On selective sequential separability of function spaces with the compact-open topology

Alexander V. Osipov

Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, 620219, Ekaterinburg, Russia

Abstract

For a Tychonoff space \(X \), we denote by \(C_k(X) \) the space of all real-valued continuous functions on \(X \) with the compact-open topology. A subset \(A \subset X \) is said to be sequentially dense in \(X \) if every point of \(X \) is the limit of a convergent sequence in \(A \). A space \(C_k(X) \) is selectively sequentially separable (in Scheepers’ terminology: \(C_k(X) \) satisfies \(S_{\text{fin}}(S, S) \)) if whenever \((S_n : n \in \mathbb{N})\) is a sequence of sequentially dense subsets of \(C_k(X) \), one can pick finite \(F_n \subset S_n \) (\(n \in \mathbb{N} \)) such that \(\bigcup_{n \in \mathbb{N}} F_n \) is sequentially dense in \(C_k(X) \). In this paper, we give a characterization for \(C_k(X) \) to satisfy \(S_{\text{fin}}(S, S) \).

Mathematics Subject Classification (2010). 54C25, 54C35, 54C40, 54D20

Keywords. compact-open topology, function space, selectively sequentially separable, \(S_1(S, S) \), sequentially dense set, property \(\alpha_2 \), property \(\alpha_4 \)

1. Introduction

If \(X \) is a topological space and \(A \subseteq X \), then the sequential closure of \(A \), denoted by \([A]_{\text{seq}}\), is the set of all limits of sequences from \(A \). A set \(D \subseteq X \) is said to be sequentially dense if \(X = [D]_{\text{seq}} \). A space \(X \) is called sequentially separable if it has a countable sequentially dense set [26, 27].

Let \(X \) be a topological space, and \(x \in X \). Consider the following collections:

- \(\Omega_x = \{A \subseteq X : x \in \overline{A} \setminus A\} \);
- \(\Gamma_x = \{A \subseteq X : x = \lim A\} \).

Note that if \(A \in \Gamma_x \), then there exists \(\{a_n\} \subset A \) converging to \(x \). So, simply \(\Gamma_x \) may be the set of non-trivial convergent sequences to \(x \).

Many topological properties are defined or characterized in terms of the following classical selection principles. Let \(A \) and \(B \) be sets consisting of families of subsets of an infinite set \(X \). Then:

- \(S_1(A, B) \) is the selection hypothesis: for each sequence \((A_n : n \in \mathbb{N}) \) of elements of \(A \) there is a sequence \(\{b_n\}_{n \in \mathbb{N}} \) such that for each \(n \), \(b_n \in A_n \), and \(\{b_n : n \in \mathbb{N}\} \) is an element of \(B \).
- \(S_{\text{fin}}(A, B) \) is the selection hypothesis: for each sequence \((A_n : n \in \mathbb{N}) \) of elements of \(A \) there is a sequence \(\{B_n\}_{n \in \mathbb{N}} \) of finite sets such that for each \(n \), \(B_n \subseteq A_n \), and \(\bigcup_{n \in \mathbb{N}} B_n \in B \).

Email address: OAB@list.ru

Received: 13.05.2018; Accepted: 09.07.2018
In this paper, by a cover we mean a cover U with $X \notin U$.
A cover U of a space X is called:
- a k-cover if each compact subset C of X is contained in an element of U;
- a γ_k-cover if U is infinite and for each compact subset C of X the set $\{U \in U : C \notin U\}$ is finite.

Note that a γ_k-cover is a k-cover, and a k-cover is infinite. A compact space has no k-covers.

For a Tychonoff space X, we denote by $C_k(X)$ the space of all real-valued continuous functions on X with the compact-open topology. Subbase open sets of $C_k(X)$ are of the form $[A,U] = \{f \in C(X) : f(A) \subset U\}$, where A is a compact subset of X and U is a non-empty open subset of \mathbb{R}. Sometimes we will write the basic neighborhood of a point $f \in C_k(X)$ as $\langle f, A, \epsilon \rangle$ where $\langle f, A, \epsilon \rangle := \{g \in C(X) : |f(x) - g(x)| < \epsilon \ \forall x \in A\}$, A is a compact subset of X and $\epsilon > 0$.

For a topological space X we denote:
- Γ_k — the family of open γ_k-covers of X;
- \mathcal{X} — the family of open k-covers of X;
- $\mathcal{X}_{c_0}^\infty$ — the family of countable co-zero k-covers of X;
- \mathcal{D} — the family of dense subsets of $C_k(X)$;
- \mathcal{S} — the family of sequentially dense subsets of $C_k(X)$;
- $\mathcal{K}(X)$ — the family of all non-empty compact subsets of X.

A space X is said to be a γ_k-set if each k-cover U of X contains a countable set $\{U_n : n \in \mathbb{N}\}$ which is a γ_k-cover of X [9].

2. Main definitions and notation

- A space X is R-separable, if X satisfies $S_1(\mathcal{D}, \mathcal{D})$ ([[2], Definition 47])
- A space X is selectively separable (M-separable), if X satisfies $S_{fin}(\mathcal{D}, \mathcal{D})$.
- A space X is selectively sequentially separable (M-sequentially separable), if X satisfies $S_{fin}(\mathcal{S}, \mathcal{S})$ ([[4], Definition 1.2]).

For a topological space X we have the next relations of selectors for sequences of dense sets of X.

$S_1(\mathcal{S}, \mathcal{S}) \Rightarrow S_{fin}(\mathcal{S}, \mathcal{S}) \Rightarrow S_{fin}(\mathcal{D}, \mathcal{D}) \Leftrightarrow S_1(\mathcal{D}, \mathcal{D})$

We write $\Pi(A_x, \mathcal{B}_x)$ without specifying x, we mean $\langle \forall x \rangle \Pi(A_x, \mathcal{B}_x)$.

- A space X has property α_2 (α_2 in the sense of Arhangel’skii), if X satisfies $S_1(\Gamma_x, \Gamma_x)$ [1].
- A space X has property α_4 (α_4 in the sense of Arhangel’skii), if X satisfies $S_{fin}(\Gamma_x, \Gamma_x)$ [1].

So we have three types of topological properties described through the selection principles:
- local properties of the form $S_n(\Phi_x, \Psi_x)$;
- global properties of the form $S_n(\Phi, \Psi)$;
- semi-local properties of the form $S_n(\Phi, \Psi_x)$.

In a series of papers it was demonstrated that γ-covers, Borel covers, k-covers play a key role in function spaces ([5], [10]-[8], [13]-[15], [18]-[25] and many others). We continue to investigate applications of k-covers in function spaces with the compact-open topology.

A great attention has recently received the notions of selective separability and selective sequential separability ($S_{fin}(\mathcal{S}, \mathcal{S})$) [[2, 3, 6, 7]. In this paper, we give characterizations for $C_k(X)$ to satisfy $S_{fin}(\mathcal{S}, \mathcal{S}), S_{fin}(\mathcal{S}, \Gamma_x)$, and $S_{fin}(\Gamma_x, \Gamma_x)$.

3. Main results

Definition 3.1. A γ_k-cover \mathcal{U} of co-zero sets of X is γ_k-shrinkable if there exists a γ_k-cover $\{F(U) : U \in \mathcal{U}\}$ of zero-sets of X with $F(U) \subset U$ for every $U \in \mathcal{U}$.

Note that every γ_k-shrinkable cover contains a countable γ_k-shrinkable cover.

For a topological space X we denote:

- Γ^h_k — the family of γ_k-shrinkable covers of X.

-Similar to the proof that $S_1(X, \Gamma_k) = S_{fin}(X, \Gamma_k)$ ([9, Theorem 5]), we prove the following.

Lemma 3.2. For a space X the following are equivalent:

1. X satisfies $S_{fin}(\Gamma_k^h, \Gamma_k)$;
2. X satisfies $S_1(\Gamma_k^h, \Gamma_k)$.

Proof. (1) \Rightarrow (2). Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of (countable) γ_k-shrinkable covers of X; suppose that for each $n \in \mathbb{N}$, $\mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}$. Let $V_{n,m} = U_{1,m} \cap \ldots \cap U_{n,m}$ and let $V_n = \{V_{n,m} : m \in \mathbb{N}\}$. Then $(V_n : n \in \mathbb{N})$ is a sequence of γ_k-shrinkable covers of X.

Since X satisfies $S_{fin}(\Gamma_k^h, \Gamma_k)$ choose for each $n \in \mathbb{N}$ a finite subset W_n of V_n such that $\bigcup_{n \in \mathbb{N}} W_n$ is a γ_k-cover of X. (Note that some W_n’s can be empty.)

As $\bigcup_{n \in \mathbb{N}} W_n$ is infinite and all W_n’s are finite, there exists a sequence $m_1 < m_2 < \ldots < m_p < \ldots$ in \mathbb{N} such that for each $i \in \mathbb{N}$ we have $W_{m_i} \setminus \bigcup_{j<i} W_{m_j} \neq \emptyset$. Choose an element $W_{m_i} \in \bigcup_{j<i} W_{m_j}$, $i \in \mathbb{N}$, and fix its presentation $W_{m_i} = U_{1,k_{m_i}} \cap U_{2,k_{m_i}} \cap \ldots \cap U_{n,m_{k_{m_i}}}$ as above.

Since each infinite subset of a γ_k-cover is also a γ_k-cover, we have that the set $\{W_{m_i} : i \in \mathbb{N}\}$ is a γ_k-cover of X. For each $n \leq m_1$ let $U_n \in \mathcal{U}_n$, be the n-th coordinate of W_{m_1} in the chosen representation of W_{m_1}, and for each $n \in (m_i, m_{i+1}]$, $i \geq 1$, let $U_n \in \mathcal{U}_n$, be the n-th coordinate of $W_{m_{i+1}}$ in the above representation of $W_{m_{i+1}}$. Observe that each $U_n \supset W_{m_{i+1}}$. Therefore, we obtain a sequence $(U_n : n \in \mathbb{N})$ of elements, one from each \mathcal{U}_n, which form a γ_k-cover of X and show that X satisfies $S_1(\Gamma_k^h, \Gamma_k)$. \hfill \square

The symbol 0 denotes the constantly zero function in $C_k(X)$. Because $C_k(X)$ is homogeneous we can work with 0 to study local and semi-local properties of $C_k(X)$.

Theorem 3.3. For a Tychonoff space X the following statements are equivalent:

1. $C_k(X)$ satisfies $S_1(\Gamma_0, \Gamma_0)$ [property α_2];
2. X satisfies $S_1(\Gamma_k^h, \Gamma_k)$.

Proof. (1) \Rightarrow (2). Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of (countable) γ_k-shrinkable covers of X; suppose that for each $n \in \mathbb{N}$, $\mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}$ and $\{F(U_{n,m}) : U_{n,m} \in \mathcal{U}_n\}$ is a γ_k-cover of zero-sets of X with $F(U_{n,m}) \subset U_{n,m}$ for every $U_{n,m} \in \mathcal{U}_n$. For each $n, m \in \mathbb{N}$ we fix $m \in \mathbb{N}$ such that $f_{n,m} | F(U_{n,m}) \equiv 0$, $f_{n,m} | (X \setminus U_{n,m}) \equiv 1$. Consider $S_n = \{f_{n,m} : m \in \mathbb{N}\}$. Since $\{F(U_{n,m}) : U_{n,m} \in \mathcal{U}_n\}$ is a γ_k-cover of X, then $S_n \in \Gamma_0$ for each $n \in \mathbb{N}$. By (1), there is $\{f_{n,m(n)} : n \in \mathbb{N}\}$ such that $f_{n,m(n)} \in S_n$ and $\{f_{n,m(n)} : n \in \mathbb{N}\} \subset \Gamma_k$. We show that $\{U_{n,m(n)} : n \in \mathbb{N}\} \subset \Gamma_k$. Suppose $A \in \mathbb{K}(X)$ and $W = [A, (-\frac{1}{2}, \frac{1}{2})]$ is a base neighborhood of 0 then there exists $n' \in \mathbb{N}$ such that $f_{n,m(n)} \in W$ for every $n > n'$. It follows that $A \subset U_{n,m(n)}$ for every $n > n'$.

(2) \Rightarrow (1). Let $S_n \in \Gamma_0$ for every $n \in \mathbb{N}$; suppose that for each $n \in \mathbb{N}$, $S_n = \{f_{n,j} : j \in \mathbb{N}\}$. Consider $V_n = \{f_{n,j}^{-1}\left((-\frac{1}{n}, \frac{1}{n})\right) : f_{n,j} \in S_n\}$ for each $n \in \mathbb{N}$.

Let $J = \{n \in \mathbb{N} : f_{n,j}^{-1}\left((-\frac{1}{n}, \frac{1}{n})\right) = X$ for some $j \in \mathbb{N}\}$. If J is finite, then we can ignore such finitely many n. If J is infinite, then for some $j_n \in J$, $f_{n,j_n} \to 0$ uniformly. Thus, without loss of generality, we may assume $f_{n,j}^{-1}\left((-\frac{1}{n}, \frac{1}{n})\right) \neq X$ for each $n, j \in J$.

Note that $W_n = \{f_{n,j}^{-1}\left((-\frac{1}{n+m}, \frac{1}{n+m})\right) : f_{n,j} \in S_n\}$ is a γ_k-cover of zero-sets of X. Hence, $\mathcal{V}_n \in \Gamma_k^h$ for each $n \in \mathbb{N}$. By (2), there is $\{f_{n,j(n)} : n \in \mathbb{N}\}$ such that $\{f_{n,j(n)}^{-1}\left((-\frac{1}{n}, \frac{1}{n})\right) : \}$
Every selectively sequentially separable space is C_X. For a Tychonoff space f there is a number $h \in S$ such that $f_{n,j(n)} = S$ for each $n > n'$. There is $n'' > n'$ such that $\frac{1}{n''} < \epsilon$, hence, $f_{n,j(n)} \in [A, (-\epsilon, \epsilon)]$ for each $n > n''$.

Proposition 3.4 ([3, Proposition 4.2]). Every selectively sequentially separable space is sequentially separable.

We shall prove the following theorem under the condition that the space $C_k(X)$ is sequentially separable.

Theorem 3.5. For a Tychonoff space X such that $C_k(X)$ is sequentially separable the following statements are equivalent:

1. $C_k(X)$ satisfies $S_1(8,8)$;
2. $C_k(X)$ satisfies $S_1(8,\Gamma_0)$;
3. $C_k(X)$ satisfies $S_1(\Gamma_0,\Gamma_0)$ [property α_2];
4. X satisfies $S_1(\Gamma^{sh}_k,\Gamma_k)$;
5. $C_k(X)$ satisfies $S_{fin}(8,8)$ [selectively sequentially separable];
6. $C_k(X)$ satisfies $S_{fin}(8,\Gamma_0)$;
7. $C_k(X)$ satisfies $S_{fin}(\Gamma_0,\Gamma_0)$ [property α_4];
8. X satisfies $S_{fin}(\Gamma^{sh}_k,\Gamma_k)$.

Proof. (1) \Rightarrow (4). Let $\{U_i\} \subset \Gamma^{sh}_k$, $U_i = \{U_i^m : m \in \mathbb{N}\}$ for each $i \in I$ and let $S = \{h_m : m \in \mathbb{N}\}$ be a countable sequentially dense subset of $C_k(X)$.

For each $i, m \in \mathbb{N}$ we fix $f_i^m \in C(X)$ such that $f_i^m \mid F(U_i^m) = h_m$ and $f_i^m \mid (X \setminus U_i^m) = 1$. Let $S_i = \{f_i^m : m \in \mathbb{N}\}$. Since S is a countable sequentially dense subset of $C_k(X)$, we have that S_i is a countable sequentially dense subset of $C_k(X)$ for each $i \in I$. Let $h \in C(X)$, there is a set $\{h_m : s \in \mathbb{N}\} \subset S$ such that $\{h_m\}_{s \in \mathbb{N}}$ converges to h. Let K be a compact subset of X, $\epsilon > 0$ and let $W = (h, K, \epsilon)$ be a base neighborhood of h, then there is a number m_0 such that $K \subset F(U_i^m)$ for $m > m_0$ and $h_{m_0} \in W$ for $m_s > m_0$. Since $f_i^m \mid K = h_m \mid K$ for each $m_s > m_0$, $f_i^m \in W$ for each $m_s > m_0$. It follows that there is a sequence $\{f_i^{m_s}\}_{s \in \mathbb{N}}$ converging to h.

Since $C_k(X)$ satisfies $S_1(8,8)$, there is a sequence $\{f_i^{m(i)}\}_{i \in \mathbb{N}}$ such that for each $i, f_i^{m(i)} \in S_i$, and $\{f_i^{m(i)} : i \in \mathbb{N}\}$ is an element of S.

We show that $\{U_i^{m(i)} : i \in \mathbb{N}\}$ is a γ_k-cover of X.

There is a sequence $\{f_{ij}^{m(i)}\}$ converges to 0. Let K be a compact subset of X and let $U = (0, K, (-1,1))$ be a base neighborhood of 0. Then there exists $j_0 \in \mathbb{N}$ such that $f_{ij}^{m(i)} \in U$ for each $j > j_0$. It follows that $K \subset U_i^{m(i)}$ for $j > j_0$. By Lemma 3.2, $S_{fin}(\Gamma^{sh}_k,\Gamma_k) = S_1(\Gamma^{sh}_k,\Gamma_k)$.

(4) \Leftrightarrow (3). By Theorem 3.3.

(3) \Rightarrow (2). Immediate.

(2) \Rightarrow (1). For each $n \in \mathbb{N}$, let S_n be a sequentially dense subset of $C_k(X)$ and let $\{h_n : n \in \mathbb{N}\}$ be sequentially dense in $C_k(X)$. Take a sequence $\{f_i^m : m \in \mathbb{N}\} \subset S_n$ such that $f_i^m \rightarrow h_n$ ($m \rightarrow \infty$). Then $f_i^m - h_n \rightarrow 0$ ($m \rightarrow \infty$). Hence, there exists $f_{ij}^{m(i)}$ such that $f_{ij}^{m(i)} \rightarrow 0$ ($n \rightarrow \infty$). We see that $\{f_{ij}^{m(i)} : n \in \mathbb{N}\}$ is sequentially dense. Let $h \in C_k(X)$ and take a sequence $\{h_n : j \in \mathbb{N}\} \subset \{h_n : n \in \mathbb{N}\}$ converging to h. Then, $f_{ij}^{m(i)} = (f_{ij}^{m(i)} - h_n) + h_n \rightarrow h$ ($j \rightarrow \infty$).

\Box
Recall that the i-weight $iw(X)$ of a space X is the smallest infinite cardinal number τ such that X can be mapped by a one-to-one continuous mapping onto a Tychonoff space of the weight not greater than τ.

It is well known that if X is hemicompact then $C_k(X)$ is metrizable. It follows that $C_k(X)$ is sequential separable for a hemicompact space X with $iw(X) = \aleph_0$. But, for general case, the author does not know the answer to the next question.

Question 1. Characterize a Tychonoff space X such that a space $C_k(X)$ is sequential separable?

Proposition 3.6 ([3, Corollary 4.8 (Dow-Barman)]). Every Fréchet-Urysohn separable T_2 space is selectively separable (hence, selectively sequentially separable).

It is well known that a Tychonoff space X the space $C_k(X)$ is Fréchet-Urysohn if and only if X satisfies $S_1(X, \Gamma_k)$ ([11]).

A Tychonoff space X the space $C_k(X)$ is separable if and only if $iw(X) = \aleph_0$ [16].

Question 2. Is there a Tychonoff space X with $iw(X) = \aleph_0$ such that $C_k(X)$ satisfies $S_1(S, S)$, but $C_k(X)$ is not Fréchet-Urysohn (i.e. X satisfies $S_1(\Gamma^s_k, \Gamma_k)$, but it has not property $S_1(K, \Gamma_k)$)?

Acknowledgment. I would like to thank the anonymous referee who read carefully the manuscript and helped me to simplify and improve the presentation of the results of the paper.

References

