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Abstract

In the paper we introduce the classes of functions with missing coefficients defined by
generalized Ruscheweyh derivatives and we show that they can be presented as dual sets.
Moreover, by using extreme points theory, we obtain estimations of classical convex func-
tionals on the defined classes of functions. Some applications of the main results are also
considered.
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1. Introduction

A complex-valued harmonic mapping f in the open unit disk U := {z € C: |z] < 1}
has a canonical decomposition
f=h+7, (1.1)
where h and g are analytic functions in U. We call h the analytic part and g the co-analytic
part of f , respectively. Throughout this paper, we will discuss harmonic mappings that
are sense-preserving in U. By a theorem of Lewy [15], necessary and sufficient condition
for f to be locally univalent and sense-preserving in U is that

W ()| > g () (zeU). (1.2)

Let H denote the class of sense-preserving harmonic functions in the unit disc U. Any
function f € H can be written in the form

f(z) = Zanz"—&—zw (z€U). (1.3)
n=0 n=1

Let Ny :={l,l+1,...} ,N:= Ny, k € Ny, and let H (k) denote the class of function f € H
of the form (1.3) for which, f, (0) = 1 and the coefficients ay, ag, ..., ax—1, b1, ..., by—1 vanish
ie.

f2) =2+ fj (an="+02") (2€T). (1.4)
n==k

Then we say that f is the function with missing coefficients. Moreover, let 84 (k) denote
the class of function f € H (k) which are univalent in U.
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Now, we define the convolution of functions f; and f» of the form
fE) =2+ an"+ Y b (€ U, l€N) (1.5)
n=k n=~k

by
(fixfo)(z) =2+ Z a1 pa2 2" + Z binbanz® (2 € U).

We say that a function f € 8g¢(2) is harmonic starlike in U (r) :={z € C: |z| < r} if

gt (argf (7’6”)) >0 (0<t<2m)

i.e. f maps the circle U (r) onto a closed curve that is starlike with respect to the origin.
It is easy to verify, that the above condition is equivalent to the following
Dy f (2)
ReW >0 (|z|=7),
where
Dgcf (2) :=zh' (2) — 2¢' (2) (2 €U).
Ruscheweyh [20] introduced on the class of analytic function an operator D* defined by

the convolution: .

T 6 (), (L6)

2(zn= 115 (n)
o5y = 2

Let Da\{’T : H — H denote the linear operator defined for a function f = h+7g € H by
(see [5])

DA f(2) =
which implies that
(n S No).

D;‘{’Tf .= D o+ 7DAg (7] =1).

The operator D?{’T for 7 = (—1)" was investigated in [17] (see also [7,10,22]).

We say that a function f € H is subordinate to a function F' € H, and write f(z) < F(z)
(or simply f < F) if there exists a complex-valued function wwhich maps U into oneself
with w(0) = 0, such that f(z) = F(w(2)) (z € U).

Let A, B be complex parameters, A # B. We denote by S;_ET(k:;A,B) the class of
functions f € 84 (k) such that

AT
Du (D5") () 144
DyTf(z) 1+ B2
Also, by S:’;C’T(k; A, B) we denote the class of functions f € 8g¢ (k) such that

D;ff(z)<1+Az
z 14+ Bz’

In particular, for & = 2 we obtain the classes studied in [5]. If we put A = n € Ny,
7= (—=1)", then we obtain the classes

S5c(k; A, B) = 85V (ks A, B), Rye(k; A, B) := Ry (k; A, B
related to the harmonic Ruscheweyh derivatives D, f (see [7]). The classes 85(k; A, B) :=
8% (k; A, B), Kgc(k; A, B) := 8.(k; A, B) and Ry¢(k; A, B) := R (k; A, B) are defined in
[4] with restrictions —-B < A< B <1, k=2.
In this paper we obtain some necessary and sufficient conditions for defined classes of

functions. Some topological properties and extreme points of the classes are also consid-
ered. By using extreme points theory we obtain coefficients estimates, distortion theorems,

(1.7)
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integral mean inequalities for these classes of functions. Some applications of the main
results are also considered.

2. Dual sets
Let V C H, Uy := U~ {0}. Due to Ruscheweyh [19] we define the dual set of V by

:{fGSg{(k‘)t /\(f*q)(z)yéO (ZEUU)}.

qeV

The object of this section is to show that the defined classes of functions can be presented
as dual sets.

Theorem 2.1.
Sy (ks A, B) = {we : €] =1},
where
(B A)E+ (1 + N+ ABE+ A€) 2
¢§ (Z) L= (1 — Z)A+2 (21)
_T§2+(A+B)§— (1=A—=ABE+ A8z (2 ).
(1 _2)/\+2

Proof. Let f € H be of the form (1.1). Then f € S%’T(k; A, B) if and only if it satisfies
(1.7) or equivalently

Dy (D37f) (2) 14 A¢ -
i i (€U k=D, (2:2)
Since 222
Dy (D37h) (2) = h (2) + 1 —Zz)A+1 " —Zz)Q =hiz) (122)/i+2

from (2.2) it follows that
(14 BE) Dy (Dy7f) (2) = (14 AL) Dy f (2)
= (14 B Dy (Dy7h) (2) = (1+ Ag) Dy"h (2)
r {(1 + BE) Do (DY7g) (2) + (1 + A9) D;(’Th(z)}

ho) ((1+B§)(1+/\z) (14 49z )

(1 - 2 (1= 2
___ [(1+Bg (1+/\§)E (1+ A8z
—7g(2) * (1 —zp+2 (1 -z

= [(&)xve(2) #0 (2 €Uo, [¢]=1).
Thus, f € 837 (k; A, B) if and only if f(z) % ¢ (2) # 0 for z € Uy, [¢] = 1 i
S5 (ks A, B) = {t : [¢] =1}" O
Similarly as Theorem 2.1 we prove the following theorem.

Theorem 2.2.
R (ks A, B) = {0¢  |€] =1}7,
where
L+ BE— (1449 (- 1+ B¢
(1_ ))\Jrl (1_2))\+1

0¢ (2) ==z (z€U). (2.3)
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If we put A =n € No, 7 = (—1)", in Theorems 2.1 and 2.2 we obtain the following
results.

Theorem 2.3.
85(k; A, B) = {pe : [¢§] =1}7, (2.4)
where
B-A 1 B+ A
o) = AR DO 25
B (_1),1?2 +(A+B)¢+ (n;q}g— (nB—A)¢)z (2 €U).
(1-2)
Theorem 2.4.
Ric(k; A, B) = {d¢ : [§] =1},
where
n+1
65(2)::zl+B€_(1+A£)(1_2) 1+ B¢ (zeU).

T (=1)" T

Moreover, if we get n = 0 and n = 1 in Theorem 2.3 and n = 1 in Theorem 2.4 we
obtain the following results.

Theorem 2.5.
where
e (2) ::Z(B—A)§+(12+A§)z _§2+(A+B)§j2(1+A§)E (zeU).
(1-2) (1-2)
Theorem 2.6.
Kac(k; A, B) = {¢e : €] =1}7,
where
_ (B=A)E+(2+A+ Bz 2+ (A+B){+(B-4)&
Ve (2) =z - 2)3 z 0 2)3 (z€U).

3. Correlated coefficients

Let us consider the complex-value function ¢ of the form
oo [ee]
e=u+7, u(z)= Z upz", v(z) = Z vz (z€l), (3.1)
n=0 n=1

where u, v are functions analytic in U.
We say that a function f € H of the form (1.4) has correlated coefficients with respect
to the function ¢, if

UnGy, = — |up||an|, vnbn = |vn| |bn] (n € Ng). (3.2)
In particular, if there exists a real number 7 such that
_ z n Ze 2
S l—ez  1—e iz

o
@ (Z) — Z 6i(nfl)nzn + efi(nJrl)nzn (Z c U) 7
=1
then we obtain functions with varying coefficients defined by Jahangiri and Silverman [11]
(see also [6]). Moreover, if we take n = 0 i.e.
z

go(z):2Re1_Z :Z(Z”+§”) (z€U),

n=1
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then we obtain functions with negative coefficients introduced by Silverman [21]. These
functions were intensively investigated by many authors (for example, see [3-5,7,9,11,13,
24]).

Let TV (k,n) denote the class of functions f € 3 of the correlated coefficients with
respect to the function

z n Ze 2
— einz)Atl T (1— e—ing)Xﬂ

e (z) = a (z€l). (3.3)

Moreover, let us define
837 (kym; A, B) i= T (kym) (1837 (ks A, B), Ry (k5 A, B) := T (k,n) N R (k; A, B),

where n; A, B are real parameters, B > max{0, A}.
Let f € 3 be of the form (1.4). Thus, by (1.6) and (3.3) we have

D:)}\ETf (2) =24 D Aanz" +7>_ Ibpz" (2 €U),
n=~k n==k

and - -
p(z) = Z At 4 7 Z Ape it nzn (2 e 1), (3.4)
n=1 n=1
where Ot 1) 5 D
+1) (A 4n—
=1, \, = . .
A1 s A (n — 1)! (n S NQ) (3 5)
Moreover, let us assume
|An] > |Ak| > 1, B > max{0, A}. (3.6)
Theorem 3.1. If a function f € H of the form (1.4) satisfies the condition
>~ (lanllan| + 18a] [ba]) < B = 4, (3.7)
n=k
where
an=M{n(1+B)—(1+A)}, o= {n(1+B)+(1+A)}, (3.8)

then f € 827 (k; A, B).

Proof. 1t is clear that the theorem is true for the function f (z) = z. Let f € H (k) be a
function of the form (1.4) and let there exist n € Ny such that a,, # 0 or b, # 0. By (3.6)

we have
|| |Bn

B—Azn’B—AZn’ n € Ng. (3.9)
Thus, by (3.7) we get
i (n]an| +nlby]) <1 (3.10)
and i
W (2)] = lg' ()| > 1 — E:knlanl 2" - z:kn|bn| 2" > 1 - || Z:k(n|an| + 71 [bnl)
> 1= LS (ol + 180D > 1- 12 >0 (€ D).

n=~k
Therefore, by (1.2) the function f is locally univalent and sense-preserving in U. Moreover,
if 21,29 € U, 21 7& 29, then

n n
21 T *2

n
<SSl e <n (neN).
=1

Z1 — %9

n

[—1 _n—I
Z 1 *2
=1
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Hence, by (3.10) we have
[f (z1) = f(z2)| = [h(21) = h(22)] =g (21) — g (22)]

(o)
:Zl—ZQ—Zan(Zl Zb n—2n)
n=~k
o
> |Z1—22|—Z!anl\Z?—ZSI—Z\anZI‘—ZSI
n=~k n==k
> z 20— 20
:|Zl—22| <1—Z|an| L 12)
ek z Z1 — %9

o0 o0

> |21 — 29| <1— Zn|an| — Zn|bn|> >0
n=k n=~k

This leads to the univalence of f i.e. f € 84c. Therefore, f € S?}’T(k; A, B) if and only if

there exists a complex-valued function w, w(0) =0, |w(z)| < 1 (z € U) such that

Dy (Dg\{’Tf> (2) 14 Aw(z)

D;\{,Tf (Z) - 1+ Bw(z) (Z S U),
or equivalently
Dy (DY £) (2) = D (2)
BDy (D37 f) (2) — A(Dy7 f (2)) (2) <l (zeD). (3.11)

Thus, it is suffice to prove that
Dy (D3 ) (2) = DT f ()| = | BDsc (DA F) (2) = ADYT £ (2)| <0 (2 € U\ {0}).
Indeed, letting |z| =7 (0 < r < 1) we have

|Dsc (D3 ) (2) = DA f (2)| = | BDsc (DA f) (2) = AD3T £ (2)

=D (n=1)Apanz" = > (n+1)TA.bZ"
n=~k n==k

— ‘(B —A)z+ Y (Bn—A) Man2" + > (Bn+ A) mApbyz"

n=k n—k

< i (n — 1) |Anan| " + f: (n+1) [Anbn| 7™ — (B — A)r

n=k n=k
+§: Bn — A) [Ayay| ™ +Z (Bn + A) [Auby| "
n=k
<r {i (levnl lan] + Bal 1bn]) 7" = (B — A)} <0.
n==k

whence f € Sf/,\{’T(k;A,B). O

The next theorem, shows that the condition (3.7) is also the sufficient condition for a
function f € H of correlated coefficients to be in the class Sé’T(k, n; A, B).

Theorem 3.2. Let f € TN (k,n) be a function of the form (1.4). Then f € 8;’7(1::, n; A, B)
if and only if the condition (3.7) holds true.
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Proof. In view of Theorem 3.1 we need only to show that each function f € S{}’T(k, n; A, B)

satisfies the coefficient inequality (3.7). If f € 8?’7(14:, n; A, B), then it is of the form (1.4)
with (3.2) and it satisfies (3.11) or equivalently

%O: (n—1) Apanz™ — (n+ 1) 7Anb,zZ"

n—

(B—A)z+ > {(Bn— A) Manz — (Bn+ A) bz}
n==k

<1l (z€l). (3.12)

Since f € TM (k,n), by (3.4) and (3.2) we have
A€ I = — |\ an|, TARDRe VT = |\ | |by] (0 € Ng).

Therefore, putting z = re? (0 < r < 1) in (3.12) we obtain
= 1
22 (n=1) [Anllan| + (n 4 1) [An] [bn] "~

n=h_ <1. (3.13)
(B—A4) = X A(Bn—A) Al lan| + (B + A) [An] [b]} 777

It is clear that the denominator of the left hand side cannot vanish for r € (0, 1). Moreover,
it is positive for r = 0, and in consequence for r € (0,1). Thus, by (3.13) we have

o0

Z(|an||an|+\5n|\bn|)r"_1 <B-A (0<r<1). (3.14)

n=~k

[ee)
The sequence of partial sums {5, } associated with the series Y. (|| |an| + |Bn| |bn]) is

n=
non-decreasing sequence. Moreover, by (3.14) it is bounded by B— A. Hence, the sequence
{S,} is convergent and

[e.o]

Zkuw [an| +[Ba] [bnl) = lim S, < B — 4,
n=
which yields the assertion (3.7). O

The following result may be proved in much the same way as Theorem 3.2.

Theorem 3.3. Let f € H be a function of the form (1.4). Then f € R‘/}’T(k:,n;A,B) if
and only if

B-A

1+B

Z |Anl (lan| + [ba]) <
n==k

By Theorems 3.2 and 3.3 we have the following corollary.

Corollary 3.4. Let a = % and

o(z) = z+2( ! 2"+ ! 2"> (z€U), (3.15)
n=~k

n—a n+a

w(z) = z+Z((n—a)z”+(n+a)§”) (z€U).

n==k

Then
foe RyT(k,m A B) & fxde8y (kA B),
foe 8 (kA B) e frwe Ry (kn A, B).

In particular,
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4. Extreme points

We consider the usual topology on H defined by a metric in which a sequence {f,} in
H converges to f if and only if it converges to f uniformly on each compact subset of
U. It follows from the theorems of Weierstrass and Montel that this topological space is
complete.

Let F be a subclass of the class H. A functions f € F is called an extreme point of F
if the condition

f=rh+0=-f (i,f2€F 0<y<T)
implies fi = fo = f. We shall use the notation EF to denote the set of all extreme
points of F. It is clear that EF C F.
We say that F is locally uniformly bounded if for each r, 0 < r < 1, there is a real
constant M = M (r) so that

fI <M (feF, |z|<r).
We say that a class F is convex if
1+1=7geF (figeTF, 0<y<1).

Moreover, we define the closed conver hull of F as the intersection of all closed convex
subsets of H that contain F. We denote the closed convex hull of F by ¢oTF.
A real-valued functional J : H — R is called convexr on a convex class F C H if

JOVf+(1=79) <y (f)+ (1 —=v)3d(9) (f,geF, 0<y<1).

The Krein-Milman theorem (see [14]) is fundamental in the theory of extreme points.
In particular, it implies the following lemma (due to [8]).

Lemma 4.1. [4, pp.45] Let F be a non-empty compact convexr subclass of the class H
and J : H — R be a real-valued, continuous and convex functional on F. Then

max {J(f): f € F} =max{J(f): f € EF}.

Since H is a complete metric space, Montel’s theorem (see [16]) implies the following
lemma.

Lemma 4.2. A class T C H is compact if and only if F is closed and locally uniformly
bounded.

Theorem 4.3. The class S(’}’T(k, n; A, B) is convex and compact subset of H.
Proof. Let f1, fo € S’\’T(k n; A, B) be functions of the form (1.5), 0 <~ < 1. Since

Yh(z) + (- ==+ Z {1+ (1 =7)azn) 2" + Gbi + L= ban) 2},

and by Theorem 3.2 we have

o
Z {lan| lyarn + (1 =) aznl + |Bal Y010 + (1 =) b2.n2"[}

< ’72{|ana1n|+|ﬂnb1n|}+ (1—v Z{|ana2n|+‘ﬁnb2n|}

n=k n=~k
< Y(B-A)+(1-7)(B-A)=B-A,

the function ¢ = v f1 + (1 — ) f2 belongs to the class S?}’T(k,n; A, B). Hence, the class
is convex. Furthermore, for f € Sé’T(k,n;A, B), |z| <7, 0<r <1, we have

FE <7+ Y7 (lan] + [ba]) 7™ <74 Y (lan] lan| + 1Bl [ba]) <74 (B = A).  (4.1)
n=k n=k
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Thus, we conclude that the class S?}’T(k,n;A,B) is locally uniformly bounded. By
Lemma 4.2, we only need to show that it is closed i.e. if f; € S{}’T(k,n;A,B) (l e N)
and f; — f, then [ € S?’T(k:, n; A, B). Let f; and f be given by (1.5) and (1.4), respectively.
Using Theorem 3.2 we have

o0

> (lomain| + |Bubinl) < B—A (1€N). (4.2)
n=k

Since f; — f, we conclude that |a;,| — |an| and |b,| — |bn| as | — oo (n €N).

o0
The sequence of partial sums {5, } associated with the series Y. (Janan|+ |5nbn|) is

n=
non-decreasing sequence. Moreover, by (4.2) it is bounded by B — A. Therefore, the
sequence {S,} is convergent and
o0
Zk (lonan| + [Bnbn|) = lim S, < B — A.
n—=

This gives the condition (3.7), and, in consequence, f € Sé’T(k, n; A, B), which completes
the proof. ]

Theorem 4.4.
ES@’T(k,n;A,B) ={hn: n€Ng_1}U{gn: n € Ni},

M () = 2, ho(2) = 2~ o (E-4

n —
772 ) gn(z) =2Z+ = i(n+1)77

— " (zeU). (4.3)

Oénei(nfl)
Proof. Suppose that 0 < v < 1 and

gn =7f1+ (1 =) fo,

where f1, fo € Sé’T(k:,n;A,B) are functions of the form (1.5). Then, by (3.7) we have
1b1n| = |ban| = l‘gﬁ;n‘ﬁ, and, in consequence, a1; = as; = 0 for [ € Ny and by = by; = 0
for I € Ny\ {n}. It follows that g, = fi = f2, and consequently g, € ES5(k,n; A, B).
Similarly, we verify that the functions h,, of the form (4.3) are the extreme pointsof the
class Sé’T(k‘, n; A, B). Now, suppose that a function f belongs to the set ES{}’T(k, n; A, B)

and f is not of the form (4.3). Then there exists m € Ny such that

B-—A B—-—A
0 < lam| < or 0< |by| < .
|| Bl
If 0 < |ap| < %, then putting
| am | 1
= — _ (f_~h
TE a0 ¥ 1—7(f Yhim) ,

we have that 0 <y < 1, hy,, # ¢ and
f=hm+ (1 =) ¢
Thus, f ¢ ES}7 (k,n; A, B). Similarly, if 0 < |b,| < B4, then pouting

=51 ¢——1_7(f Ygm) »

we have that 0 < v < 1, g, # ¢ and
f=v9m+ (1 —=7)¢.
It follows that f ¢ ES?’T(k,n; A, B), and the proof is completed. O
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5. Applications

It is clear that if the class
F={fneH: neN},
is locally uniformly bounded, then

cofr’":{Zq/nfn: Z'ynzl, ’ynEO(nEN)}. (5.1)
n=1

n=1

Thus, by Theorem 2.1 we have the following corollary.
Corollary 5.1.

S%\"T(kan; A,B) = { Z (’Ynh + 6ngn : Z 7n + 5 (51971 = 07'7717671 > 0)} s
n=k—1 n=k—1

where hy, gn are defined by (4.3).

For each fixed value of m,n € Ng, z € U, the following real-valued functionals are
continuous and convex on H:

d(f)=lanl,_3(f) =bal, 3(f) =[f ()| 3(f) = [Dscf (2)] (feH). (5.2)
Moreover, for v > 1, 0 < r < 1, the real-valued functional
27 1/~
(% fiemra) e 5
0

is also continuous and convex on H.

Therefore, by Lemma 4.1 and Theorem 2.1 we have the following corollaries.

Corollary 5.2. Let f € Sé’T(k,n;A, B) be a function of the form (3.5). Then
B-A B-A
—— |bn| < —2—

|oun] |Bnl
where oy, By are defined by (3.8). The result is sharp. The functions hy, g, of the form
(4.3) are the extremal functions.

Corollary 5.3. Let f € 8?’7(/{,77;14, B), |z| =r < 1. Then

lan| < (n € Ng), (5.4)

S (0| e e
"Thwlk—1+rkB-A4) = UVEIETT T k—1+kB—A4)
. EB=A) o<y k(B — A) i

Dol (k—1+kB—A) = el (k— 1+ kB —A)

where A\, is defined by (3.5). The result is sharp. The function hy of the form (4.3) is
the extremal function.

Corollary 5.4. Let0<r <1, v>1.If f € 8)"7(1{ n; A, B), then

/’f /’hkre 0,

’Y
o /WD%f a8

IN

VAN
w
\

-

3

>

??‘

=)

m

U

<

where hy, is the functzon defined by (4.3).



1788 J. Dziok

The following covering result follows from Corollary 5.3.
Corollary 5.5. If f € S;}’T(k,n; A, B), then U (r) C f(U), where
B-A
Me| (k—14+kB—A)

By using Corollary 3.4 and the results above we obtain corollaries listed below.

r=1-—

Corollary 5.6. The class Ri’}’T(k, n; A, B) is convex and compact subset of H. Moreover,
ERY" (k, 15 A,B) = {hn : n € Ng_1}U{gn: n € Ni},

and
Rk, A B) =4 Y (hn +60g) 0 Y (hn+00) =1 (k-1 = 0,70, 8, 2 0) ¢,
n=k—1 n=k—1
where hi_1(z) = z, and
(B—A) ei(l—n)n (B—A) ei(l-&-n)ni
hp(2) = 2 — " ogn(z) = —Z" e U). 5.5
) T o) =2+ B e (55)
Corollary 5.7. Let f € fRT’}’T(k,n; A, B) be a function of the form (1.4). Then
B-—A B—-—A
nl < o || < e Np),
= wrm M aEny e
B-—A & B-—A
— " < ) <r+-——-—r zZl=r<1),
=B =Tt agpys =y
k(B—A) k(B—A)
r—irgD 2N < r+ - ———-—r zl=r<1),

/]f d9<—/‘hkre ‘Ade,

where N\, is defined by (3.5). The results are sharp. The functions hy,gn, of the form
(5.5) are the extremal functions.

Corollary 5.8. Let us assume (3.6). If f € fRé’T(k‘,n;A,B), then U (r) C f(U), where
B-A
r=1—- ————.
(14 B) | Al
The main classes 83\{’7(16; A, B) and ng‘_ET(k:; A, B) are related to harmonic starlike func-

tions, harmonic convex functions and harmonic Janowski functions.
Let us define

S?C(ka Ol) L= ng(kv 2a — 17 1)5 Kﬂ'f(kjv a) = S%{(k’ia 2a — 17 1)7
Nyc(k,o) @ =R (k; 20— 1,1), Roc(k,a) := R3(k;2a —1,1).

The classes 8g(a) := 84¢(2,a) and Kq¢(ar) := Kq¢(2, @) were investigated by Jahangiri
[9] (see also [2,18]). They are the classes of starlike and convex functions of order «,
respectively. The classes Nyc(a) := Ng¢(2, ) and Ny¢(«) := Ny¢(2, ) are studied in [1]
(see also [13]). Finally, the classes 8g¢ := 84¢(0) and Kq¢ := Kgc(0) are the classes of
functions which are starlike and convex in U (r), respectively, for all € (0,1). We should
notice that the classes 8(A, B) := 84(A,B) N A and R(A, B) := Ry(A,B) N A were
introduced by Janowski [12].

Using Theorem 2.3 or Theorem 2.4 for the classes defined above we obtain corollaries
listed below.
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Corollary 5.9.
Sgc(k,a) = {ve : [€] =1}7,

where
o 2(l-a)f+(1-E6+2a8) 2 24208 - (1-¢+4+2af)z
ve(z) = T BT (zev).
Corollary 5.10.
Kyc(k,a) = {ee = [¢] =1},
where
o (l-a)f+(1+af)z  _1+al+(1-a)éz
Ve (2) =2z 1P + 2z 12 (z€U).
Corollary 5.11.
Nyc(k, o) = {d¢ = [¢| =1},
where
20—+ (206 -E+1) (22 —22)  _ 14¢&
0 (2) ==z 1) 2(1_2)2 (z€U).

Corollary 5.12. [4]
Si = {ve: € =117,
219z 2-(1-93

-2 -z 13 (z€U).

where

Ve (2) =

Corollary 5.13. [4]
Koo = {epe = [¢] =1},

where
§+z o 1+¢&z

77/}5 (Z) = 22m + 3(1_72)3

(z€ ).

The class 83\-’7—(/{, n; A, B) generalizes the classes of starlike functions of complex order.
Let us define

C8q¢(k,7y) :=89¢ (k;1 —27,1) (v € C{0}).
The class C8g¢(y) := C84¢(2,v) was defined by Yalgin and Oztiirk [23]. In particular, if we
put v := 114._73?% then we obtain the class RSs¢(a, n) := 8¢ (QO‘I_Jrleffin ) 1) studied by Yalgin
et al. [24]. Tt is the class of functions f € Sq¢ (k) such that

Re{(l%—em)ng{‘(fz()z)—ei”}>a (€U, neR).

By Theorem 2.3 we have the following corollary.

Corollary 5.14.
CSyc(k, ) = {ve : €] =1},
where
e (2) :22v€+(1+§—2275)z _.2+2( —7)5—51;5—2%)»2
(1-2) (1-2)

Corollary 5.15. [5]

(z€U). (5.6)

CS5c(a,m) = {ehe : [¢] =1}",

where e s defined by (5.6) with v := IIJ;%,.
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Remark 5.16. By varying the parameters in the defined classes of functions we can obtain
new and also well-known results (see for example [1-7,9-13,18,21-24]).
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