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Abstract
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1. Introduction

In 1982, J. Morlet introduced wavelets as a tool to study the analysis of seismic data. Taking account of the success of this method, he,
joint with A. Grossmann, reactivated a collaboration between fundamental physics and theoretical signal processing, which led to the
formalization of the continuous wavelet transforms, using some elements of classical harmonic analysis (see [6]). Since then, their results
were generalized to many fields and many generalized Fourier analysis. The wavelet theory is motivated by the fact that certain algorithms
that decompose a signal on the whole family of scales, can be utilized as an effective tool for multiscale analysis. In practical applications
involving fast numerical algorithms, the continuous wavelet can be computed at discrete grid points. This theory involves breaking up a
complicated function into many simple pieces at different scales and positions. It allows a greatly flexibility with more desirable features
such as discretization by wavelet packets, and readiness for better implementation [3, 8, 13]. In general, wavelet packet decomposition
divides the frequency space into various parts and allows better frequency localization of the signal.

In another corner of the world, in the time and place, the q-theory, called also in some literature ”quantum calculus”, began to arise. Interest
in this theory is grown at an explosive rate by both physicists and mathematicians due to the large number of its application domains. For
instance, a lot of work has been carried out while developing some q-analogues of Fourier analysis using elements of quantum calculus (see
[1, 9, 10, 11, 12] and references therein).
Since the classical harmonic analysis plays central role in the theory of wavelets and wavelet packets, it is natural to ask if we can apply the
q-harmonic analysis to build new wavelets and wavelets packets. Many papers treated the notion of q-wavelets (see [2, 4, 5] and references
therein) and gave some applications using q-harmonic analysis. In this paper, we are concerned with the notion of q-wavelet packets. We
shall use the harmonic analysis associated with the q-Dunkl operator presented in [1, 2] to study some types of q-wavelet packets. We present
a general construction, allowing the development of some types of q-wavelet packets starting from the so-mentioned q-Dunkl continuous
wavelet analysis. Furthermore, we study its corresponding q-wavelet packet transform and we prove for this transform a Plancherel formula
and an inversion theorem.
This paper is organized as follows: in Section 2, we present some notations and notions needed in the sequel. Section 3 is devoted to
present some elements of the q-Dunkl harmonic analysis. We define and study in Sections 4 and 5, the q-Dunkl wavelet packets and the
corresponding q-wavelet packets transforms as well as its q-scale discrete scaling functions.

2. Notations and preliminaries

Throughout this paper, we assume q ∈]0,1[ and we denote

Rq = {±qn : n ∈ Z}, Rq,+ = {qn : n ∈ Z} and R̃q = Rq∪{0}.
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For complex number a, the q-shifted factorials are defined by:

(a;q)0 = 1; (a;q)n =
n−1

∏
k=0

(1−aqk),n = 1,2, ...; (a;q)∞ =
∞

∏
k=0

(1−aqk).

[x]q =
1−qx

1−q
, x ∈ C and n!q =

(q;q)n

(1−q)n , n ∈ N.

The Rubin’s q-differential operator is defined in [10, 11] by

∂q( f )(z) =

{
f (q−1z)+ f (−q−1z)− f (qz)+ f (−qz)−2 f (−z)

2(1−q)z i f z 6= 0
limx→0 ∂q( f )(x) i f z = 0.

(2.1)

Note that if f is differentiable at z, then ∂q( f )(z) tend to f ′(z) as q tends to 1.

The q-Jackson integrals [7] from 0 to a, from 0 to ∞ and from −∞ to ∞ are defined by (see [7])∫ a

0
f (x)dqx = (1−q)a

∞

∑
n=0

f (aqn)qn,
∫

∞

0
f (x)dqx = (1−q)

∞

∑
n=−∞

f (qn)qn (2.2)

and∫
∞

−∞

f (x)dqx = (1−q)
∞

∑
n=−∞

qn f (qn)+(1−q)
∞

∑
n=−∞

qn f (−qn), (2.3)

provided the sums converge absolutely.
The q-Jackson integral [7] in a generic interval [a,b] is given by∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx−

∫ a

0
f (x)dqx. (2.4)

In the particular case a = bqn, n ∈ N, the relation (2.4) becomes∫ b

a
f (x)dqx = (1−q)b

n−1

∑
k=0

f (qkb)qk. (2.5)

In the sequel, we will need the following sets and spaces.
• Cq,0(Rq) the space of bounded functions on Rq, continued at 0 and vanishing at ∞.
•Sq(Rq) the space of functions f defined on Rq satisfying

∀n,m ∈ N, Pn,m,q( f ) = sup
x∈Rq

| xm
∂

n
q f (x) |< ∞

and
lim
x→0

∂
n
q f (x) (in Rq) exists.

• Dq(Rq) the subspace of Sq(Rq) constituted of functions with compact supports.
• Eq(Rq) the space of functions f defined on Rq, satisfying

∀n ∈ N, a≥ 0, Pn,a( f ) = sup
{
|∂ k

q f (x)|;0≤ k ≤ n;x ∈ [−a,a]∩Rq

}
< ∞

and
lim
x→0

∂
n
q f (x) (in Rq) exists.

• Lp
α,q(Rq) =

{
f : ‖ f‖p,α,q =

(∫
∞

−∞
| f (x)|p|x|2α+1dqx

) 1
p < ∞

}
, p > 0 and α ∈ R,

• L∞
q (Rq) =

{
f : ‖ f‖∞,q = supx∈Rq

| f (x)|< ∞

}
.

3. Elements of q-Dunkl harmonic analysis

In this section, we collect some basic results and properties from the q-Dunkl operator theory, studied in [1]. In particular, we recall some
properties of a generalized q-Dunkl translation as well as its related convolution product.

For α ≥− 1
2 , the q-Dunkl transform is defined on L1

α,q(Rq) by (see [1])

F α,q
D ( f )(λ ) = cα,q

∫
∞

−∞

f (x)ψα,q
−λ

(x).|x|2α+1dqx, λ ∈ R̃q, (3.1)

where

cα,q =
(1+q)−α

2Γq2(α +1)
(3.2)
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and ψ
α,q
λ

is the q-Dunkl kernel defined by

ψ
α,q
λ

: x 7−→ jα (λx;q2)+
iλx

[2α +2]q
jα+1(λx;q2), (3.3)

with jα (x;q2) is the normalized third Jackson’s q-Bessel function given by:

jα (x;q2) = ∑
∞
n=0(−1)n Γq2 (α+1)qn(n+1)

Γq2 (α+n+1)Γq2 (n+1)

(
x

1+q

)2n
.

It was proved in [1] that for all λ ∈ C, the function: x 7−→ ψ
α,q
λ

(x) is the unique analytic solution of the q-differential-difference equation:{
Λα,q( f ) = iλ f

f (0) = 1, (3.4)

where Λα,q is the q-Dunkl operator defined by

Λα,q( f )(x) = ∂q

[
fe +q2α+1 fo

]
(x)+ [2α +1]q

f (x)− f (−x)
2x

, (3.5)

with fe and fo are respectively the even and the odd parts of f .
We recall that the q-Dunkl operator Λα,q lives the spaces Dq(Rq) and Sq(Rq) invariant.
It is worthy to claim that letting q ↑ 1 subject to the condition

ln(1−q)
ln(q)

∈ 2Z, (3.6)

F α,q
D tends, at least formally, the classical Dunkl transform. In the remainder of this paper, we assume that the condition (3.6) holds.

Some other properties of the q-Dunkl kernel and the q-Dunkl transform are given in the following results (see [1]).

Theorem 3.1.
i) ψ

α,q
λ

(x) = ψ
α,q
x (λ ), ψ

α,q
aλ

(x) = ψ
α,q
λ

(ax), ψ
α,q
λ

(x) = ψ
α,q
−λ

(x), ∀λ ,x ∈ R, a ∈ C.
ii) If α =− 1

2 , then ψ
α,q
λ

(x) = e(iλx;q2).

For α >− 1
2 , ψ

α,q
λ

has the following q-integral representation of Mehler type

ψ
α,q
λ

(x) =
(1+q)Γq2(α +1)

2Γq2( 1
2 )Γq2(α + 1

2 )

∫ 1

−1

(t2q2;q2)∞

(t2q2α+1;q2)∞

(1+ t)e(iλxt;q2)dqt. (3.7)

iii) For all λ ∈ Rq, ψ
α,q
λ

is bounded on R̃q and we have

| ψα,q
λ

(x) |≤ 4
(q;q)∞

, ∀x ∈ R̃q. (3.8)

iv) For all λ ∈ Rq, ψ
α,q
λ
∈Sq(Rq).

v) The function ψ
α,q
λ

verifies the following orthogonality relation: For all x,y ∈ Rq,

∫
∞

−∞

ψ
α,q
λ

(x)ψα,q
λ

(y)|λ |2α+1dqλ =
4(1+q)2α Γ2

q2(α +1)δx,y

(1−q)|xy|α+1 . (3.9)

Theorem 3.2. (1) If f ∈ L1
α,q(Rq) then F α,q

D ( f ) ∈ L∞
q (Rq),

‖F α,q
D ( f )‖∞,q ≤

4cα,q

(q;q)∞

‖ f‖1,α,q, (3.10)

and

lim
|λ |→∞

λ∈Rq

F α,q
D ( f )(λ ) = 0, lim

|λ |→0
λ∈R̃q

F α,q
D ( f )(λ ) = F α,q

D ( f )(0). (3.11)

(2) For f ∈ L1
α,q(Rq),

F α,q
D (Λα,q f )(λ ) = iλF α,q

D ( f )(λ ). (3.12)

(3) For f ,g ∈ L1
α,q(Rq), ∫

∞

−∞

F α,q
D ( f )(λ )g(λ )|λ |2α+1dqλ =

∫
∞

−∞

f (x)F α,q
D (g)(x)|x|2α+1dqx. (3.13)

Theorem 3.3. For all f ∈ L1
α,q(Rq), we have

∀x ∈ Rq, f (x) = cα,q

∫
∞

−∞

F α,q
D ( f )(λ )ψα,q

λ
(x).|λ |2α+1dqλ

= F α,q
D (F α,q

D ( f ))(x).

(3.14)
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Theorem 3.4. i) Plancherel formula
For α ≥−1/2, the q-Dunkl transform Fα,q

D is an isomorphism from Sq(Rq) onto itself. Moreover, for all f ∈Sq(Rq), we have

‖F α,q
D ( f )‖2,α,q = ‖ f‖2,α,q. (3.15)

ii) Plancherel theorem
The q-Dunkl transform can be uniquely extended to an isometric isomorphism on L2

α,q(Rq). Its inverse transform (F α,q
D )

−1 is given by :

(F α,q
D )

−1
( f )(x) = cα,q

∫
∞

−∞

f (λ )ψα,q
λ

(x).|λ |2α+1dqλ = F α,q
D ( f )(−x). (3.16)

We are now in a position to define the generalized q-Dunkl translation operator.

Definition 3.5. The generalized q-Dunkl translation operator is defined for f ∈ L2
α,q(Rq) and x,y ∈ Rq by

T α,q
y ( f )(x) = cα,q

∫
∞

−∞

F α,q
D ( f )(λ )ψα,q

λ
(x)ψα,q

λ
(y)|λ |2α+1dqλ , (3.17)

T α;q
0 ( f ) = f .

It verifies the following properties.

Theorem 3.6.
1) For all f ∈ L2

α,q(Rq) and all x ∈ Rq,

lim
y→0
y∈Rq

T α,q
y ( f )(x) = f (x).

2) For all x,y ∈ Rq, T α,q
y ( f )(x) = T α,q

x ( f )(y).
3) If f ∈ L2

α,q(Rq) (resp. Sq(Rq)) then T α,q
y ( f ) ∈ L2

α,q(Rq) (resp. Sq(Rq)) and we have

‖ T α,q
y ( f ) ‖2,α,q≤

4
(q;q)∞

‖ f ‖2,α,q . (3.18)

4) For all x,y,λ ∈ Rq, T α,q
y
(
ψ

α,q
λ

)
(x) = ψ

α,q
λ

(x)ψα,q
λ

(y).
5) For f ∈ L2

α,q(Rq),x,y ∈ Rq, we have

F α,q
D (T α,q

y f )(λ ) = ψ
α,q
λ

(y)F α,q
D ( f )(λ ). (3.19)

6) For f ∈Sq(Rq) and y ∈ Rq, we have
Λα,qT α,q

y f = T α,q
y Λα,q f .

Definition 3.7. The q-convolution product is defined for f ,g ∈Sq(Rq) by:

f ∗D g(x) = cα,q

∫
∞

−∞

T α,q
x f (−y)g(y)|y|2α+1dqy. (3.20)

In the following theorems, we present some of its properties.

Theorem 3.8. For f ,g ∈Sq(Rq), we have
i) F α,q

D ( f ∗D g) = F α,q
D ( f ).F α,q

D (g).
ii) f ∗D g = g∗D f .
iii) ( f ∗D g)∗D h = f ∗D (g∗D h).

Theorem 3.9. Let f and g be in Sq(Rq). Then
1) f ∗D g ∈Sq(Rq),
2)∫

∞

−∞

| f ∗D g(x) |2 |x|2α+1dqx =
∫

∞

−∞

|F α,q
D ( f )(x) |2|F α,q

D (g)(x) |2 |x|2α+1dqx, (3.21)

We finish this section by the following useful result.

Theorem 3.10. For a ∈ Rq the operator Ha defined for g ∈ L2
α,q(Rq) (resp. Sq(Rq)), by

Ha(g)(x) =
1

|a|2α+2 g
( x

a

)
is linear and bijective from L2

α,q(Rq) (resp. Sq(Rq)) into itself and we have

‖Ha(g)‖2,α,q =
1

|a|α+1 ‖g‖2,α,q (3.22)

and

F α,q
D (Ha(g))(λ ) = F α,q

D (g)(aλ ), λ ∈ R̃q. (3.23)

Proof. The linearity and the bijectivity of Ha are clear. In Particular, H−1
a = H 1

a
. The change of variables u = x

a completes the proof of the
result.
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4. q-Dunkl Wavelet Packets

We recall that a Dunkl’s q-wavelet is a square q-integrable function g on Rq satisfying the following admissibility condition:

0 <Cg =
∫

∞

0
|F α,q

D (g)(a) |2
dqa
a

=
∫

∞

0
|F α,q

D (g)(−a) |2
dqa
a

< ∞. (4.1)

We consider a Dunkl’s q-wavelet g and a strictly decreasing scale sequence (r j) j∈Z of Rq,+ satisfying lim j→−∞ r j = ∞, lim j→∞ r j = 0. We
state the following introductory result.

Theorem 4.1. For all j ∈ Z, we have :

1. the function λ 7−→
(

1
Cg

∫ r j
r j+1
|F α,q

D (Ha(g))(λ )|2
dqa
a

) 1
2 belongs to L2

α,q(Rq),

2. there exists a function gP
j ∈ L2

α,q(Rq) such that for all λ ∈ Rq,

F α,q
D (gP

j )(λ ) =

(
1

Cg

∫ r j

r j+1

|F α,q
D (Ha(g))(λ )|2

dqa
a

) 1
2

.

Proof. Fix j ∈ Z.
(1) On the one hand, r j and r j+1 are two elements of Rq,+ satisfying r j+1 < r j, then there exists a positive integer n such that r j+1 = qnr j.
So, using the relation (2.5) and Theorem 3.10, we obtain∫

∞

−∞

(
1

Cg

∫ r j

r j+1

|F α,q
D (Ha(g))(λ )|2

dqa
a

)
|λ |2α+1dqλ =

1−q
Cg

∫
∞

−∞

n−1

∑
k=0
|F α,q

D (g)(λqkr j)|2|λ |2α+1dqλ

=
1−q
Cg

n−1

∑
k=0

∫
∞

−∞

|F α,q
D (g)(λqkr j)|2|λ |2α+1dqλ .

On the other hand, the change of variable u = λqkr j, ( 0≤ k ≤ n−1), together with Theorem 3.4 lead to∫
∞

−∞

(
1

Cg

∫ r j

r j+1

|F α,q
D (Ha(g))(λ )|2

dqa
a

)
|λ |2α+1dqλ =

1−q
Cg

n−1

∑
k=0

∫
∞

−∞

|F α,q
D (g)(u)|2

(r jqk)2α+2 |u|
2α+1dqu

=
1−q
Cg
‖F α,q

D (g)(u)‖2
2,α,q

n−1

∑
k=0

1
(r jqk)2α+2

=
q2α+2

Cg[2α +2]q

(
1

r2α+2
j+1

− 1
r2α+2

j

)
‖g‖2

2,α,q.

(2) The result follows from Theorem 3.4.

Definition 4.2. i) The sequence (gP
j ) j∈Z is called Dunkl’s q-wavelet packet.

ii) The function gP
j , j ∈ Z, is called Dunkl’s q-wavelet packet’s member of step j.

We have the following immediate properties.

Theorem 4.3. For all λ ∈ Rq, we have
0≤F α,q

D (gP
k )(λ )≤ 1, k ∈ Z and ∑

∞
j=−∞

[F α,q
D (gP

j )(λ )]
2 = 1.

Let (gP
j ) j∈Z be a Dunkl’s q-wavelet packet. We introduce for all j ∈ Z and x ∈ Rq, the function gP

j,x as

gP
j,x(y) = T α,q

y (gP
j )(x), y ∈ R̃q. (4.2)

Some properties of these functions are summarized in the following result that its proof follows easily from the properties of the q-Dunkl
translation operator and the definition of the Dunkl’s q-wavelet packets.

Theorem 4.4. For all j ∈ Z and x ∈ Rq, the function gP
j,x belongs to L2

α,q(Rq) and we have for all λ ∈ R̃q,

• F α,q
D (gP

j,x)(λ ) = ψ
α,q
λ

(x)F α,q
D (gP

j )(λ ).

• ‖gP
j,x‖2,α,q ≤

4‖gP
j ‖2,α,q

(q;q)∞

.

Definition 4.5. Let (gP
j ) j∈Z be a Dunkl’s q-wavelet packet. We define the Dunkl’s q-wavelet packet transform ΨP

q,g by

Ψ
P
q,g( f )( j,y) = cα,q

∫
∞

−∞

f (x)gP
j,y(x)|x|

2α+1dqx, j ∈ Z, y ∈ R̃q and f ∈ L2
α,q(Rq), (4.3)

where cα,q is given by the relation (3.2).

Remark 4.6. The equality (4.3) is equivalent to

Ψ
P
q,g( f )( j,y) = f̌ ∗D gP

j (y) = F α,q
D (F α,q

D ( f̌ ∗D gP
j ))(−y) = F α,q

D [F α,q
D ( f̌ ).F α,q

D (gP
j )](−y), (4.4)

where f̌ (x) = f (−x).
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The following theorem provides some useful properties of ΨP
q,g.

Theorem 4.7. Let (gP
j ) j∈Z be a Dunkl’s q-wavelet packet and f ∈ L2

α,q(Rq). Then,

1. for all j ∈ Z, b ∈ R̃q, we have

|ΨP
q,g( f )( j,b)| ≤

4cα,q

(q;q)∞

‖ f‖2,α,q

∥∥∥gP
j

∥∥∥
2,α,q

;

2. for all j ∈ Z, the mapping b 7→ΨP
q,g( f )( j,b) is continuous on R̃q and we have limb→∞ ΨP

q,g( f )( j,b) = 0.

Proof. (1) From the relation (4.3), Theorem 4.4 and the Cauchy-Schwarz inequality, we have for j ∈ Z and b ∈ Rq

|ΨP
q,g( f )( j,b)|= cα,q

∣∣∣∣∫ ∞

−∞

f (x)gP
j,b(x)|x|

2α+1dqx
∣∣∣∣≤ cα,q|| f ||2,α,q||gP

j,b||2,α,q ≤
4cα,q

(q;q)∞

|| f ||2,α,q||gP
j ||2,α,q.

(2) Let j ∈ Z and f ∈ L2
α,q(Rq). From Theorem 3.4, we have F α,q

D ( f̌ ) and F α,q
D (gP

j ) are in L2
α,q(Rq) and the product F α,q

D ( f̌ )F α,q
D (gP

j ) is
in L1,α,q(Rq). So, the relation (4.4) together with Theorem 3.2 achieve the proof.

The following result shows Plancheral and Parseval formulas for the Dunkl’s q-wavelet packet transform ΨP
q,g.

Theorem 4.8. Let (gP
j ) j∈Z be a Dunkl’s q-wavelet packet.

(1) Plancherel formula for ΨP
q,g

For f ∈ L2
α,q(Rq), we have

∞

∑
j=−∞

∫
∞

−∞

|ΨP
q,g( f )( j,b) |2 |b|2α+1dqb = ‖ f‖2

2,α,q. (4.5)

(2) Parseval formula for ΨP
q,g

For f1, f2 ∈ L2
α,q(Rq), we have∫

∞

−∞

f1(x) f2(x)|x|2α+1dqx =
∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f1)( j,b)ΨP

q,g( f2)( j,b)|b|2α+1dqb. (4.6)

Proof. (1) From the relations (3.21) and (4.4), we obtain∫
∞

−∞

|ΨP
q,g( f )( j,b)|2|b|2α+1dqb =

∫
∞

−∞

|F α,q
D ( f̌ )(a)|2[F α,q

D (gP
j (a)]

2|a|2α+1dqa.

So, the use of the Fubini’s theorem and the fact that
∞

∑
j=−∞

[F α,q
D (gP

j )(λ )]
2 = 1,

give
∞

∑
j=−∞

∫
∞

−∞

|ΨP
q,g( f )( j,b)|2|b|2α+1dqb =

∫
∞

−∞

|F α,q
D ( f̌ )(a)|2

∞

∑
j=−∞

[F α,q
D (gP

j (a))]
2|a|2α+1dqa

=
∫

∞

−∞

|F α,q
D ( f̌ )(a)|2|a|2α+1dqa.

Thus, (4.5) follows from Theorem 3.4.
(2) The result is a direct consequence of assertion (1).

Theorem 4.9. Let (gP
j ) j∈Z be a Dunkl’s q-wavelet packet. For f ∈ L2

α,q(Rq), one has the following reconstruction formula :

f (x) = cα,q

∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)|b|
2α+1dqb, x ∈ Rq.

Proof. For x ∈ Rq, we have h = δx belongs to L2
α,q(Rq). Then, according to the relation (4.6), the definition of ΨP

q,g and the definition of the
q-Jackson’s integral, we have

(1−q)|x|2α+2 f (x) =
∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f )( j,b)ΨP

q,g(h)( j,b)|b|2α+1dqb

= cα,q

∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f )( j,b)

(∫
∞

−∞

h(t)gP
j,b(t)|t|

2α+1dqt
)
|b|2α+1dqb

= (1−q)|x|2α+2cα,q

∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)|b|
2α+1dqb,

which is equivalent to

f (x) = cα,q

∞

∑
j=−∞

∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)|b|
2α+1dqb.
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5. Dunkl’s q-Scale discrete scaling function

In this section, we consider a Dunkl’s q-wavelet packet (gP
j ) j∈Z.

Theorem 5.1. 1. For all m ∈ Z and x ∈ Rq, we have

m−1

∑
j=−∞

[F α,q
D (gP

j )(x)]
2 =

1
Cg

∫
∞

rm

|F α,q
D (Ha(g))(x)|2

dqa
a

. (5.1)

2. For all m ∈ Z, the function x 7→
(

∑
m−1
j=−∞

[F α,q
D (gP

j )(x)]
2
) 1

2 belongs to L2
α,q(Rq).

3. For all m ∈ Z there exists a function GP
m in L2

α,q(Rq) such that for all x ∈ Rq,

F α,q
D (GP

m)(x) =

(
m−1

∑
j=−∞

[F α,q
D (gP

j )(x)]
2

) 1
2

. (5.2)

Proof. (1) follows from the definition of gP
j .

(2) From the Fubini’s theorem, the relation (5.1) and Theorem 3.10, we have∫
∞

−∞

m−1

∑
j=−∞

[F α,q
D (gP

j )(x)]
2|x|2α+1dqx =

1
Cg

∫
∞

−∞

∫
∞

rm

|F α,q
D (Ha(g))(x)|2

dqa
a
|x|2α+1dqx

=
1

Cg

∫
∞

rm

(∫
∞

−∞

|F α,q
D (g)(ax)|2|x|2α+1dqx

)
dqa
a

.

By the change of variables u = ax and Theorem 3.4, we obtain∫
∞

−∞

(
1

Cg

∫
∞

rm

|F α,q
D (Ha(g))(x)|2

dqa
a

)
|x|2α+1dqx =

1
Cg

∫
∞

rm

(∫
∞

−∞

|F α,q
D (g)(x)|2|x|2α+1dqx

)
dqa

a2α+3

=
‖g‖2,α,q

Cg

∫
∞

rm

dqa
a2α+3 < ∞.

This completes the proof of (2).
(3) We deduce the result from the previous assertion and Theorem 3.4.

Definition 5.2. The sequence (GP
m)m∈Z is called Dunkl’s q-scale discrete scaling function.

The sequence (GP
m)m∈Z verifies the following trivial and easily proved properties.

Theorem 5.3.

(i) For all m ∈ Z and λ ∈ Rq, we have

0≤F α,q
D (GP

m)(λ )≤ 1. (5.3)

(ii) For all λ ∈ Rq, we have

lim
m→∞

F α,q
D (GP

m)(λ ) = 1. (5.4)

Theorem 5.4. For m ∈ Z and x ∈ Rq, the following relations

(i)[
F α,q

D (GP
m)(x)

]2
+

∞

∑
j=m

[F α,q
D (gP

j )(x)]
2 = 1, (5.5)

(ii)[
F α,q

D (gP
m)(x)

]2
=
[
F α,q

D (GP
m+1)(x)

]2
−
[
F α,q

D (GP
m)(x)

]2
, (5.6)

(iii)

∞

∑
m=−∞

([
F α,q

D (GP
m+1)(x)

]2
−
[
F α,q

D (GP
m)(x)

]2
)
= 1 (5.7)

hold.

Proof.

(i) Follows immediately from (5.2) and Theorem 4.3.
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(ii) We deduce the result from the relation (5.2).

(iii) The relation is a consequence of (5.6) and Theorem 4.3.

Now, let (GP
m)m∈Z be a Dunkl’s q-scale discrete scaling function and consider for all m ∈ Z, x ∈ Rq, the function GP

m,x given by

GP
m,x(y) = T α,q

y (GP
m)(x), ∀y ∈ Rq. (5.8)

From the properties of the Dunkl’s q-translation, one can prove easily the following result giving some properties of the function GP
m,x.

Theorem 5.5. For all m ∈ Z and x ∈ Rq, the function GP
m,x belongs to L2

α,q(Rq) and we have

• F α,q
D (GP

m,x)(λ ) = ψ
α,q
λ

(x)F α,q
D (GP

m)(λ ), λ ∈ Rq,

• ‖GP
m,x‖2,α,q ≤

4‖GP
m‖2,α,q

(q;q)∞

.

Definition 5.6. Let (GP
m)m∈Z be a Dunkl’s q-scale discrete scaling function. We define the Dunkl’s q-scale discrete scaling transform ΘP

q,G
on L2

α,q(Rq), by

Θ
P
q,G( f )(m,x) = cα,q

∫
∞

−∞

f (b)GP
m,x(b)|b|2α+1dqb, m ∈ Z, and x ∈ Rq. (5.9)

Remark 5.7. The relation (5.9) is equivalent to

Θ
P
q,G( f )(m,x) = f̌ ∗D GP

m(x). (5.10)

In the two following results, we will provide a Plancheral and a Parseval formulas for ΘP
q,G.

Theorem 5.8. Let (GP
m)m∈Z be a Dunkl’s q-scale discrete scaling function.

(1) Plancherel formula for ΘP
q,G

For f ∈ L2
α,q(Rq), we have

‖ f‖2
2,α,q = lim

m→∞

∫
∞

−∞

|ΘP
q,G( f )(m,b)|2|b|2α+1dqb. (5.11)

(2) Parseval formula for ΘP
q,G

For f1, f2 ∈ L2
α,q(Rq), we have∫

∞

−∞

f1(x) f 2(x)|x|2α+1dqx = lim
m→∞

∫
∞

−∞

Θ
P
q,G( f1)(m,b)ΘP

q,G( f2)(m,b)|b|2α+1dqb. (5.12)

Proof. (1) Due to the relations (5.10) and (3.21), we have for all m ∈ Z,∫
∞

−∞

|ΘP
q,G( f )(m,b)|2|b|2α+1dqb =

∫
∞

−∞

|F α,q
D ( f̌ )(x)|2[F α,q

D (GP
m)(x)]

2|x|2α+1dqx. (5.13)

The relations (5.3) and (5.4), and the Lebesgue’s theorem yield to

lim
m→∞

∫
∞

−∞

|ΘP
q,G( f )(m,b)|2|b|2α+1dqb =

∥∥F α,q
D ( f̌ )

∥∥2
2,α,q .

Finally, Theorem 3.4 achieves the proof of (1).
(2) The result follows from (5.11).

Using the Dunkl’s q-scale discrete scaling function (GP
m)m∈Z and the Dunkl’s q-wavelet packet transform ΨP

q,g, one can obtain another
Plancheral formula for ΘP

q,G. This is the aim of the following result.

Theorem 5.9. (1) Plancherel formula for ΘP
q,G using ΨP

q,g

For all f ∈ L2
α,q(Rq), we have for all m ∈ Z,

‖ f‖2
2,α,q =

∫
∞

−∞

|ΘP
q,G( f )(m,b)|2dqb+

∞

∑
j=m

∫
∞

−∞

|ΨP
q,g( f )( j,b)|2|b|2α+1dqb. (5.14)

(2) Parseval formula for ΘP
q,G using ΨP

q,g

For f1, f2 ∈ L2
α,q(Rq), we have for all m ∈ Z,∫

∞

−∞

f1(x) f 2(x)|x|2α+1dqx =
∫

∞

−∞

Θ
P
q,G( f1)(m,b)ΘP

q,G( f2)(m,b)|b|2α+1dqb +

∞

∑
j=m

∫
∞

−∞

Ψ
P
q,g( f1)( j,b)ΨP

q,g( f2)( j,b)|b|2α+1dqb.
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Proof. (1) On the one hand, from the relations (5.13) and (5.2), we have for all m ∈ Z,∫
∞

−∞

|ΘP
q,G( f )(m,b)|2|b|2α+1dqb =

∫
∞

−∞

|F α,q
D ( f̌ )(x)|2

(
m−1

∑
j=−∞

[
F α,q

D (gP
j )(x)

]2
)
|x|2α+1dqx.

On the other hand, using the relations (3.21) and (4.4), and the Fubini’s theorem, we obtain

∞

∑
j=m

∫
∞

−∞

|ΨP
q,g( f )( j,b)|2|b|2α+1dqb =

∫
∞

−∞

|F α,q
D ( f̌ )(x)|2

(
∞

∑
j=m

[
F α,q

D (gP
j )(x)

]2
)
|x|2α+1dqx.

Hence, ∫
∞

−∞

|ΘP
q,G( f )(m,b)|2|b|2α+1dqb +

∞

∑
j=m

∫
∞

−∞

|ΨP
q,g( f )( j,b)|2|b|2α+1dqb =

∫
∞

−∞

|F α,q
D ( f̌ )(x)|2

(
∞

∑
j=−∞

[F α,q
D (gP

j )(x)]
2

)
|x|2α+1dqx.

The result follows then from Theorem 4.3 and Theorem 3.4.
(2) The assertion (2) follows from (1).

Theorem 5.10. For f ∈ L2
α,q(Rq), we have the following reconstruction formulas.

(1) For all x ∈ Rq,

f (x) = cα,q lim
m→∞

∫
∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)|b|
2α+1dqb. (5.15)

(2) For all x ∈ Rq and all m ∈ Z,

f (x) = cα,q

∫
∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)|b|
2α+1dqb+ cα,q

∞

∑
j=m

∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)|b|
2α+1dqb. (5.16)

Proof. (1) Let f ∈ L2
α,q(Rq), fix x ∈ Rq and put h = δx. By using the relation (5.12), we get

(1−q)|x|2α+2 f (x) = lim
m→∞

∫
∞

−∞

Θ
P
q,G( f )(m,b)ΘP

q,G(h)(m,b)|b|2α+1dqb

= lim
m→∞

cα,q

∫
∞

−∞

Θ
P
q,G( f )(m,b)

(∫
∞

−∞

h(t)GP
m,b(t)|t|

2α+1dqt
)
|b|2α+1dqb

= lim
m→∞

cα,q(1−q)|x|2α+2
∫

∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)|b|
2α+1dqb.

Thus,

f (x) = cα,q lim
m→∞

∫
∞

−∞

Θ
P
q,G( f )(m,b)GP

m,b(x)|b|
2α+1dqb.

(2) The technique of the proof is similar to (1).

Theorem 5.11. For f ∈ L2
α,q(Rq), one has for all j ∈ Z,∫
∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)|b|
2α+1dqb =

∫
∞

−∞

Θ
P
q,G( f )( j+1,b)GP

j+1,b(x)|b|
2α+1dqb −∫

∞

−∞

Θ
P
q,G( f )( j,b)GP

j,b(x)|b|
2α+1dqb.

Proof. Using the relations (5.16) and (5.6), and Theorem 3.4, we obtain∫
∞

−∞

Θ
P
q,G( f )( j+1,b)GP

j+1,b(x)|b|
2α+1dqb−

∫
∞

−∞

Θ
P
q,G( f )( j,b)GP

j,b(x)|b|
2α+1dqb

=
∫

∞

−∞

F α,q
D [F α,q

D ( f̌ ∗D GP
j+1)](−b)GP

j+1,b(x)|b|
2α+1dqb−

∫
∞

−∞

F α,q
D [F α,q

D ( f̌ ∗D GP
j )](−b)GP

j,b(x)|b|
2α+1dqb

=
∫

∞

−∞

F α,q
D ( f̌ )(b)

([
F α,q

D (GP
j+1)

]2
−
[
F α,q

D (GP
j )
]2
)
(b)ψα,q

b (x)|b|2α+1dqb

=
∫

∞

−∞

F α,q
D ( f̌ )(b)

[
F α,q

D (gP
j )
]2

(b)ψα,q
b (x)|b|2α+1dqb

=
∫

∞

−∞

Ψ
P
q,g( f )( j,b)gP

j,b(x)|b|
2α+1dqb.
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