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Abstract
The main purpose of this article is to discuss the existence of the common solution of
second-order nonlinear boundary value problems

x′′(ȷ) = k(ȷ, x(ȷ), x′(ȷ)), if ȷ ∈ [0, Λ], Λ > 0,

x(ȷ1) = x1,

x(ȷ2) = x2, ȷ1, ȷ2 ∈ [0, Λ],
(0.1)

where k : [0, Λ] × S(S) × S(S) → S(S) is a continuous function and S(S) is a family of
fuzzy sets. In this regard we obtain common fixed point results for two pairs of fuzzy
mappings satisfying rational contractive condition in the setting of complex valued metric
spaces. Our results improve those reported in the existing literature.
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1. Introduction
Differential equations play a significant role in mathematical analysis and have numer-

ous applications in the real world problems. The problems arise in different fields of
sciences like physics, economics, engineering, and applied mathematics lead to differen-
tial equations which describe mathematical models. Somehow when the information arise
from the computational perception is vague, uncertain and partially true or without sharp
boundaries, researchers utilize the concept of fuzziness and describe mathematical models
by fuzzy differential equations or fuzzy linear systems. In [1], the authors have derived a
weak fuzzy solution for the system of fuzzy linear equations, while Salahshour et al. [30]
proposed a technique to find the approximate solution of fully fuzzy linear system. There
are various developed techniques to investigate the existence of the solution of differential
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equations. Fixed point technique is one of the most powerful tools for obtaining the re-
quired task. We refer the reader to [8, 13, 14, 18, 22–27,32, 36, 38] in which the researchers
have used fixed point results to investigate the existence of the solution of mathematical
models.

Banach contraction principle has been considered as the fundamental result of metric
fixed point theory [7]. Several generalizations of Banach contraction principle have been
demonstrated by many mathematicians in different frameworks like G metric spaces, rect-
angular cone metric spaces, probabilistic metric, quasi metric and cone metric spaces; see
[9, 11,19,29,31] for details.

Heilpern [15] has highly contributed in fuzzy set theory by introducing fuzzy mappings.
He demonstrated the Banach contraction principle for fuzzy mapping in metric linear
spaces and derived fixed point results in the said framework. Several generalizations of
Heilpern’s fixed point results have been derived by researchers in different spaces; see
[3, 4, 6, 12, 37]. Recently, a variety of work has been done in solving various problems
of many applied fields of mathematics by fuzzy polynomial. Jafarian and his co-authors
designed a neural network to find the solution of fully fuzzy polynomial with degree n in
[16].

Dass and Gupta [10] generalized Banach contraction principle for rational type contrac-
tive inequality in metric space and addressed some fixed point results which are further
generalized in various spaces by extending the contraction condition. In the meanwhile it
was shown to be invalid approach to find fixed point results in vector spaces. They real-
ized that rational type contractive condition fails where division of vectors occurs. Due to
this defect the application of rational contractive condition does not work in cone metric
spaces.

In this regard Azam et al. [5] introduced a notion of complex valued metric space
which is a special case of cone metric spaces and obtained common fixed point results
with rational contraction. Afterwards several researchers extended the aforesaid work
using different types of rational contraction with self mappings and multivalued mappings
in the context of complex valued metric spaces; see, for instance, [2,17,20,21,34] and the
references cited therein. The researchers continued the process of more generalizations and
improved the contractive conditions by replacing control function to the Lipschitz constant
in contraction. In addition Sintunavarat et al. [33, 35], have applied some common fixed
point results to investigate common solution to Urysohn integral equations in the context
of complex valued metric spaces .

In this paper, we prove some common fixed point results for two pairs of fuzzy mappings
satisfying a contractive condition of rational type in the setting of complex valued metric
spaces. The derived results generalize some results in the context of complex valued metric
space with fuzzy mappings.

As an application, we prove the existence of common solution of second-order nonlinear
boundary value problems (0.1).

2. Preliminaries
Definition 2.1 ([5]). Let the set of complex numbers be denoted by {. For x, y ∈ { we
define a partial order - on { such that:

(Ci) x - y ⇐⇒ Re(x) ≤ Re(y) and Im(x) ≤ Im(y);
(Cii) x ≺ y ⇐⇒ Re(x) < Re(y) and Im(x) < Im(y);
(Ciii) x � y ⇐⇒ Re(x) = Re(y) and Im(x) < Im(y);
(Civ) x = y ⇐⇒ Re(x) = Re(y) and Im(x) = Im(y).

Clearly if c ≤ d, ⇒ cy - dy, for all c, d ∈ R. Note that, if x ̸= y and one of (Ci), (Cii),
and (Ciii) is satisfied, then x � y and we write x = y if only (Civ) satisfies. Note that

i) 0 - x � y ⇒ |x| < |y|, ∀ x, y ∈ {;
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ii) x - y and y ≺ y3 ⇒ x ≺ y3, for all x, y, y3 ∈ {.

Definition 2.2 ([5]). Let S be a nonempty set and σ : S × S → { be a mapping satisfies
the conditions given below:

1) 0 - σ(x, y), for all x, y ∈ S and σ(x, y) = 0 if and only if x = y;
2) σ(x, y) = σ(y, x), for all x, y ∈ S;
3) σ(x, y) - σ(x, x1) + σ(x1, y), for all x, x1, y ∈ S.

Then (S, σ) is called a complex valued metric space.

Definition 2.3 ([5]). A point x ∈ S is known as an interior point of a set Z ⊆ S, if we
find 0 ≺ ϵ ∈ { with

B(x, ϵ) = {y ∈ S : σ(x, y) ≺ ϵ} ⊆ Z.

A point x ∈ Z is known as the limit point of Z, if there exists an open ball B(x, ϵ) with

B(x, ϵ) ∩
(
Z \ {x}

)
̸= ϕ,

where 0 ≺ ϵ ∈ {. A subset Z of S is said to be open if every point of Z is an interior point
of Z. Furthermore, Z is said to be closed if it contains all its limit points. The family

∇ = {B(x, ϵ) : x ∈ S, 0 ≺ ϵ}

is a sub-basis for a Hausdorff topology ℑ on S.

Definition 2.4. Let (S, σ) be a complex valued metric space. Throughout this paper, we
have denoted the family of all nonempty closed bounded subsets of complex valued metric
space S by CB(S). For ν ∈ {, we represent

s(ν) = {x ∈ { : ν ≼ x}

and for y ∈ S and 01 ∈ CB(S),

s
(
y, c

)
= ∪c∈01 s

(
σ(y, c)

)
= ∪c∈01

{
x ∈ { : σ(y, c) ≼ x

}
.

For 02,01 ∈ CB(S), we denote

s
(
02,01

)
=

(
∩p∈02 s

(
p,01

))
∩

(
∩q∈01 s

(
q,02

))
.

Let Ψ : S → CB(S) be a multivalued mapping. For x ∈ S and Q ∈ CB(S) we define

Wx(Q) =
{
σ(x, q) : q ∈ Q

}
.

Thus, for x, y ∈ S,
Wx(Ψy) =

{
σ(x, υ) : υ ∈ Ψy

}
.

Definition 2.5 ([2]). Assume that (S, σ) is a complex valued metric space, and the fuzzy
mapping K1 : S → S(S) observes the greatest lower bound property (glb property) on
(S, σ). Then for any w ∈ S and ∝∈ (0, 1], the greatest lower bound of Ww([K1y]∝) exists
in { for all w, y ∈ S. Here, we denote σ(w, [K1y]∝) by the glb of Ww([K1y]∝), i.e.,

σ
(
w, [K1y]∝

)
= inf{σ(w, u) : u ∈ [K1y]∝}.

Definition 2.6 ([5]). Assume that {yr} is a sequence in complex valued metric space and
y ∈ S. Then we say that y is a limit point of {yr} if for each 0 ≺ ϵ ∈ { there exists an
r0 ∈ N with σ(yr, y) ≼ ϵ for all r ≽ r0; mathematically, we write limr→∞ yr = y.

Definition 2.7 ([35]). Let xn be a sequence in complex valued metric space (S, σ).
i) A sequence xn is called a C-Cauchy sequence in S if for any ϵ ∈ { with 0 ≺ ϵ, there

exists an n0 ∈ N such that for all m, n > n0, σ(xn, xm) ≺ ϵ.
ii) (S, σ) is said to be a C-complete complex valued metric space if every C-Cauchy

sequence is convergent in S.
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Definition 2.8. Let (V, σ) be a metric linear space. If L01 : V → [0, 1], then L01 is called
membership function and the function value L01(u) is called the grade of membership of
u in 01 for u ∈ V . The set containing u and its grade of membership is called fuzzy set.
For simplicity we mentioned L01 by 01, then the ∝-level set of 01 is denoted by [01]∝
and is defined as follows:

[01]∝ = {u : 01(u) ≥∝}, if ∝ ∈ (0, 1],

[01]0 = {u : 01(u) > 0}.

Definition 2.9. Assume that S(S) is the family of all fuzzy sets in a metric space S. For
01,02 ∈ S(S),01 ⊂ 02 means 01(x) ≤ 02(x) for each x ∈ S.

Lemma 2.10 ([31]). Assume that (S, d) is a complex valued metric space.
i) Let u, v ∈ {. If u ≼ v, then s(u) ⊂ s(v).
ii) Suppose x ∈ S and 02 ∈ N(S). If δ ∈ s(x,02), then x ∈ 02.
iii) Let v ∈ {,02,01 ∈ CB(S) and ~ ∈ 02. If v ∈ s(02,01), then v ∈ s(~,01) for all

~ ∈ 02 or v ∈ s(02, ℓ) for all ℓ ∈ 01.

Definition 2.11 ([15]). Assume that Y is a metric space and S is an arbitrary set. If
F : S → S(S), then F is called a fuzzy mapping. A fuzzy mapping F is a fuzzy subset on
S×Y with membership function F (x)(y). The function F (x)(y) is the grade of membership
of y in F (x).

Definition 2.12 ([12]). If (S, σ) is a complex valued metric space and K1, K2 : S → S(S)
are fuzzy mappings, then the point y ∈ S is said to be a fuzzy fixed point of K1 if y ∈
[K1y]∝, where ∝∈ [0, 1] and a common fuzzy fixed point of K1, K2 if y ∈ [K1y]∝ ∩ [K2y]∝.

3. Main results
In this paper, we have used the notation, introduced in [33] as given below:

{+ = {x ∈ { : x ≽ 0}
and

Γ = {£ : {+ → [0, 1) : {xn} ⊆ {+ with £(xn) → 1 ⇒ xn → 0}.

Theorem 3.1. Let (S, σ) be a C-complete complex valued metric space, and K1, K2, K3, K4 :
S → S(S) are fuzzy mappings satisfying the glb property. Let δ1, δ2, δ3 : {+ → [0, 1) be given
mappings such that, for each x ∈ S and ∝∈ (0, 1], there exist [K1x]∝, [K2x]∝, [K3x]∝, [K4x]∝
(nonempty closed bounded subsets of S). Suppose that the following conditions hold:

i) δ1(x) + δ2(x) + δ3(x) < 1 and the mapping £ : {+ → [0, 1) is defined by

β(x) = δ1(x)
1 − δ2(x)

for all x ∈ {+, £ ∈ Γ;
ii) for every y, x ∈ S, we have

δ1
(
σ([K3x]∝, [K4y]∝)

)
σ

(
[K3x]∝, [K4y]∝

)
+δ2

(
σ([K3x]∝, [K4y]∝)

)σ
(
[K1x]∝, [K3x]∝

)
σ

(
[K2y]∝, [K4y]∝

)
1 + σ

(
x, y

)
+δ3

(
σ([K3x]∝, [K4y]∝)

)σ
(
[K1x]∝, [K4y]∝

)
σ

(
[K2y]∝, [K3x]∝

)
1 + σ

(
x, y

)
∈ s

(
[K1x]∝, [K2y]∝

)
. (3.1)

If [K1(S)]∝, [K2(S)]∝, [K3(S)]∝, [K4(S)]∝ are closed sets and [K1(S)]∝ ⊆ [K4(S)]∝ and
[K2(S)]∝ ⊆ [K3(S)]∝, then K1, K2, K3, K4 have a common fuzzy fixed point in S.
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Proof. Let x0 be an arbitrary point in S. Since [K1(S)]∝ ⊆ [K4(S)]∝ and [K2(S)]∝ ⊆
[K3(S)]∝, we can define sequences {xn} and {yn} in S by y2n ∈ [K1x2n−1]∝ ⊆ [K4x2n]∝ and
y2n+1 ∈ [K2x2n]∝ ⊆ [K3x2n+1]∝ for all n ∈ N. To prove that {yn} is a C-Cauchy sequence
in S, consider assumption (3.1) of Theorem 3.1 such that x = x2n−1 and y = x2n. Then

δ1
(
σ([K3x2n−1]∝, [K4x2n]∝)

)
σ

(
[K3x2n−1]∝, [K4x2n]∝

)
+δ2

(
σ([K3x2n−1]∝, [K4x2n]∝)

)σ
(
[K1x2n−1]∝, [K3x2n−1]∝

)
σ

(
[K2x2n]∝, [K4x2n]∝

)
1 + σ

(
x2n−1, x2n

)
+δ3

(
σ([K3x2n−1]∝, [K4x2n]∝)

)σ
(
[K1x2n−1]∝, [K4x2n]∝

)
σ

(
[K2x2n]∝, [K3x2n−1]∝

)
1 + σ

(
x2n−1, x2n

)
∈ s

(
[K1x2n−1]∝, [K2x2n]∝

)
.

It follows from y2n ∈ [K1x2n−1]∝ and Lemma 2.10 (iii) that

δ1
(
σ([K3x2n−1]∝, [K4x2n]∝)

)
σ

(
[K3x2n−1]∝, [K4x2n]∝

)
+δ2

(
σ([K3x2n−1]∝, [K4x2n]∝)

)σ
(
[K1x2n−1]∝, [K3x2n−1]∝

)
σ

(
[K2x2n]∝, [K4x2n]∝

)
1 + σ

(
x2n−1, x2n

)
+δ3

(
σ([K3x2n−1]∝, [K4x2n]∝)

)σ
(
[K1x2n−1]∝, [K4x2n]∝

)
σ

(
[K2x2n]∝, [K3x2n−1]∝

)
1 + σ

(
x2n−1, x2n

)
∈ s

(
y2n, [K2x2n]∝

)
.

Since [K2x2n]∝ is a nonempty bounded closed set, there exists some y2n+1 ∈ [K2x2n]∝ with

δ1
(
σ([K3x2n−1]∝, [K4x2n]∝)

)
σ

(
[K3x2n−1]∝, [K4x2n]∝

)
+δ2

(
σ([K3x2n−1]∝, [K4x2n]∝)

)σ
(
[K1x2n−1]∝, [K3x2n−1]∝

)
σ

(
[K2x2n]∝, [K4x2n]∝

)
1 + σ

(
x2n−1, x2n

)
+δ3

(
σ([K3x2n−1]∝, [K4x2n]∝)

)σ
(
[K1x2n−1]∝, [K4x2n]∝

)
σ

(
[K2x2n]∝, [K3x2n−1]∝

)
1 + σ

(
x2n−1, x2n

)
∈ s

(
σ(y2n, y2n+1)

)
,

that is,

σ(y2n, y2n+1) ≼ δ1
(
σ([K3x2n−1]∝, [K4x2n]∝)

)
σ

(
[K3x2n−1]∝, [K4x2n]∝

)
+δ2

(
σ([K3x2n−1]∝, [K4x2n]∝)

)
×

σ
(
[K1x2n−1]∝, [K3x2n−1]∝

)
σ

(
[K2x2n]∝, [K4x2n]∝

)
1 + σ

(
x2n−1, x2n

)
+δ3

(
σ([K3x2n−1]∝, [K4x2n]∝)

)
×

σ
(
[K1x2n−1]∝, [K4x2n]∝

)
σ

(
[K2x2n]∝, [K3x2n−1]∝

)
1 + σ

(
x2n−1, x2n

) .
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Using the glb property, we conclude that

σ(y2n, y2n+1) ≼ δ1
(
σ(y2n−1, y2n)

)
σ

(
y2n−1, y2n

)
+δ2

(
σ(y2n−1, y2n)

)σ
(
y2n, y2n−1

)
σ

(
y2n+1, y2n

)
1 + σ

(
y2n−1, y2n

)
+δ3

(
σ(y2n−1, y2n)

)σ
(
y2n, y2n

)
σ

(
y2n+1, y2n

)
1 + σ

(
y2n−1, y2n

)
≼ δ1

(
σ(y2n−1, y2n)

)
σ

(
y2n−1, y2n

)
+δ2

(
σ(y2n−1, y2n)

)
σ

(
y2n+1, y2n

)
≼

δ1
(
σ(y2n−1, y2n)

)
1 − δ2

(
σ(y2n−1, y2n)

)σ
(
y2n−1, y2n

)
⇒

∣∣σ(y2n, y2n+1)
∣∣ ≤

δ1
(
σ(y2n−1, y2n)

)
1 − δ2

(
σ(y2n−1, y2n)

) ∣∣σ(
y2n−1, y2n

)∣∣
for all n ∈ N. Utilizing condition (i) of Theorem 3.1, we get∣∣σ(y2n, y2n+1)

∣∣ ≤ £
(
σ(y2n−1, y2n)

)∣∣σ(
y2n−1, y2n

)∣∣.
For y2n+1 ∈ [K2x2n]∝,

δ1
(
σ([K3x2n+1]∝, [K4x2n]∝)

)
σ

(
[K3x2n+1]∝, [K4x2n]∝

)
+δ2

(
σ([K3x2n+1]∝, [K4x2n]∝)

)σ
(
[K1x2n+1]∝, [K3x2n+1]∝

)
σ

(
[K2x2n]∝, [K4x2n]∝

)
1 + σ

(
x2n+1, x2n

)
+δ3

(
σ([K3x2n+1]∝, [Hx2n]∝)

)σ
(
[K1x2n+1]∝, [K4x2n]∝

)
σ

(
[K2x2n]∝, [K3x2n+1]∝

)
1 + σ

(
x2n+1, x2n

)
∈ s

(
[K1x2n+1]∝, [K2x2n]∝

)
.

Using Lemma 2.10 (iii), we have

δ1
(
σ([K3x2n+1]∝, [K4x2n]∝)

)
σ

(
[K3x2n+1]∝, [K4x2n]∝

)
+δ2

(
σ([K3x2n+1]∝, [K4x2n]∝)

)σ
(
[K1x2n+1]∝, [K3x2n+1]∝

)
σ

(
[K2x2n]∝, [K4x2n]∝

)
1 + σ

(
x2n+1, x2n

)
+δ3

(
σ([K3x2n+1]∝, [K4x2n]∝)

)σ
(
[Ex2n+1]∝, [K4x2n]∝

)
σ

(
[K2x2n]∝, [K3x2n+1]∝

)
1 + σ

(
x2n+1, x2n

)
∈ s

(
[K1x2n+1]∝, y2n+1

)
.

Then there exists a w2n+2 ∈ [K1x2n+1]∝ such that

δ1
(
σ([K3x2n+1]∝, [K4x2n]∝)

)
σ

(
[K3x2n+1]∝, [K4x2n]∝

)
+δ2

(
σ([K3x2n+1]∝, [K4x2n]∝)

)σ
(
[K1x2n+1]∝, [K3x2n+1]∝

)
σ

(
[K2x2n]∝, [K4x2n]∝

)
1 + σ

(
x2n+1, x2n

)
+δ3

(
σ([K3x2n+1]∝, [K4x2n]∝)

)σ
(
[K1x2n+1]∝, [K4x2n]∝

)
σ

(
[K2x2n]∝, [K3x2n+1]∝

)
1 + σ

(
x2n+1, x2n

)
∈ s

(
σ(y2n+2, y2n+1)

)
,
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that is,

σ(y2n+2, y2n+1) ≼ δ1
(
σ([K3x2n+1]∝, [K4x2n]∝)

)
σ

(
[K3x2n+1]∝, [K4x2n]∝

)
+δ2

(
σ([K3x2n+1]∝, [K4x2n]∝)

)
×

σ
(
[K1x2n+1]∝, [K3x2n+1]∝

)
σ

(
[K2x2n]∝, [K4x2n]∝

)
1 + σ

(
x2n+1, x2n

)
+δ3

(
σ([K3x2n+1]∝, [K4x2n]∝)

)
×

σ
(
[K1x2n+1]∝, [K4x2n]∝

)
σ

(
[K2x2n]∝, [K3x2n+1]∝

)
1 + σ

(
x2n+1, x2n

) .

An application of glb property implies that

σ(y2n+2, y2n+1) ≼ δ1
(
σ(y2n+1, y2n)

)
σ

(
y2n+1, y2n

)
+δ2

(
σ(y2n+1, y2n)

)σ
(
y2n+2, y2n+1

)
σ

(
y2n+1, y2n

)
1 + σ

(
y2n+1, y2n

)
+δ3

(
σ(y2n+1, y2n)

)σ
(
y2n+2, y2n

)
σ

(
y2n+1, y2n+1

)
1 + σ

(
y2n+1, y2n

)
≼ δ1

(
σ(y2n+1, y2n)

)
σ

(
y2n+1, y2n

)
+δ2

(
σ(y2n+1, y2n)

)
σ

(
y2n+2, y2n+1

)
≼

δ1
(
σ(y2n+1, y2n)

)
1 − δ2

(
σ(y2n+1, y2n)

)σ
(
y2n+1, y2n

)
⇒

∣∣σ(y2n+2, y2n+1)
∣∣ ≤

δ1
(
σ(y2n+1, y2n)

)
1 − δ2

(
σ(y2n+1, y2n)

) ∣∣σ(
y2n+1, y2n

)∣∣
for all n ∈ N. Applying condition (i) of Theorem 3.1, we get∣∣σ(y2n+2, y2n+1)

∣∣ ≤ £
(
σ(y2n+1, y2n)

)∣∣σ(y2n+1, y2n)
∣∣.

Consequently, we obtain∣∣σ(yn, yn+1)
∣∣ ≤ £

(
σ(yn−1, yn)

)∣∣ σ(yn−1, yn)
∣∣ ≤

∣∣σ(yn−1, yn)
∣∣. (3.2)

This implies that the sequence {
∣∣yn, yn+1

∣∣}n∈N is a nonincreasing monotonic and bounded
from below. Therefore,

∣∣yn, yn+1
∣∣ → r for some r ≥ 0. We will prove that r = 0. For this,

assuming r > 0 and taking limit as n → ∞ in (3.2), we deduce that

1 ≤ lim
n→∞

£
(
σ(yn−1, yn)

)
≤ 1 ⇒ lim

n→∞
£

(
σ(yn−1, yn)

)
= 1.

Since £ ∈ Γ, we get |σ(yn−1, yn)| → 0, which is a contradiction. Therefore, we have r = 0,
that is,

lim
n→∞

∣∣σ(yn−1, yn)
∣∣ = 0. (3.3)

Next, we have to show that {yn} is a C-Cauchy sequence. It is enough to show that
{y2n} is a C-Cauchy sequence. Suppose on the contrary that {y2n} is not a C-Cauchy
sequence. Then, by using Definition 2.7, there exists an ϵ ∈ { such that ϵ ≻ 0, for which
there exist 2nq > 2mq ≥ q for all q ∈ N such that

σ(y2nq , y2mq ) ≽ ϵ. (3.4)

Furthermore, we can choose mq correspondingly to nq such that it is the smallest integer
with 2mq > 2nq ≥ q satisfying (3.4). Then

σ(y2nq , y2mq−2) ≺ ϵ. (3.5)
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By (3.4), (3.5), and triangular inequality, we obtain

ϵ ≼ σ(y2nq , y2mq )
≼ σ(y2nq , y2mq−2) + σ(y2mq−2, y2mk−1) + σ(y2mq−1, y2mq )
≼ ϵ + σ(y2mq−2, y2mq−1) + σ(y2mq−1, y2mq ),

which yields

|ϵ| ≤
∣∣σ(y2nq , y2mq )

∣∣ ≤ |ϵ| +
∣∣σ(y2mq−2, y2mq−1)

∣∣ +
∣∣σ(y2mq−1, y2mq )

∣∣.
Taking limit q → ∞ and using (3.3), we have

|ϵ| ≤ lim
q→∞

∣∣σ(y2nq , y2mq )
∣∣ ≤ |ϵ| ⇒ lim

q→∞

∣∣σ(y2nq , y2mq )
∣∣ = |ϵ|. (3.6)

Again, by triangular inequality, we get∣∣σ(y2nq , y2mq )
∣∣ ≤

∣∣σ(y2nq , y2mq+1)
∣∣ +

∣∣σ(y2mq+1, y2mq )
∣∣

≤
∣∣σ(y2nq , y2mq )

∣∣ +
∣∣σ(y2mq , y2mq+1)

∣∣ +
∣∣σ(y2mq+1, y2mq )

∣∣.
Letting q → ∞ and applying (3.3) and (3.6) in the above two inequalities, we conclude
that

lim
q→∞

∣∣σ(y2nq , y2mq+1)
∣∣ = |ϵ|. (3.7)

Furthermore, we have

σ(y2nq , y2mq+1) ≼ σ(y2nq , y2nq+1) + σ(y2nq+1, y2mq+2) + σ(y2mq+2, y2mq+1). (3.8)

Consider σ(y2nq+1, y2mq+2). By using condition (ii) of Theorem 3.1 with x = x2nq and
y = x2mq+1, we deduce that

δ1
(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)
σ

(
[K3x2nq ]∝, [K4x2mq+1]∝

)
+δ2

(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)σ
(
[K1x2nq ]∝, [K3x2nq ]∝

)
σ

(
[K2x2mq+1]∝, [K4x2mq+1]∝

)
1 + σ

(
x2nq , x2mq+1

)
+δ3

(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)σ
(
[K1x2nq ]∝, [K4x2mq+1]∝

)
σ

(
[K2x2mq+1]∝, [K3x2nq ]∝

)
1 + σ

(
x2nq , x2mq+1

)
∈ s

(
[K1x2nq ]∝, [K2x2mq+1]∝

)
.

Using construction of sequence, we obtain that y2nq+1 ∈ [K1x2nq ]∝. Therefore, by virtue
of Lemma 2.10 (iii), we arrive at

δ1
(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)
σ

(
[K3x2nq ]∝, [K4x2mq+1]∝

)
+δ2

(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)σ
(
[K1x2nq ]∝, [K3x2nq ]∝

)
σ

(
[K2x2mq+1]∝, [K4x2mq+1]∝

)
1 + σ

(
x2nq , x2mq+1

)
+δ3

(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)σ
(
[K1x2nq ]∝, [K4x2mq+1]∝

)
σ

(
[K2x2mq+1]∝, [K3x2nq ]∝

)
1 + σ

(
x2nq , x2mq+1

)
∈ s

(
y2nq+1, [K2x2mq+1]∝

)
.

Since [K2x2mq+1]∝ is a nonempty bounded and closed subset, one can write

δ1
(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)
σ

(
[K3x2nq ]∝, [K4x2mq+1]∝

)
+δ2

(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)σ
(
[K1x2nq ]∝, [K3x2nq ]∝

)
σ

(
[K2x2mq+1]∝, [K4x2mq+1]∝

)
1 + σ

(
x2nq , x2mq+1

)
+δ3

(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)σ
(
[K1x2nq ]∝, [K4x2mq+1]∝

)
σ

(
[K2x2mq+1]∝, [K3x2nq ]∝

)
1 + σ

(
x2nq , x2mq+1

)
∈ s

(
σ(y2nq+1, y2mq+2)

)
,
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that is,

σ(y2nq+1, y2mq+2) ≼ δ1
(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)
σ

(
[K3x2nq ]∝, [K4x2mq+1]∝

)
+δ2

(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)
×

σ
(
[K1x2nq ]∝, [K3x2nq ]∝

)
σ

(
[K2x2mq+1]∝, [K4x2mq+1]∝

)
1 + σ

(
x2nq , x2mq+1

)
+δ3

(
σ([K3x2nq ]∝, [K4x2mq+1]∝)

)
×

σ
(
[K1x2nq ]∝, [K4x2mq+1]∝

)
σ

(
[K2x2mq+1]∝, [K3x2nq ]∝

)
1 + σ

(
x2nq , x2mq+1

) .

Utilizing glb property, we have

σ(y2nq+1, y2mq+2) ≼ δ1
(
σ(y2nq , y2mq+1)

)
σ

(
y2nq , y2mq+1

)
+δ2

(
σ(y2nq , y2mq+1)

)σ
(
y2nq+1, y2nq

)
σ

(
y2mq+2, y2mq+1

)
1 + σ

(
y2nq , y2mq+1

)
+δ3

(
σ(y2nq , y2mq+1)

)σ
(
y2nq+1, y2mq+1

)
σ

(
y2mq+2, y2nq

)
1 + σ

(
y2nq , y2mq+1

) .

This implies that∣∣σ(y2nq+1, y2mq+2)
∣∣ ≤ δ1

(
σ(y2nq , y2mq+1)

)∣∣σ(
y2nq , y2mq+1

)∣∣
+ δ2

(
σ(y2nq , y2mq+1)

) ∣∣σ(
y2nq+1, y2nq

)∣∣∣∣σ(
y2mq+2, y2mq+1

)∣∣
1 +

∣∣σ(
y2nq , y2mq+1

)∣∣
+ δ3

(
σ(y2nq , y2mq+1)

)
×

(∣∣σ(y2nq+1, y2nq )
∣∣ +

∣∣σ(y2nq , y2mq+1)
∣∣)(∣∣σ(

y2mq+2, y2mq+1)
∣∣ +

∣∣σ(y2mq+1, y2nq )
∣∣)

1 + |σ(y2nq , y2mq+1)|
.

Now, (3.8) yields

|σ(y2nq , y2mq+1)| ≤ |σ(y2nq , y2nq+1)| + |σ(y2nq+1, y2mq+2)| + |σ(y2mq+2, y2mq+1)|
≤ |σ(y2nq , y2nq+1)| + δ1

(
σ(y2nq , y2mq+1)

)∣∣σ(
y2nq , y2mq+1

)∣∣
+ δ2

(
σ(y2nq , y2mq+1)

) ∣∣σ(
y2nq+1, y2nq

)∣∣∣∣σ(
y2mq+2, y2mq+1

)∣∣
1 +

∣∣σ(
y2nq , y2mq+1

)∣∣
+ δ3

(
σ(y2nq , y2mq+1)

)
×

(∣∣σ(y2nq+1, y2nq )
∣∣ +

∣∣σ(y2nq , y2mq+1)
∣∣)(∣∣σ(y2mq+2, y2mq+1)

∣∣ +
∣∣σ(y2mq+1, y2nq )

∣∣)
1 + |σ(y2nq , y2mq+1)|

+ |σ(y2mq+2, y2mq+1)|.

Taking q → ∞ and using (3.3) and (3.7), we conclude that

|ϵ| ≤ lim
q→∞

(δ1 + δ3)(σ(y2nq , y2mq+1))|ϵ|

≤ lim
q→∞

(δ1 + δ3)(σ(y2nq , y2mq+1))|ϵ| ≤ |ϵ| ⇒ lim
q→∞

(δ1 + δ3)(σ(y2nq , y2mq+1)) = 1.

Since δ1 + δ3 : {+ → [0, 1), we get that |σ(y2nq , y2mq+1)| → 0 as q → ∞, which is a
contradiction. Hence, {y2nq } is a C-Cauchy sequence. Consequently, {yn} is a C-Cauchy
sequence. But S is C-Complete, so there exists a point ẗ ∈ S with yn → ẗ as n → ∞.
Moreover, we have to show that ẗ ∈ [K1ẗ]∝ and ẗ ∈ [K2ẗ]∝ for all ẗ ∈ N. For this we
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consider (3.1) with x = y2n and y = ẗ, that is,

δ1
(
σ([K3y2n]∝, [K4ẗ]∝)

)
σ

(
[K3y2n]∝, [K4ẗ]∝

)
+δ2

(
σ([K3y2n]∝, [K4ẗ]∝)

)σ
(
[K1y2n]∝, [K3y2n]∝

)
σ

(
[K2ẗ]∝, [K4ẗ]∝

)
1 + σ

(
y2n, ẗ

)
+δ3

(
σ([K3y2n]∝, [K4ẗ]∝)

)σ
(
[K1y2n]∝, [K4ẗ]∝

)
σ

(
[K2ẗ]∝, [K3y2n]∝

)
1 + σ

(
y2n, ẗ

)
∈ s

(
[K1y2n]∝, [K2ẗ]∝

)
.

Since y2n+1 ∈ [K1y2n]∝, we get

δ1
(
σ([K3y2n]∝, [K4ẗ]∝)

)
σ

(
[K3y2n]∝, [K4ẗ]∝

)
+δ2

(
σ([K3y2n]∝, [K4ẗ]∝)

)σ
(
[K1y2n]∝, [K3y2n]∝

)
σ

(
[K2ẗ]∝, [K4ẗ]∝

)
1 + σ

(
y2n, ẗ

)
+δ3

(
σ([K3y2n]∝, [K4ẗ]∝)

)σ
(
[K1y2n]∝, [K4ẗ]∝

)
σ

(
[K2ẗ]∝, [K3y2n]∝

)
1 + σ

(
y2n, ẗ

)
∈ s

(
y2n+1, [K2ẗ]∝

)
.

By virtue of the fact that [K2ẗ]∝ is a nonempty subset, there exists an rn ∈ [K2ẗ]∝ such
that

δ1
(
σ([K3y2n]∝, [K4ẗ]∝)

)
σ

(
[K3y2n]∝, [K4ẗ]∝

)
+δ2

(
σ([K3y2n]∝, [K4ẗ]∝)

)σ
(
[K1y2n]∝, [K3y2n]∝

)
σ

(
[K2ẗ]∝, [K4ẗ]∝

)
1 + σ

(
y2n, ẗ

)
+δ3

(
σ([K3y2n]∝, [K4ẗ]∝)

)σ
(
[K1y2n]∝, [K4ẗ]∝

)
σ

(
[K2ẗ]∝, [K3y2n]∝

)
1 + σ

(
y2n, ẗ

)
∈ s

(
σ(y2n+1, rn)

)
,

that is,

σ(y2n+1, rn) ≼ δ1
(
σ([K3y2n]∝, [K4ẗ]∝)

)
σ

(
[K3y2n]∝, [K4ẗ]∝

)
+δ2

(
σ([K3y2n]∝, [K4ẗ]∝)

)σ
(
[K1y2n]∝, [K3y2n]∝

)
σ

(
[K2ẗ]∝, [K4ẗ]∝

)
1 + σ

(
y2n, ẗ

)
+δ3

(
σ([K3y2n]∝, [K4ẗ]∝)

)σ
(
[K1y2n]∝, [K4ẗ]∝

)
σ

(
[K2ẗ]∝, [K3y2n]∝

)
1 + σ

(
y2n, ẗ

) .

Applying glb property, we have

σ(y2n+1, rn) ≼ δ1
(
σ(y2n, ẗ)

)
σ

(
y2n, ẗ

)
+ δ2

(
σ(y2n, ẗ)

)σ
(
y2n+1, y2n

)
σ

(
rn, τ

)
1 + σ

(
y2n, ẗ

)
+δ3

(
σ(y2n, ẗ)

)σ
(
y2n+1, ẗ

)
σ

(
rn, y2n

)
1 + σ

(
y2n, ẗ

) .

Using triangular inequality, we obtain

σ(ẗ, rn) ≼ σ(ẗ, y2n+1) + σ(y2n+1, rn)

≼ σ(ẗ, y2n+1) + δ1
(
σ(y2n, ẗ)

)
σ

(
y2n, ẗ

)
+ δ2

(
σ(y2n, ẗ)

)σ
(
y2n+1, y2n

)
σ

(
rn, τ

)
1 + σ

(
y2n, ẗ

)
+δ3

(
σ(y2n, ẗ)

)σ
(
y2n+1, ẗ

)
σ

(
rn, y2n

)
1 + σ

(
y2n, ẗ

) .
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Furthermore, we deduce that∣∣σ(ẗ, rn)
∣∣ ≤

∣∣σ(ẗ, y2n+1)
∣∣ + δ1

(
σ(y2n, ẗ)

)∣∣σ(y2n, ẗ)
∣∣ + δ2

(
σ(y2n, ẗ)

) ∣∣σ(y2n+1, y2n)
∣∣∣∣σ(rn, τ

)∣∣
1 +

∣∣σ(y2n, ẗ)
∣∣

+δ3
(
σ(y2n, ẗ)

) ∣∣σ(y2n+1, ẗ
∣∣) ∣∣σ(rn, y2n)

∣∣
1 +

∣∣σ(y2n, ẗ)
∣∣ .

If we take limit n → ∞, then the latter inequality yields that |σ(ẗ, rn)| → 0, and thus we
get rn → ẗ as n → ∞. Since we have supposed that [K2ẗ]∝ is a nonempty bounded and
closed subset of S, so ẗ ∈ [K2ẗ]∝. Moreover, we derive from the construction of sequence
that ẗ ∈ [K2ẗ]∝ ⊆ [K3ẗ]∝. Similarly, we can obtain ẗ ∈ [K1ẗ]∝ ⊆ [K4ẗ]∝. Thus, ẗ is a
common fuzzy fixed point of K1, K2, K3, K4. �
Corollary 3.2. Let (S, σ) be a C-complete complex valued metric space, and K1, K2, K3, K4 :
S → S(S) are fuzzy mappings satisfying the glb property with each x ∈ S and for ∝∈ (0, 1]
there exist [K1x]∝, [K2x]∝, [K3x]∝, [K4x]∝ (nonempty closed bounded subsets of S). Suppose
the following assumption holds:

δ1σ
(
[K3x]∝, [K4y]∝

)
+ δ2

σ
(
[K1x]∝, [K3x]∝

)
σ

(
[K2y]∝, [K4y]∝

)
1 + σ

(
x, y

)
+δ3

σ
(
[K1x]∝, [K4y]∝

)
σ

(
[K2y]∝, [K3x]∝

)
1 + σ

(
x, y

)
∈ s

(
[K1x]∝, [K2y]∝

)
for each y, x ∈ S, and for each δi ∈ R+, i = 1, 2, 3, where δ1+δ2+δ3 < 1. If [K1( S)]∝, [K2( S)]∝,
[K3( S)]∝, [K4( S)]∝ are closed sets and [K1(S)]∝ ⊆ [K4(S)]∝ and [K2( S)]∝ ⊆ [K3(S)]∝,
then there exists a common fuzzy fixed point of K1, K2, K3, K4 in S.

Corollary 3.3. Assume that (S, σ) is a C-complete complex valued metric space and
K1, K2 : S → S(S) are fuzzy mappings satisfying the glb property. Let δ1, δ2, δ3 : {+ →
[0, 1) be given mappings such that for each x ∈ S and ∝∈ (0, 1] there exist [K1x]∝, [K2x]∝
(nonempty bounded and closed subsets of S). Suppose that assumptions given below hold:

i)
∑3

w=1 δw(x) < 1 and the mapping £ : {+ → [0, 1) is defined by

£(x) = δ1(x)
1 − δ2(x)

for all x ∈ {+, £ ∈ Γ;
ii) for each y, x ∈ S, we have

δ1
(
σ(x, y)

)
σ

(
x, y

)
+ δ2

(
σ(x, y)

)σ
(
[K1x]∝, x

)
σ

(
[K2y]∝, y

)
1 + σ

(
x, y

)
+δ3

(
σ(x, y)

)σ
(
[K1x]∝, y

)
σ

(
[K2y]∝, x

)
1 + σ

(
x, y

) ∈ s
(
[K1x]∝, [K2y]∝

)
.

Then there exists a common fuzzy fixed point of K1, K2 in S.

Corollary 3.4. Conclusion of Corollary 3.3 remains intact if condition ii) is replaced by
condition

δ1
(
σ(x, y)

)
σ

(
x, y

)
+ δ2

(
σ(x, y)

)σ
(
[K1x]∝, y

)
σ

(
[K2y]∝, x

)
1 + σ

(
x, y

) ∈ s
(
[K1x]∝, [K2y]∝

)
.

Corollary 3.5. Assume that (S, σ) is a C-complete complex valued metric space and K1 :
S → S(S) is a fuzzy mapping satisfying the glb property. Let δ1, δ2, δ3 : {+ → [0, 1) be
given mappings such that for each x ∈ S and ∝∈ (0, 1] there exists a nonempty bounded
and closed subset [K1x]∝ of S. Suppose further that the following conditions hold:
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i)
∑3

w=1 δw(x) < 1 and the mapping £ : {+ → [0, 1) is defined by

£(x) = δ1(x)
1 − δ2(x)

for all x ∈ {+, £ ∈ Γ;
ii) for every y, x ∈ S,

δ1
(
σ(x, y)

)
σ

(
x, y

)
+ δ2

(
σ(x, y)

)σ
(
[K1x]∝, x

)
σ

(
[K1y]∝, y

)
1 + σ

(
x, y

)
+δ3

(
σ(x, y)

)σ
(
[K1x]∝, y

)
σ

(
[K1y]∝, x

)
1 + σ

(
x, y

) ∈ s
(
[K1x]∝, [K1y]∝

)
.

Then K1 has a fuzzy fixed point in S.

4. Applications
Theorem 4.1. Let (S, σ) be a complex valued metric space and Ψ1, Ψ2, Ψ3, Ψ4 : S →
CB(S) be multivalued mappings. Assume that δl(x) : { → [0, 1), l = 1, 2, 3,

i) δ1(x) + δ2(x) + δ3(x) < 1 and the mapping £ : {+ → [0, 1) is defined by

£(x) = δ1(x)
1 − δ2(x)

for all x ∈ {+, £ ∈ Γ;
ii) for each x, y ∈ S,

δ1
(
σ(Ψ3x, Ψ4y)

)
σ

(
Ψ3x, Ψ4y

)
+ δ2

(
σ(Ψ3x, Ψ4y)

)σ
(
Ψ1x, Ψ3x

)
σ

(
Ψ2y, Ψ4y

)
1 + σ

(
x, y

)
+δ3

(
σ(Ψ3x, Ψ4y)

)σ
(
Ψ1x, Ψ4y

)
σ

(
Ψ2y, Ψ3x

)
1 + σ

(
x, y

) ∈ s
(
Ψ1x, Ψ2y

)
.

If Ψ1(S), Ψ2(S), Ψ3(S), Ψ4(S) are closed and Ψ1(S) ⊆ Ψ4(S), Ψ2(S) ⊆ Ψ3(S), then Ψ1, Ψ2, Ψ3, Ψ4
have a fuzzy common fixed point in S.

Proof. Let Kl : S → S(S), l = 1, 2, 3, 4 be fuzzy mappings defined as

K1(x) =
{

∝, if x ∈ Ψ1x,

0, if x ̸∈ Ψ1x,

K2(x) =
{

∝, if x ∈ Ψ2x,

0, if x ̸∈ Ψ2x,

K3(x) =
{

∝, if x ∈ Ψ3x,

0, if x ̸∈ Ψ3x,

K4(x) =
{

∝, if x ∈ Ψ4x,

0, if x ̸∈ Ψ4x.

Then for any ∝∈ (0, 1], [K1x]∝ = Ψ1x, [K2x]∝ = Ψ2x, [K3x]∝ = Ψ3x and [K4x]∝ = Ψ4x.
Therefore, for every x, y ∈ S, s

(
[L1x]∝, [K2y]∝

)
= s

(
Ψ1x, Ψ2y

)
, so one can apply Theorem

3.1 to get the common fixed point. �
Now we are demonstrating applications of Corollary 3.4 to the existence of the common

solution of second-order nonlinear boundary value problems
x′′(ȷ) = k(ȷ, x(ȷ), x′(ȷ)), if ȷ ∈ [0, Λ], Λ > 0,

x(ȷ1) = x1,

x(ȷ2) = x2, ȷ1, ȷ1 ∈ [0, Λ],
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where k : [0, Λ]×S(S)×S(S) → S(S) is a continuous function. This problem is equivalent
to the integral equation

x(ȷ) =
∫ ȷ2

ȷ1
G(ȷ, ℘)k(℘, x(℘), x′(℘))d℘ + λ(ȷ), ȷ ∈ [0, Λ], (4.1)

where the Green function G is given by

G(ȷ, ℘) =


(ȷ2 − ȷ)(℘ − ȷ1)

ȷ2 − ȷ1
, if ȷ1 ≤ ℘ ≤ ȷ ≤ ȷ2,

(ȷ2 − ℘)(ȷ − ȷ1)
ȷ2 − ȷ1

, if ȷ1 ≤ ȷ ≤ ℘ ≤ ȷ2,

and λ(ȷ) satisfies λ′′ = 0, λ(ȷ1) = x1, λ(ȷ2) = x2. G(ȷ, ℘) has the properties∫ ȷ2

ȷ1
G(ȷ, ℘)d℘ ≤ (ȷ2 − ȷ1)2

8
and ∫ ȷ2

ȷ1
Gȷ(ȷ, ℘)d℘ ≤ ȷ2 − ȷ1

2
.

For brief study, we refer the reader to [22, 25, 27]. We are intend to prove our result by
obtaining the existence of the common solution of the integral operators defined as

Ll(x)(ȷ) =
∫ ȷ2

ȷ1
G(ȷ, ℘)kl

(
℘, x(℘), x′(℘)

)
d℘ + λ(ȷ), ȷ ∈ [0, Λ], l ∈ {1, 2}, (4.2)

where kl ∈ C
(
[0, Λ]×S(S)×S(S), S(S)

)
, l = 1, 2, x ∈ C1(

[0, Λ],S(S)
)

and λ ∈ C
(
[0, Λ],S(S)

)
.

Throughout this section, we mention

Ξl(x(ȷ)) =
∫ ȷ2

ȷ1
G(ȷ, ℘)kl(℘, x(℘), x′(℘))d℘

and
Ξ′

l(x(ȷ)) =
∫ ȷ2

ȷ1
Gȷ(ȷ, ℘)kl(℘, x(℘), x′(℘))d℘.

Theorem 4.2. Consider integral equation (4.2). Suppose that the following hypotheses
hold for every ȷ ∈ [0, Λ] :

H1) kl : [0, Λ] × S(S) × S(S) → S(S), l = 1, 2 are increasing in their second and third
variables;

H2) there exists some x0(ȷ) ≤
∫ ȷ2

ȷ1
G(ȷ, ℘)ki

(
℘, x(℘), x′(℘)

)
d℘+λ(ȷ), where ȷ1, ȷ2 ∈ [0, Λ].

If there exist mappings δ1, δ2 : { → [0, 1), which satisfy conditions given below:
i) δ1(x) + δ2(x) < 1 and the mapping £ : {+ → [0, 1) is defined by

£(x) = δ1(x)
1 − δ2(x)

for all x ∈ {+, £ ∈ Γ;
ii) for every x, y ∈ S and ȷ ∈ [0, Λ],

|k1(ȷ, x(ȷ), x′(ȷ)) − k2(ȷ, y(ȷ), y′(ȷ))| ≼ δ1

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
Dxy(ȷ)

+δ2

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
Gxy(ȷ), (4.3)

where

Dxy(ȷ) = γ
∣∣Ξ1x(ȷ) − Ξ2y(ȷ)

∣∣ + ξ
∣∣Ξ′

1x(ȷ) − Ξ′
2y(ȷ)

∣∣√1 + a2eι̇ tan a,
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Gxy =
γ

∣∣Ξ1x(ȷ) − Ξ2y(ȷ)
∣∣ + ξ

∣∣Ξ′
1x(ȷ) − Ξ′

2y(ȷ)
∣∣

1 + maxȷ∈[ȷ1, ȷ2] Dxy(ȷ)

×γ
∣∣Ξ2y(ȷ) − Ξ1x(ȷ)

∣∣ + ξ
∣∣Ξ′

2y(ȷ) − Ξ′
1x(ȷ)

∣∣√1 + a2eι̇ tan a;

iii) for γ, ξ > 0 and ȷ1, ȷ2 ∈ [0, Λ],

γ
(ȷ2 − ȷ1)2

8
+ ξ

(ȷ2 − ȷ1)
2

< 1, (4.4)

then the system of nonlinear integral equations

x(ȷ) =
∫ ȷ2

ȷ1
G(ȷ, ℘)kl

(
℘, x(℘), x′(℘)

)
d℘ + λ(ȷ), ȷ ∈ [0, Λ], l ∈ {1, 2} (4.5)

has a common solution in C1(
[ȷ1, ȷ2],S(S)

)
.

Proof. Let M = C1([ȷ1, ȷ2],S(S)) and d : M × M → { be defined as

d(y, x) = max
ȷ∈[ȷ1, ȷ2]

(
γ|y(ȷ) − x(ȷ)| + ξ|y′(ȷ) − x′(ȷ)|

)√
1 + c2eι̇ tan c.

Define integral operators Ll : M → M, l = 1, 2 by

Ll(x)(ȷ) =
∫ ȷ2

ȷ1
G(ȷ, ℘)ki(℘, x(℘), x′(℘))d℘ + λ(ȷ),

where ki ∈ C
(
[0, Λ] × S(S) × S(S),S(S)

)
, x ∈ C1(

[0, Λ],S(S)
)
, and λ ∈ C

(
[0, Λ],S(S)

)
.

For x, y ∈ S, we obtain [Llx]∝ = {u ∈ [ȷ1, ȷ2] : u(ȷ) =
∫ ȷ2

ȷ1
G(ȷ, ℘)kl(℘, x(℘), x′(℘))d℘ +

λ(ȷ) ≥∝, ȷ ∈ [0, Λ], Ll(x)(u) ≥∝}, l = 1, 2,

d(x, y) = max
ȷ∈[ȷ1, ȷ2]

(
γ

∣∣Ξ1x(ȷ) − Ξ2y(ȷ)
∣∣ + ξ

∣∣Ξ′
1x(ȷ) − Ξ′

2y(ȷ)
∣∣)√

1 + c2eι̇ tan c

d([L1x]∝, y) = max
ȷ∈[ȷ1, ȷ2]

(
γ

∣∣Ξ1x(ȷ) − Ξ2y(ȷ)
∣∣ + ξ

∣∣Ξ′
1x(ȷ) − Ξ′

2y(ȷ)
∣∣)√

1 + c2eι̇ tan c

d([L2y]∝, x) = max
ȷ∈[ȷ1, ȷ2]

(
γ

∣∣Ξ2y(ȷ) − Ξ1x(ȷ)
∣∣ + ξ

∣∣Ξ′
2y(ȷ) − Ξ′

1x(ȷ)
∣∣)√

1 + c2eι̇ tan c


.

From assumption (4.3), we get for each ȷ ∈ [ȷ1, ȷ2]

|L1(x)(ȷ) − L2(y)(ȷ)| =
∣∣∣∣ ∫ ȷ2

ȷ1
G(ȷ, ℘)|k1(℘, x(℘), x′(℘)) − k2(℘, y(℘), y′(℘))|

∣∣∣∣d℘

≤
∫ ȷ2

ȷ1
|G(ȷ, ℘)||k1(℘, x(℘), x′(℘)) − k2(℘, y(℘), w′(℘))||d℘

≤ (ȷ2 − ȷ1)2

8
δ1

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
Dxy(ȷ)

+δ2

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
Gxy(ȷ) (4.6)

and

|
(
L1(x)

)′(ȷ) −
(
L2(y)

)′(ȷ)| =
∣∣∣∣ ∫ ȷ2

ȷ1
Gȷ(ȷ, ℘)|k1(℘, x(℘), x′(℘)) − k2(℘, y(℘), y′(℘))|

∣∣∣∣d℘

≤
∫ ȷ2

ȷ1
|Gȷ(ȷ, ℘)||k1(℘, x(℘), x′(℘)) − k2(℘, y(℘), y′(℘))||d℘

≤ ȷ2 − ȷ1
2

δ1

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
Dxy(ȷ)

+δ2

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
Gxy(ȷ). (4.7)
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By virtue of (4.6) and (4.7), we conclude that

d
(
[L1(x)]∝, [L2(y)(ȷ)]∝

)
≤

(
γ

(ȷ2 − ȷ1)2

8
+ ξ

ȷ1 − ȷ2
2

)
δ1

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

+δ2

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
max

ȷ∈[ȷ1, ȷ2]
Gxy(ȷ).

It follows from (4.4) that

d
(
[L1(x)]∝, [L2(y)(ȷ)]∝

)
< δ1

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

+δ2

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
max

ȷ∈[ȷ1, ȷ2]
Gxy(ȷ),

that is,

δ1

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ) + δ2

(
max

ȷ∈[ȷ1, ȷ2]
Dxy(ȷ)

)
max

ȷ∈[ȷ1, ȷ2]
Gxy(ȷ)

∈ s

(
d

(
[L1(x)]∝, [L2(y)(ȷ)]∝

))
.

This implies that

δ1
(
d(x, y)

)
d

(
x, y

)
+ δ2

(
d(x, y)

)d
(
[L1x]∝, y

)
d

(
[L2y]∝, x

)
1 + d

(
x, y

) ∈ s
(
[L1x]∝, [L2y]∝

)
.

Therefore, an application of Corollary 3.4 implies that L1 and L2 have a common fixed
point in S, that is, (4.5) has a common solution. Consequently, in Theorem 4.2, if L1 =
L2 = L, then we can obtain integral equation (4.1) has a common solution in S. Thus,
the second-order nonlinear boundary value problem has a solution in S. �
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