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ABSTRACT 

We study the some algebraic properties of matrix associated to Hamilton operators which is defined for semi-
quaternions. The kinematic mapping corresponding to these operators in semi-Euclidean 4-space is the same as 
the kinematic mapping of Blaschke and Grünwald. 
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Dört Buyutlu Semi-Oklidean Uzayda kinematik dönüşümler 

ÖZET 

Semi-kuaterniyonların Hamilton opratorlarına karşılık gelen matrislerin bazı cebirsel özeliklerin araştırdık. Bu 
opratorlara karşılık gelen dönüşümler kinematığı dört boyutlu semi oklıd uzayında, Blaşke ve Grünwald 
dönüşümler kinematığı aynıdır.. 

Anahtar Kelimeler: Hamilton operatöleri, Kuasi eliptik geometri, Semi kuaterniyon 
 
 
 

I. INTRODUCTION 
 
UATERNIONS was first introduced by William R. Hamilton as a successor to complex numbers. 
The quaternions have been used in various areas of mathematics. A brief introduction of the semi-

quaternions is provided in [5]. Dyachkova [1] has showed that the set of all invertible elements of semi-
quaternions with the quaternion product is a Lie group. Also, she considered the degenerate scalar 
product

0 0 1 1, .q p a b a b   Accordingly, the semi-quaternions algebra with this product has the                               

4-dimensional semi-Euclidean space structure with rank 2 semi-metric. In [2], the algebraic properties 
of semi-quaternions are studied and De-Moivre's and Euler's formulas for these quaternions are given. 
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De Moivre's formula implies that there are uncountably many unit semi-quaternions satisfying for 

1nq   for 2.n   The matrix associated with a semi-quaternion is studied and by De-Moivre’s formula 

the n  th power of such a matrix can be obtained [3]. In this paper, after a review of some fundamental 
properties of the semi- quaternions, algebraic properties of Hamilton operators of these quaternion are 
studied. By these operators, we get the kinematic mapping of Blaschke and Grünwald. The 
corresponding geometry is quasi-elliptic geometry. 

 

II. PRELIMINARIES 

Definition1. The group of motion of the Euclidean plane is denoted by 2.OA If we choose a Cartesian 

coordinate system, then a motion 2OA  has the form  

M. ,x x b with 
cos sin

M . (1)
sin cos

 
 

 
  
 

 

In homogeneous coordinate, Equ. (1) reads 

1 0
( . ) , = .

M

T

x A x A
b

 
 
 

    

The kinematic mapping of Blashke and Grüwald is a correspondence between points of real projective 
three-space P3 and planar Euclidean motions. It is defined as: 

2 2
0 3

3 2 2
0 1 2 3 3 0 0 3 2

2 2
1 3 0 2 0 3 3 0

0 0

d P 2( ) 2 .

2( ) 2

d d

d d d d d d d d OA

d d d d d d d d

 
     
    

   

Note that the image that image of a point with coordinate 1 2(0, , ,0)d d  is not a Euclidean motion. We 

therefore call the line 0 3 0x x   the absolute line and consider the kinematic mapping defined in 

projective space without the absolute line. 

It is an elementary exercise to verify that a rotation with angle   and center ,m mx y corresponds to the 

point (1, , , cot )
2m mx y


   and that the translation x x b corresponds to the point 2 1(0, , ,2).b b  

This is illustrated in Fig. 1, which shows an affine part of projective three-space[4]. 

 
Fig. 1. A planar rotation α with center m ( , )m mx y transforms p to q has the kinematic image point d. 
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II. EXPERIMENT 

A. SEMI-QUATERNIONS 

This section summarizes the essentials of the algebra of semi-quaternions. A semi-quaternion q  is an 

expression of the form 

0 1 2 3q a a i a j a k   
 

 

where 
0 1 2, ,a a a  and 3a  are real numbers and , ,i j k

 
 are quaternionic units satisfying the equalities 

2 2 21, 0,

, 0 ,

i j k

ij k ji jk kj

   

     

  

      

and  

.ki j ik  
  

 

The set of all semi-quaternions is denoted by
s . We express the basic operations in terms of , , .i j k

 

The addition becomes as 

0 1 2 3 0 1 2 3

0 0 1 1 2 2 3 3

( ) ( )

( ) ( ) ( ) ( )

a a i a j a k b b i b j b k

a b a b i a b j a b k

      

       

    
   

and the multiplication as 

0 1 2 3 0 1 2 3

0 0 1 1

1 0 0 1

2 0 3 1 0 2 1 3

3 0 2 1 1 2 0 3

( )( )

( )

( )

( )

( ) .

a a i a j a k b b i b j b k

a b a b

a b a b i

a b a b a b a b j

a b a b a b a b k

     
 

 

   

   

     







 

Given 
0 1 2 3q a a i a j a k   

 
, 

0a is called the scalar part of ,q denoted by 

  0,S q a  

and 
1 2 3a i a j a k 

 
is called the vector part of ,q denoted by  

1 2 3( ) .V q a i a j a k  
  

 

If   0,S q   then q is called pure semi-quaternion. The set of all the pure semi-quaternions is denoted 

by .   

The conjugate of q is 

0 1 2 3 .q a a i a j a k   
 

 

The norm of q is 

2 2
0 1 .qN qq qq a a     

If 1,qN  then q  is called a unit semi-quaternion. 
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The inverse of q  with 0,qN   is  

1 1
.

q

q q
N

   

Clearly 1 1 0 0 0 .qq i j k    
 

 Note also that qp pq  and 1 1 1( ) .qp p q    The algebra Hs  has the 4-

dimensional semi-Euclidean space structure 4
2  with rank 2 semi-metric[2]. 

 
 
B. MATRICES ASSOCIATED WITH SEMI-QUATERNIONS 

We introduce the R-linear transformations representing left and right multiplication in H .s  Let q be a 

semi-quaternion. Then : H Hq s sL  and : H Hq s sR  are defined as follows: 

( ) , , H .q q sL x qx R xq x    

If 
0 1 2 3q a a i a j a k   

  
then;  

0 1 2 3 0 1 2 3

1 0 3 2 1 0 3 2

0 1 0 1

1 0 1 0

(1) , (1)

( ) , ( )

( ) 0 0 , ( ) 0 0

( ) 0 0 , ( ) 0 0

q q

q q

q q

q q

L a a i a j a k R a a i a j a k

L i a a i a j a k R i a a i a j a k

L j i a j a k R j i a j a k

L k i a j a k R k i a j a k

       

         

       

       

     

       

       

       

 

 
Therefore the matrix representations of the linear operators ,q qL R are, respectively 

 

0 1

1 0

2 3 0 1

3 2 1 0

0 0

0 0
(2)

a a

a a
q

a a a a

a a a a

 
 
  
 
  

 

and 

 

0 1

1 0

2 3 0 1

3 2 1 0

0 0

0 0
. (3)

a a

a a
q

a a a a

a a a a

 
 
  
 
    

The Euler’s and De-Moivre’s formulae for the matrix A are studied in [3].  It is shown that as the De 

Moivre’s formula implies, there are uncountably many matrices of unit quaternion satisfying 4
nA I  

for 2.n     

Theorem 1. If q and p are two semi-quaternions, λ is a real number and 
qL and qR are operators as 

defined in equations (2) and (3), respectively, then the following identities hold: 

i. ( ) ( ) ( ) ( ).q p q p q p        
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ii. ( ) ( ) ( ), ( ) ( ) ( ).q p q p q p q p           

iii. ( ) ( ), ( ) ( ).q q q q          

iv. ( ) ( ) ( ), ( ) ( ) ( ).qp q p qp p q        

v.    1 11 1( ) ( ) , ( ) ( ) , 0.qq q q q N
          

vi.    2 2det ( ) ( ) , det ( ) ( ) .q qq N q N     

vii.    0 0( ) 4 , ( ) 4 .tr q a tr q a     

Proof: Identities (i), (ii) and (iii) can be proved easily. Using the associative property of the quaternions 

multiplication, it is clear that following identities hold: 

( ) ( )qp r q pr qpr   

In terms of operator ,  the above identities can be written as 

( ) ( ( ) )

( )( ( ) ) ( ) ( )

qp r q p r

q p r q p r

   
     

 

and similarly, 
( ) ( ( ) )

( )( ( ) ) ( ) ( ) .

qp r q p r

p q r p q r

   
     

 

Since r  is arbitrary, the above relation employs equation (iv). Using the inverse property, we have 
1 1

4qq q q I    

and in terms of operator  ,   the above identities can be written as 
1 1

4 4

1 1
4 4

( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

qq q q I I

q q q q I I

 

 

     

     
 

therefore, the above relation employs equation (v).  Identities (vi),  and (vii) can be proved easily. 

Theorem 2. Let q be a unit semi-quaternion. Matrices generated by operators ( )q  and ( )q are semi-

orthogonal matrices, i.e. 

i)  ( ) ( ) ,
T

q q     

ii) 
 

1 0 0 0

0 1 0 0
( ) ( ) , .

0 0 0 0

0 0 0 0

T
q q  

 
 
    
 
 
 

 

 

Theorem 3. The map  

(4,R): (H , ,.) (M , , )s      

defined as 
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0 1

1 0
0 1 2 3

2 3 0 1

3 2 1 0

0 0

0 0
( i j k) ,

a a

a a
a a a a

a a a a

a a a a



 
 
   
 
  

  
  

is an isomorphism of algebras.  

Proof: We first demonstrate its homomorphic properties. If 
0 1 2 3 ,p a a i a j a k   

 
0 1 2 3q b b i b j b k   

 

are any two semi-quaternions then: 

   0 0 1 1 2 2 3 3

0 0 1 1

1 1 0 0

2 2 3 3 0 0 1 1

3 3 2 2 1 1 0 0

0 1 0 1

1 0 1 0

2 3 0 1 2 3 0 1

3 2 1 0 3

( + ) ( ) ( )

( + ) 0 0

+ 0 0

( + )

( ) ( + )

0 0 0 0

0 0 0 0

p q a b a b i a b j a b k

a b a b

a b a b

a b a b a b a b

a b a b a b a b

a a b b

a a b b

a a a a b b b b

a a a a b b

        

  
  
    
     

  
 
  
  
   

 

   
2 1 0

,

b b

p q 

 
 
 
 
 
 

 

 

  


0 0 1 1 1 0 0 1 2 0 3 1 0 2 1 3

3 0 2 1 1 2 0 3

0 1 0 1

1 0 1 0

2 3 0 1 2 3 0 1

3 2 1 0 3 2 1

( ) ( )

( )

( )

0 0

0 0

0 0 0 0

0 0 0 0

pq a b a b a b a b i a b a b a b a b j

a b a b a b a b k

A B i C j Dk

A B

B A

C D A B

D C B A

a a b b

a a b b

a a a a b b b b

a a a a b b b b

 



       

   

   

 
 
 
 
  

  
 
  
  
   

 



 

   
0

.p q 

 
 
 
 
 
 

 

 

Thus the map is a homomorphism. It is also one-to-one and onto and so is an isomorphism.   
 
If q is a nonzero semi-quaternion, the mapping 

1: ,qv x q xq   

is called the inner automorphism defined by .q We embed K into 4
2 by letting 

1 2 3 1 2 3 1 2 3( , , ) (0, , , ) .x x x x x x x x i x j x k   
  

  

The matrix representation of the map qv  is 
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2 2
0 1

2 2
1 2 0 3 0 1 0 1

2 2
1 3 0 2 0 1 0 1

0 0

M 2( ) 2 .

2( ) 2

a a

a a a a a a a a

a a a a a a a a

 
    
    

 

Lemma 1: qv is a linear mapping for all nonzeroq , and it transforms the subspace of vectorial 

quaternions onto itself. 

Proof: The linearity of x qx follows directly from Theorem 1. The argument x xp  for is similar. 

Composition of these two mappings for 1p q  gives qv ,so qv is linear. 

 

III. RESULTS 

According to definition 1, the kinematic mapping correspond with qv is kinematic mapping of Blaschke 

and Grünwald. The corresponding geometry is not elliptic one, but so called quasi-elliptic geometry.   
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