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FIXED POINT RESULTS FOR F -EXPANSIVE MAPPINGS IN
ORDERED METRIC SPACES

RQEEB GUBRAN, W. M. ALFAQIH, AND M. IMDAD

Abstract. In this article, we prove some existence and uniqueness fixed point
results for F -expansive mappings in partially ordered metric spaces. We sup-
port the usability of our results adopting suitable examples.

1. Introduction

In what follows, M stands for a non-empty set whereas IM denotes the identity
mapping on M . As usual, R+ = (0,∞) while "≤" refers the usual order on R.
Generally, all other involved symbols are used in their standard sense. For the sake
of brevity, we write Su instead of writing S(u) whereas for all n, we mean for all
n ∈ N. Throughout, Fix(S) stands for the set of all fixed points of the mapping S
In order to generalize Banach contraction principle, Wardowski [1] employed a

new type of auxiliary functions as under:

Definition 1. [1] Let F be the family of all functions F : R+ → R satisfying the
following conditions:
(F1) F is strictly increasing,
(F2) for every sequence {sn} of positive real numbers,

lim
n→∞

sn = 0⇔ lim
n→∞

F (sn) = −∞, and

(F3) there exists k ∈ (0, 1) such that lim
s→0+

skF (s) = 0.

Utilizing above auxiliary functions, Wardowski [1] proved the following:

Theorem 1. [1] Let (M,d) be a complete metric space and S : M → M . If there
exists τ > 0 and F ∈ F such that

d(Su, Sv) > 0⇒ τ + F (d(Su, Sv)) ≤ F (d(u, v)), (1.1)

for all u, v ∈M , then S possesses a unique fixed point.
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Recall that, every self-mapping satisfying 1.1 is called F -contraction and on
varying the elements of F suitably, a variety of contractions can be derived.
In recent years, the concept of F -contractions has attracted the attention of

several researchers and by now there exists a considerable literature on and around
this concept.
Very recently, Górnicki [2] undertaken the expansive analogues of Theorem 1.

To accomplish this object, the author considered the following definition followed
by an auxiliary result:

Definition 2. [2] A self-mapping S on a metric space (M,d) is said to be F -
expansive if there exists a function F ∈ F and τ > 0 such that

d(u, v) > 0⇒ F (d(Su, Sv) ≥ F (d(u, v)) + τ , (1.2)

for all u, v ∈M .

Lemma 1. [2] Let (M,d) be a metric space and S :M →M a surjective mapping.
Then S has a right inverse mapping i.e., a mapping S∗ : M → M such that
S ◦ S∗ = IM .

The main result of [2] is the following one:

Theorem 2. [2] Every surjective F -expansive self-mapping on a complete metric
space possesses a unique fixed point.

A metric space (M,d) endowed with a partial order “�" is called an ordered
metric space and often denoted by (M,d,�). Further, M is said to be regular if for
every increasing sequence {un} in M with un → u, we have un � u for all n. For
arbitrary elements u, v of M , we say that u and v are comparable if either u � v
or v � u. The mapping S : M → M is called �-increasing if Su � Sv whenever
u � v.
In 2004, Ran and Reurings [3] presented the analogous of Banach contraction

principle in partially ordered metric spaces. Thereafter, proving order-theoretic
analogues of metric-theoretical fixed point results becomes increasingly active (e.g.,
[4—12]). Concerning F -contractions in order metric spaces, one can be refereed
to [13—17] and references therein. Here, it can be pointed out that in the setting
of ordered metric spaces, the contraction inequality (e.g., (1.1) and (1.2)) needs to
hold merely for comparable pairs of elements.
In this article, we prove some existence and uniqueness fixed point results for an

F -expansive mappings in ordered metric spaces. Concretely speaking, we prove an
order-theoretic analogue of Theorem 2.

2. Main Results

We begin this section by the following observations and auxiliary results which
are needed in our subsequent discussions:
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Proposition 1. Let (M,d,�) be an ordered metric space and S : M → M a
surjective mapping having a right inverse mapping S∗. If the mapping S∗ is �-
increasing, then S need not be so (see Example 1 to be given later).

Lemma 2. Let (M,d) be a metric space and S : M → M a surjective mapping
having a right inverse mapping S∗. If u ∈M is a fixed point of S∗, then u remains
a fixed point of S.

Proof. Let u be a fixed point of S∗. Then, Su = S
(
S∗u

)
= u. �

Lemma 3. The converse of Lemma 2 is true if S is injective mapping.

Proof. Let u be a fixed point of S. Then, Su = u = S(S∗u). The injectiveness of
S implies that u = S∗u which concludes the proof.
To disprove the converse implication of Lemma 2, consider S : [0,∞) → [0,∞)

given by

Su =


√
u, for u < 1,

1, for 1 ≤ u ≤ 2,
2u− 3, Otherwise.

Here, 1 remains fixed under S but not under its inverse function S∗ as S∗u = u2

for u < 1 and S∗u = u+3
2 elsewhere. �

Remark 1. Observe that, neither S nor S∗ is required to be continuous in Lemma
3.

To support this claim, consider M = [0,∞) endowed with the usual metric and
the partial order: u � v if and only if either {u = v | u, v ∈ N} or {u ≤ v | u, v /∈ N}.
Define S :M →M by:

Su =


u+ 1, if u is odd number,

u− 1, if u is even number,

u, Otherwise .

Obviously, S∗ = S. Further, S is bijective and �-increasing but not continuous.
The following definition remains an order-theoretic analogue of Definition 2:

Definition 3. Let (M,d,�) be an ordered metric space. A mapping S :M →M is
said to be F -expansive if there exists F ∈ F and τ > 0 such that for all comparable
elements u and v in M , we have

d(u, v) > 0⇒ F (d(Su, Sv) ≥ F (d(u, v)) + τ . (2.1)

Now, we are equipped to prove our main result as follows:

Theorem 3. Let (M,�, d) be an ordered complete metric space, S : M → M a
surjective F -expansive mapping and S∗ the right inverse of S. Then S has a fixed
point if the following conditions hold:

(a) there exists u0 ∈M such that u0 � S∗u0,
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(b) S∗ is �-increasing,
(c) either S is continuous or M is regular.

Proof. Let u0 ∈ M be such that u0 � S∗u0. Define a sequence {un} in M by
un =: S

∗un−1 (for all n). Notice that, the construction of the sequence implies
un = Sun+1 for all n. In case, un = un+1 for some n, then un is the required fixed
point and we are done. Therefore, we may assume that such equality does not
occur for any n. Since u0 � S∗u0 and S∗ is �-increasing, we have un � un+1 for
all n. On setting u = un and v = un+1 in (2.1), we have

F (d(un, un+1)) = F (d(Sun+1, Sun+2))

≥ F (d(un+1, un+2)) + τ .
Put tn = d(un, un+1). Now, it follows that

F (tn+1) ≤ F (tn)− τ ≤ F (tn−1)− 2τ ≤ ... ≤ F (t1)− nτ, (2.2)

implying therapy lim
n→∞

F (tn) = −∞ which in view of (F2) gives rise

lim
n→∞

tn = 0. (2.3)

Owing to (F3), there exists k ∈ (0, 1) such that
lim
n→∞

tknF (tn) = 0. (2.4)

Now, from (2.2), we have

tkn
(
F (tn)− F (t1)

)
≤ −(n− 1)τtkn ≤ 0. (2.5)

On using (2.3), (2.4) and letting n→∞ in (2.5), we get

lim
n→∞

ntkn = 0.

Hence, there exists n0 ∈ N such that ntkn ≤ 1 for all n ≥ n0, so that

tn ≤
1

n
1
k

, for all n ≥ n0. (2.6)

We assert that {un} is a Cauchy sequence. Conceder p, q ∈ N with q > p ≥ n0.
Using the triangle inequality and (2.6), we have

d(up, uq) ≤
q−1∑
i=p

ti ≤
∞∑
i=p

ti ≤
∞∑
i=p

1

i
1
k

.

The convergence of the series
∑∞
i=1

1

i
1
k
implies that

lim
p,q→∞

d(up, uq) = 0

so that the intended assertion is established. Since M is complete, there exists
some u ∈M such that

lim
n→∞

un = u. (2.7)
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If S is continuous, then u = lim
n→∞

un = S( lim
n→∞

un+1) = Su and thus we are through.

Otherwise, let M be regular so that un � u for all n. In view of Lemma 2, it is
enough to show that S∗u = u. Here, we distinguish two cases, if there exits m ∈ N
such that um = u, then S∗u = S∗um = um+1 � u. Also, u = um � um+1 = S∗um =
S∗u so that S∗u = u. In case, un 6= u for all n. We assert that d(u, Su) = 0. On a
contrary, assume that d(u, Su) > 0 so that

F (d(un, u)) = F (d(Sun+1, SS
∗u))

≤ F (d(un+1, S∗u)) + τ
> F (d(un+1, S

∗u)),

it follows that d(un, u) > d(un+1, S
∗u) which on making n→∞ (on both the sides)

gives rise S∗u = u. This concludes the proof. �

To prove a uniqueness result corresponding to Theorem 3, we have the following.

Theorem 4. The mapping S in Theorem 3 has a unique fixed point if either Fix(S)
is totally ordered set or (S is injective and for every pair of elements u and v of M
there exists w ∈M which is comparable to both u and v).

Proof. Let u, v be two distinct and comparable fixed points of S. Then we have

F (d(u, v)) = F (d(Su, Sv)

≥ F (d(u, v)) + τ ,
a contradiction. Otherwise, let w ∈ M be comparable to both u and v. We may
assume that w � u. Since S∗ is �-increasing, we have

(S∗)nw � u, for all n.

Let (S∗)nw = wn. We assert that lim
n→∞

d(wn, u) = 0. If wm = u for some m ∈ N,
then the assertion is obvious. Otherwise, in view of (2.1), we have

F (d(wn, u)) = F (d(Swn+1, Su))

≥ F (d(wn+1, u)) + τ .

Therefore, by induction on n, we deduce

F (d(wn+1, u)) ≤ F (d(S∗w, u))− nτ.
Therefore, lim

n→∞
F (d(wn, u)) = −∞ which, in view of (F2), implies that

lim
n→∞

d(wn, u) = 0. (2.8)

Similarly, we can prove that lim
n→∞

d(wn, v) = 0. Hence,

d(u, v) ≤ d(u,wn) + d(wn, v)→ 0 as n→∞.
This concludes the proof. �
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The following example creates a situation wherein Theorem 3 is applicable while
Theorem 2 is not.

Example 1. LetM = [0,∞) be endowed with the usual metric d. Define a mapping
S :M →M by:

Su =

{
2u− 3n+ 3, for u ∈ [3n− 3, 3n− 2];
u+3n
2 , for u ∈ [3n− 2, 3n].

n = {1, 2, 3, ...}

Then, S is a surjective and having a right inverse S∗ given by:

S∗u =

{
u+3n−3

2 , for u ∈ [3n− 3, 3n− 1];
2u− 3n, for u ∈ [3n− 1, 3n].

n = {1, 2, 3, ...}

Define a partial order on M as follows: u � v if and only if either u = v or
(u ≤ v where both u, v in [3n − 3, 3n − 2], n ∈ N). Then, S∗ is �-increasing.
Consider F (t) = ln t and τ with 1 < eτ ≤ 2. Then, for distinct elements u and v
in [3n− 3, 3n− 2], n ∈ N, we have
ln[d(Su, Sv)] = ln

[
2|u− v|

]
≥ ln

[
eτ |u− v|

]
= τ + ln

[
|u− v|

]
= τ + ln

[
d(u, v)

]
.

By a routine calculation one can show that S satisfies all other hypotheses of The-
orem 3 ensuring the existence of some fixed point of S.

Observe that, Theorem 2 is not applicable in the context of Example 1 as the
inequality (1.2) does not hold for u = 1 and v = 3. Furthermore, the uniqueness
requirement of Theorem 4 is not satisfied. Observe that S has infinitely many fixed
points.
The following corollary remains an order-theoretic analogue of a result due to

Wang et al. [18].

Corollary 1. Let (M,�, d) be an ordered complete metric space and S : M → M
be a surjective mapping satisfying the following:

d(Su, Sv) ≥ λd(u, v)
for all u, v ∈M such that u � v where λ > 1. Suppose that the following conditions
hold:

(a) there exists u0 ∈M such that u0 � S∗u0,
(b) S∗ is �-increasing,
(c) either S is continuous or M is regular.
Then S has a fixed point. Further, this fixed point is unique if either the set

Fix(S) is totally ordered or for every pair of elements u, v ofM , there exists w ∈M
which is comparable to both u and v.

Proof. The result follows from Theorem 4 by setting F (s) = ln s and τ with eτ =
λ. �
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