Düzce University Journal of Science \& Technology

Short Article

Kinematic Mapping in Semi-Euclidean 4-Space

Mehdi JAFARI*
Department of Mathematics, University College of Science and Technology Elm o Fan, Urmia, IRAN
* Corresponding author’s e-mail address: mj_msc@yahoo.com

Abstract

We study the some algebraic properties of matrix associated to Hamilton operators which is defined for semiquaternions. The kinematic mapping corresponding to these operators in semi-Euclidean 4 -space is the same as the kinematic mapping of Blaschke and Grünwald.

Keywords: Hamilton operators, Quasi-elliptic geometry, Semi-quaternion

Dört Buyutlu Semi-Oklidean Uzayda kinematik dönüşümler

ÖZET

Semi-kuaterniyonların Hamilton opratorlarına karşılık gelen matrislerin bazı cebirsel özeliklerin araştırdık. Bu opratorlara karş1lık gelen dönüşümler kinematığ1 dört boyutlu semi oklıd uzayında, Blaşke ve Grünwald dönüşümler kinematığı aynıdır..

Anahtar Kelimeler: Hamilton operatöleri, Kuasi eliptik geometri, Semi kuaterniyon

I. InTRODUCTION

QUATERNIONS was first introduced by William R. Hamilton as a successor to complex numbers. The quaternions have been used in various areas of mathematics. A brief introduction of the semiquaternions is provided in [5]. Dyachkova [1] has showed that the set of all invertible elements of semiquaternions with the quaternion product is a Lie group. Also, she considered the degenerate scalar product $\langle q, p\rangle=a_{0} b_{0}+a_{1} b_{1}$. Accordingly, the semi-quaternions algebra with this product has the 4-dimensional semi-Euclidean space structure with rank 2 semi-metric. In [2], the algebraic properties of semi-quaternions are studied and De-Moivre's and Euler's formulas for these quaternions are given.

De Moivre's formula implies that there are uncountably many unit semi-quaternions satisfying for $q^{n}=1$ for $n \geq 2$. The matrix associated with a semi-quaternion is studied and by De-Moivre's formula the $n-t h$ power of such a matrix can be obtained [3]. In this paper, after a review of some fundamental properties of the semi- quaternions, algebraic properties of Hamilton operators of these quaternion are studied. By these operators, we get the kinematic mapping of Blaschke and Grünwald. The corresponding geometry is quasi-elliptic geometry.

II. PRELIMINARIES

Definition1. The group of motion of the Euclidean plane is denoted by OA_{2}. If we choose a Cartesian coordinate system, then a motion $\alpha \in \mathrm{OA}_{2}$ has the form

$$
x \mapsto \mathrm{M} \cdot x+b, \text { with } \mathrm{M}=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \tag{1}\\
\sin \phi & \cos \phi
\end{array}\right] .
$$

In homogeneous coordinate, Equ. (1) reads

$$
x \mathbb{R} \mapsto(A . x) \mathbb{R}, \quad A=\left[\begin{array}{cc}
1 & 0^{T} \\
b & \mathrm{M}
\end{array}\right]
$$

The kinematic mapping of Blashke and Grüwald is a correspondence between points of real projective three-space \mathbf{P}^{3} and planar Euclidean motions. It is defined as:

$$
\mathrm{d} \mathbb{R} \in \mathrm{P}^{3} \mapsto\left[\begin{array}{ccc}
d_{0}^{2}+d_{3}^{2} & 0 & 0 \\
2\left(d_{0} d_{1}-d_{2} d_{3}\right) & d_{3}^{2}-d_{0}^{2} & 2 d_{0} d_{3} \\
2\left(d_{1} d_{3}+d_{0} d_{2}\right) & -2 d_{0} d_{3} & d_{3}^{2}-d_{0}^{2}
\end{array}\right] \in O A_{2}
$$

Note that the image that image of a point with coordinate $\left(0, d_{1}, d_{2}, 0\right)$ is not a Euclidean motion. We therefore call the line $x_{0}=x_{3}=0$ the absolute line and consider the kinematic mapping defined in projective space without the absolute line.
It is an elementary exercise to verify that a rotation with angle ϕ and center x_{m}, y_{m} corresponds to the point $\left(1, x_{m}, y_{m},-\cot \frac{\phi}{2}\right) \mathbb{R}$ and that the translation $x \mapsto x+b$ corresponds to the point $\left(0, b_{2},-b_{1}, 2\right)$. This is illustrated in Fig. 1, which shows an affine part of projective three-space[4].

Fig. 1. A planar rotation α with center $\mathrm{m}=\left(x_{m}, y_{m}\right)$ transforms \mathbf{p} to \mathbf{q} has the kinematic image point \mathbf{d}.

II. EXPERIMENT

A. SEMI-QUATERNIONS

This section summarizes the essentials of the algebra of semi-quaternions. A semi-quaternion q is an expression of the form

$$
q=a_{0}+a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}
$$

where a_{0}, a_{1}, a_{2} and a_{3} are real numbers and $\vec{i}, \vec{j}, \vec{k}$ are quaternionic units satisfying the equalities

$$
\begin{gathered}
\vec{i}^{2}=-1, \vec{j}^{2}=\vec{k}^{2}=0, \\
\overrightarrow{i j}=\vec{k}=-\overrightarrow{j i}, \quad \vec{j} \vec{k}=0=-\overrightarrow{k j},
\end{gathered}
$$

and

$$
\overrightarrow{k i}=\vec{j}=-\overrightarrow{i k} .
$$

The set of all semi-quaternions is denoted by H_{s}. We express the basic operations in terms of $\vec{i}, \vec{j}, \vec{k}$. The addition becomes as

$$
\begin{aligned}
\left(a_{0}+a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}\right) & +\left(b_{0}+b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}\right) \\
& =\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) \vec{i}+\left(a_{2}+b_{2}\right) \vec{j}+\left(a_{3}+b_{3}\right) \vec{k}
\end{aligned}
$$

and the multiplication as

$$
\begin{aligned}
\left(a_{0}+a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}\right) & \left(b_{0}+b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}\right) \\
& =\left(a_{0} b_{0}-a_{1} b_{1}\right) \\
& +\left(a_{1} b_{0}+a_{0} b_{1}\right) \vec{i} \\
& +\left(a_{2} b_{0}+a_{3} b_{1}+a_{0} b_{2}-a_{1} b_{3}\right) \vec{j} \\
& +\left(a_{3} b_{0}-a_{2} b_{1}+a_{1} b_{2}+a_{0} b_{3}\right) \vec{k}
\end{aligned}
$$

Given $q=a_{0}+a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}, a_{0}$ is called the scalar part of q, denoted by

$$
S(q)=a_{0},
$$

and $a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ is called the vector part of q, denoted by

$$
\vec{V}(q)=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k} .
$$

If $S(q)=0$, then q is called pure semi-quaternion. The set of all the pure semi-quaternions is denoted by K.

The conjugate of q is

$$
\bar{q}=a_{0}-a_{1} \vec{i}-a_{2} \vec{j}-a_{3} \vec{k} .
$$

The norm of q is

$$
N_{q}=\bar{q} q=q \bar{q}=a_{0}^{2}+a_{1}^{2} .
$$

If $N_{q}=1$, then q is called a unit semi-quaternion.

The inverse of q with $N_{q} \neq 0$, is

$$
q^{-1}=\frac{1}{N_{q}} \bar{q} .
$$

Clearly $q q^{-1}=1+0 \vec{i}+0 \vec{j}+0 \vec{k}$. Note also that $\overline{q p}=\bar{p} \bar{q}$ and $(q p)^{-1}=p^{-1} q^{-1}$. The algebra H_{s} has the $4-$ dimensional semi-Euclidean space structure \mathbb{R}_{2}^{4} with rank 2 semi-metric[2].

B. MATRICES ASSOCIATED WITH SEMI-QUATERNIONS

We introduce the R-linear transformations representing left and right multiplication in H_{s}. Let q be a semi-quaternion. Then $L_{q}: \mathrm{H}_{s} \rightarrow \mathrm{H}_{s}$ and $R_{q}: \mathrm{H}_{s} \rightarrow \mathrm{H}_{s}$ are defined as follows:

$$
L_{q}(x)=q x, \quad R_{q}=x q, \quad x \in \mathrm{H}_{s} .
$$

If $q=a_{0}+a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ then;

$$
\begin{array}{ll}
L_{q}(1)=a_{0}+a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}, & R_{q}(1)=a_{0}+a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k} \\
L_{q}(\vec{i})=-a_{1}+a_{0} \vec{i}+a_{3} \vec{j}-a_{2} \vec{k}, & R_{q}(\vec{i})=-a_{1}+a_{0} \vec{i}-a_{3} \vec{j}+a_{2} \vec{k} \\
L_{q}(\vec{j})=0+0 \vec{i}+a_{0} \vec{j}+a_{1} \vec{k}, & R_{q}(\vec{j})=0+0 \vec{i}+a_{0} \vec{j}-a_{1} \vec{k} \\
L_{q}(\vec{k})=0+0 \vec{i}-a_{1} \vec{j}+a_{0} \vec{k}, & R_{q}(\vec{k})=0+0 \vec{i}+a_{1} \vec{j}+a_{0} \vec{k}
\end{array}
$$

Therefore the matrix representations of the linear operators L_{q}, R_{q} are, respectively

$$
\Phi(q)=\left[\begin{array}{cccc}
a_{0} & -a_{1} & 0 & 0 \tag{2}\\
a_{1} & a_{0} & 0 & 0 \\
a_{2} & a_{3} & a_{0} & -a_{1} \\
a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right]
$$

and

$$
\Psi(q)=\left[\begin{array}{cccc}
a_{0} & -a_{1} & 0 & 0 \tag{3}\\
a_{1} & a_{0} & 0 & 0 \\
a_{2} & -a_{3} & a_{0} & a_{1} \\
a_{3} & a_{2} & -a_{1} & a_{0}
\end{array}\right] .
$$

The Euler's and De-Moivre's formulae for the matrix A are studied in [3]. It is shown that as the De Moivre's formula implies, there are uncountably many matrices of unit quaternion satisfying $A^{n}=I_{4}$ for $n>2$.

Theorem 1. If q and p are two semi-quaternions, λ is a real number and L_{q} and R_{q} are operators as defined in equations (2) and (3), respectively, then the following identities hold:
i. $\quad q=p \Leftrightarrow \Phi(q)=\Phi(p) \Leftrightarrow \Psi(q)=\Psi(p)$.
ii. $\quad \Phi(q+p)=\Phi(q)+\Phi(p), \quad \Psi(q+p)=\Psi(q)+\Psi(p)$.
iii. $\quad \Phi(\lambda q)=\lambda \Phi(q), \Psi(\lambda q)=\lambda \Psi(q)$.
iv. $\quad \Phi(q p)=\Phi(q) \Phi(p), \Psi(q p)=\Psi(p) \Psi(q)$.
v. $\quad \Phi\left(q^{-1}\right)=[\Phi(q)]^{-1}, \quad \Psi\left(q^{-1}\right)=[\Psi(q)]^{-1}, \quad N_{q} \neq 0$.
vi. $\quad \operatorname{det}[\Phi(q)]=\left(N_{q}\right)^{2}, \operatorname{det}[\Psi(q)]=\left(N_{q}\right)^{2}$.
vii. $\operatorname{tr}[\Phi(q)]=4 a_{0}, \operatorname{tr}[\Psi(q)]=4 a_{0}$.

Proof: Identities (i), (ii) and (iii) can be proved easily. Using the associative property of the quaternions multiplication, it is clear that following identities hold:

$$
(q p) r=q(p r)=q p r
$$

In terms of operator Φ, the above identities can be written as

$$
\begin{aligned}
\Phi(q p) r & =\Phi(\Phi(q) p) r \\
& =\Phi(q)(\Phi(p) r)=\Phi(q) \Phi(p) r
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
\Psi(q p) r & =\Psi(\Psi(q) p) r \\
& =\Psi(p)(\Psi(q) r)=\Psi(p) \Psi(q) r .
\end{aligned}
$$

Since r is arbitrary, the above relation employs equation (iv). Using the inverse property, we have

$$
q q^{-1}=q^{-1} q=I_{4}
$$

and in terms of operator Φ, the above identities can be written as

$$
\begin{aligned}
& \Phi\left(q q^{-1}\right)=\Phi(q) \Phi\left(q^{-1}\right)=\Phi\left(I_{4}\right)=I_{4}, \\
& \Psi\left(q^{-1} q\right)=\Psi\left(q^{-1}\right) \Psi(q)=\Psi\left(I_{4}\right)=I_{4},
\end{aligned}
$$

therefore, the above relation employs equation (v). Identities (vi), and (vii) can be proved easily.
Theorem 2. Let q be a unit semi-quaternion. Matrices generated by operators $\Phi(q)$ and $\Psi(q)$ are semiorthogonal matrices, i.e.
i) $\quad[\Phi(q)]^{T} \varepsilon \Phi(q)=\varepsilon$,
ii) $[\Psi(q)]^{T} \varepsilon \Psi(q)=\varepsilon, \varepsilon=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.

Theorem 3. The map

$$
\psi:\left(\mathrm{H}_{s},+, .\right) \rightarrow\left(\mathrm{M}_{(4, \mathrm{R})}, \oplus, \otimes\right)
$$

defined as

$$
\psi\left(a_{0}+a_{1} \overrightarrow{\mathrm{i}}+a_{2} \overrightarrow{\mathrm{j}}+a_{3} \overrightarrow{\mathrm{k}}\right) \mapsto\left[\begin{array}{cccc}
a_{0} & -a_{1} & 0 & 0 \\
a_{1} & a_{0} & 0 & 0 \\
a_{2} & a_{3} & a_{0} & -a_{1} \\
a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right]
$$

is an isomorphism of algebras.
Proof: We first demonstrate its homomorphic properties. If $p=a_{0}+a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}, q=b_{0}+b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}$ are any two semi-quaternions then:

$$
\begin{aligned}
\psi\{p+q\} & \psi\left\{a_{0}+b_{0}+\left(a_{1}+b_{1}\right) \vec{i}+\left(a_{2}+b_{2}\right) \vec{j}+\left(a_{3}+b_{3}\right) \vec{k}\right\} \\
& =\left[\begin{array}{ccc}
a_{0}+b_{0} & -\left(a_{1}+b_{1}\right) & 0 \\
a_{1}+b_{1} & a_{0}+b_{0} & 0 \\
a_{2}+b_{2} & a_{3}+b_{3} & a_{0}+b_{0} \\
a_{3}+b_{3} & -\left(a_{2}+b_{2}\right) & \left(a_{1}+b_{1}\right) \\
a_{1}+b_{0}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a_{0} & -a_{1} & 0 \\
a_{1} & a_{0} & 0 \\
a_{2} & a_{3} & a_{0} \\
a_{3} & -a_{2} & a_{1} \\
a_{0}
\end{array}\right] \oplus\left[\begin{array}{ccc}
b_{0} & -b_{1} & 0 \\
b_{1} & b_{0} & 0 \\
b_{2} & b_{3} & b_{0} \\
b_{3} & -b_{1} \\
b_{2} & b_{1} & b_{0}
\end{array}\right] \\
& =\psi\{p\} \oplus \psi\{q\}, \\
& \left.+\left(a_{3} b_{0}-a_{2} b_{1}+a_{1} b_{2}+a_{0} b_{3}\right) \vec{k}\right\} \\
= & \psi(A+B \vec{i}+C \vec{j}+D \vec{k}) \\
= & {\left[\begin{array}{ccc}
A & -B & 0 \\
B & 0 & 0 \\
B & 0 \\
C & D & A \\
a_{0} b_{0}-a_{1} b_{1}+\left(a_{1} b_{0}+a_{0} b_{1}\right) \vec{i}+\left(a_{2} b_{0}+a_{3} b_{1}+a_{0} b_{2}-a_{1} b_{3}\right) \vec{j} \\
D & -C & B \\
A
\end{array}\right] } \\
= & {\left[\begin{array}{llll}
a_{0} & -a_{1} & 0 & 0 \\
a_{1} & a_{0} & 0 & 0 \\
a_{2} & a_{3} & a_{0} & -a_{1} \\
a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right] \otimes\left[\begin{array}{cccc}
b_{0} & -b_{1} & 0 & 0 \\
b_{1} & b_{0} & 0 & 0 \\
b_{2} & b_{3} & b_{0} & -b_{1} \\
b_{3} & -b_{2} & b_{1} & b_{0}
\end{array}\right] } \\
= & \psi p\} \otimes \psi\{q\} .
\end{aligned}
$$

Thus the map ψ is a homomorphism. It is also one-to-one and onto and so ψ is an isomorphism.

If q is a nonzero semi-quaternion, the mapping

$$
v_{q}: x \mapsto q x q^{-1}
$$

is called the inner automorphism defined by q. We embed K into \mathbb{R}_{2}^{4} by letting

$$
x=\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(0, x_{1}, x_{2}, x_{3}\right)=x_{1} \vec{i}+x_{2} \vec{j}+x_{3} \vec{k}
$$

The matrix representation of the map v_{q} is

$$
\mathrm{M}=\left[\begin{array}{ccc}
a_{0}^{2}+a_{1}^{2} & 0 & 0 \\
2\left(a_{1} a_{2}-a_{0} a_{3}\right) & a_{0}^{2}-a_{1}^{2} & 2 a_{0} a_{1} \\
2\left(a_{1} a_{3}+a_{0} a_{2}\right) & -2 a_{0} a_{1} & a_{0}^{2}-a_{1}^{2}
\end{array}\right] .
$$

Lemma 1: v_{q} is a linear mapping for all nonzero q, and it transforms the subspace of vectorial quaternions onto itself.
Proof: The linearity of $x \mapsto q x$ follows directly from Theorem 1. The argument $x \mapsto x p$ for is similar. Composition of these two mappings for $p=q^{-1}$ gives v_{q}, so v_{q} is linear.

III. Results

According to definition 1 , the kinematic mapping correspond with v_{q} is kinematic mapping of Blaschke and Grünwald. The corresponding geometry is not elliptic one, but so called quasi-elliptic geometry.

V. References

[1] Dyachkova M., On Hopf bundle analogue for semi-quaternion algebra, 10th International conference DGA, Olomouc, Czech Republic, (2007) 45-47.
[2] M. Jafari, H. Molaei Some properties of matrix algebra of semi-quaternions, Accepted for publication in Konuralp Journal of Mathematics.
[3] H. Mortazaasl, M. Jafari A study on semi-quaternions algebra in semi-Euclidean 4-space, Mathematical science and application E-Notes, 1(2) (2013) 20-27.
[4] H. Pottman J. Wallner Computational line geometry, Springer-Verlag Berlin Heidelberg New York, 2000.
[5] Rosenfeld B., Geometry of Lie groups, Kluwer Academic Publishers, Netherlands, (1997).
[6] J.P. Ward, Quaternions and Cayley numbers algebra and applications, Kluwer Academic Publishers, London, (1997).

