geometric properties of these q-operators in some
subclasses of analytic functions in compact disk. A comprehensive study on applications of q-calculus in operator theory may be found in
[3]. For the convenience, we give some basic definitions and concept details of q-calculus which are used in this paper.

For a function f ∈A given by (1.1) and 0 < q < 1, the q-derivative of function f is defined by (see [7], [10])

Dq f (z) =
f (qz)− f (z)
(q−1)z

, (z 6= 0) (1.5)

Dq f (0) = f ′(0) and D2
q f (z) = Dq(Dq f (z)). From (1.5), we deduce that

Dq f (z) = 1+
∞

∑
k=2

[k]qakzk−1, (1.6)

where

[k]q =
1−qk

1−q
. (1.7)

As q→ 1−, [k]q→ k, for a function g(z) = zk we get

Dq(zk) = [k]qzk−1,
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lim
q→1−

(Dq(zk)) = kzk−1 = g′(z),

where g′ is the ordinary derivative.

By making use of the q-derivative of a function f ∈A , we introduce two new subclasses of the function class Σm and obtain estimates on
the coefficients |am+1| and |a2m+1| for functions in these new subclasses of the function class Σm .
Firstly, in order to derive our main results, we need to following lemma.

Lemma 1.1. [17] If p ∈P , then |ck| ≤ 2 for each k where P is the family of all functions p analytic in D for which

ℜ(p(z))> 0, p(z) = 1+ c1z+ c2z2 + · · ·

for z ∈ D.

2. Definition of the Class T q,α
Σ,m and Its Coefficient Bounds

Definition 2.1. A function f given by (1.3) is said to be in the class T q,α
Σ,m (0 < q < 1,0 < α ≤ 1,m ∈ N) if the following condition are

satisfied

f ∈ Σm and
∣∣argDq f (z)

∣∣< απ

2
(z ∈ D) (2.1)

and∣∣argDqg(w)
∣∣< απ

2
(w ∈ D) (2.2)

where the function g is given by Eq.(1.4).

Remark 2.2. We note that limq→1− T q,α
Σ,m = T α

Σ,m and for one-fold case T α
Σ,1 = T α

Σ
introduced by Srivastava et al. [20].

Theorem 2.3. Let the function f given by (1.3) be in the function class T q,α
Σ,m , (0 < q < 1,0 < α ≤ 1,m ∈ N). Then

|am+1| ≤
2α√

(m+1)α[1+2m]q− (α−1)[1+m]2q

(2.3)

and

|a2m+1| ≤
2(m+1)α2

[1+m]2q
+

2α

[1+2m]q
. (2.4)

Proof. First of all, it follows from the conditions (2.1) and (2.2) that

Dq f (z) = [p(z)]α , and Dqg(w) = [q(w)]α , (z,w ∈ D) (2.5)

Respectively, where p(z) and q(z) are in familiar Caratheodory class P (see for details [7]) and have the following series statement

p(z) = 1+ pmzm + p2mz2m + p3mz3m + · · · (2.6)

and

q(w) = 1+qmwm +q2mw2m +q3mw3m + · · · (2.7)

Now, comparing the coefficients in (2.5), we have

[1+m]qam+1 = α pm (2.8)

[1+2m]qa2m+1 = α p2m +
α(α−1)

2
p2

m (2.9)

−[1+m]qam+1 = αqm (2.10)

[1+2m]q[(m+1)a2
m+1−a2m+1] = αq2m +

α(α−1)
2

q2
m. (2.11)

From (2.8) and (2.9), we have
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pm =−qm (2.12)

and

2[1+m]2qa2
m+1 = α

2(p2
m +q2

m). (2.13)

Furthermore, from Eqs. (2.9), (2.11) and (2.13), we obtain that

[1+2m]q(m+1)a2
m+1 = α(p2m +q2m)+

α−1
α

[1+m]2qa2
m+1.

Therefore, we get

a2
m+1 =

α2(p2m +q2m)

(m+1)α[1+2m]q− (α−1)[1+m]2q
. (2.14)

Note that, according to the Caratheodory lemma [7], |pm| ≤ 2 and |qm| ≤ 2 for m ∈ N. Now taking the absolute value of (2.14) and applying
the Caratheodory lemma for p2m and q2m we have the following inequality

|am+1| ≤
2α√

(m+1)α[1+2m]q− (α−1)[1+m]2q

.

So, we obtain the desired estimate for |am+1| given by (2.3). Next, so as to obtain solution of the coefficient bound on |a2m+1|, we subtract
(2.11) from (2.9). We thus have,

2[1+2m]qa2m+1− (m+1)[1+2m]qa2
m+1

= α(p2m−q2m)+
α(α−1)

2
(p2

m−q2
m). (2.15)

It follows from (2.13), (2.15) and observing p2
m−q2

m, it gives that

a2m+1 =
α(p2m−q2m)

2[1+2m]q
+

(m+1)α2(p2
m +q2

m)

4[1+m]2q
. (2.16)

Taking the absolute value of (2.16) and applying Caratheodory lemma again for coefficients pm, p2m and q2m we have

|a2m+1| ≤
2(m+1)α2

[1+m]2q
+

2α

[1+2m]q
.

So the proof is completed.

Remark 2.4. For one-fold case, we note that T q,α
Σ,1 = Hq,α

Σ
introduced by Bulut [6].

Taking q→ 1− in Theorem 2.1, we have the class, limq→1− T q,α
Σ,m = Hα

Σ,m introduced by Srivastava et al. [21] and obtain the Corollary 2.1 as
follows:

Corollary 2.5. [21] Let the function f ∈ Hα
Σ,m,(0 < α ≤ 1,m ∈ N) be given (1.3). Then

|am+1| ≤
2α√

(m+1)(αm+m+1)

and

|a2m+1| ≤
2α2

m+1
+

2α

2m+1
.

Remark 2.6. For one-fold case, we note that limq→1− T q,α
Σ,1 = Hα

Σ
and we can obtain the results of Srivastava et al.[20].
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3. Definition of the Class T q
Σ,m(β ) and Its Coefficient Bounds

Definition 3.1. A function f given by (1.3) is said to be in the class T q
Σ,m(β ), (0 < q < 1,0≤ β <

1,m ∈ N) if the conditions given below are fulfilled:

f ∈ Σm and ℜ
{

Dq f (z)
}
> β (z ∈ D) (3.1)

and

ℜ
{

Dqg(w)
}
> β (w ∈ D) (3.2)

where the function g is given by Eq.(1.4).

Remark 3.2. Note that we have the class limq→1− T q,α
Σ,m = T α

Σ,m and for one-fold case the class limq→1− T q
Σ,1(β ) = TΣ(β ) introduced by

Srivastava et al. [20].

Theorem 3.3. Let the function f given by (1.3) be in the function class T q
Σ,m(β ), (0 < q < 1,0≤ β < 1,m ∈ N). Then

|am+1| ≤min

{
2(1−β )

[1+m]q
,2

√
1−β

[1+2m]q(m+1)

}
(3.3)

and

|a2m+1| ≤
2(1−β )

[1+2m]q
. (3.4)

Proof. First of all, it follows from the equations (3.1) and (3.2) that

Dq f (z) = [p(z)]α Dqg(w) = [q(w)]α , (z,w ∈ D) (3.5)

respectively, where p(z) and q(z) given by (2.6) and (2.7). Now equating coefficients in (3.5), we obtain

[1+m]qam+1 = (1−β )pm (3.6)

[1+2m]qa2m+1 = (1−β )p2m (3.7)

−[1+m]qam+1 = (1−β )qm (3.8)

[1+2m]q[(m+1)a2
m+1−a2m+1] = (1−β )q2m. (3.9)

From Eqs. (3.6) and (3.8), we have

pm =−qm (3.10)

and

2[1+m]2qa2
m+1 = (1−β )2(p2

m +q2
m). (3.11)

Also, from Eqs. (3.7) and (3.9), we obtain

[1+2m]q(m+1)a2
m+1 = (1−β )(p2m +q2m). (3.12)

Thus, applying Caratheodory lemma for (3.11) and (3.12) we obtain the coefficient estimate |am+1| as follows:

|a2
m+1| ≤

1−β

[1+2m]q(m+1)
(|p2m|+ |q2m|)

|am+1| ≤ 2

√
1−β

[1+2m]q(m+1)

which is desired coefficient bound. Next, so as to obtain bound for coefficient |a2m+1| by subtracting (3.9) from (3.7), we have

−[1+2m]q(m+1)a2
m+1 +2[1+2m]qa2m+1 = (1−β )(p2m−q2m) (3.13)

or equivalently

a2m+1 =
(1−β )(p2m−q2m)

2[1+2m]q
+

m+1
2

a2
m+1.
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Upon substituting the value of a2
m+1 from (3.11), we obtain

a2m+1 =
(1−β )(p2m−q2m)

2[1+2m]q
+

(m+1)(1−β )2(p2
m +q2

m)

4[1+m]2q
. (3.14)

Applying Caratheodory lemma for coefficients pm,qm, p2m and q2m we obtain

|a2m+1| ≤
2(1−β )

[1+2m]q
+

2(m+1)(1−β )2

[1+m]2q
.

On the other hand, by using the equation (3.12) into (3.13), and applying Caratheodory lemma we can obtain the inequality as follows

|a2m+1| ≤
2(1−β )

[1+2m]q

which is the desired bounds on coefficients |a2m+1| as given in Theorem 3.1.

Taking q→ 1− in Theorem 3.3, we obtain following corollary.

Corollary 3.4. Let the function f given by (1.3) be in the class TΣ,m(β ),(0≤ β < 1,m ∈ N), Then

|am+1| ≤ {
2
√

1−β

(1+2m)(1+m)
; 0≤ β ≤ m

1+2m

2(1−β )
1+m ; m

1+2m ≤ β < 1.

and

|a2m+1| ≤
2(1−β )

1+2m
.

Remark 3.5. For one fold case, Corollary 3.1 reduces to the following corollary given by Bulut [6] for the bounds on coefficients |a2| and
|a3|.

Corollary 3.6. [6] Let the function f given by Taylor-Maclaurin series expansion (1.1) be in the class HΣ(β ), (0≤ β < 1). Then

|a2| ≤ {

√
2(1−β )

3 ; 0≤ β ≤ 1
3

1−β ; 1
3 ≤ β < 1

and

|a3| ≤
2(1−β )

3
.

Remark 3.7. Corollary 3.2 given above is an improvement of the estimates for coefficients on |a2| and |a3| obtained by Srivastava et al [20].

Corollary 3.8. [20] Let the function f given by Taylor-Maclaurin series expansion (1.1) be in the class HΣ(β ) , (0≤ β < 1). Then

|a2| ≤
√

2(1−β )

3
and |a3| ≤

(1−β )(5−3β )

3
.
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