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Abstract 

In this paper, an effective and simple means of estimating the excitation current of a synchronous motor (SM) is presented 
for power factor correction task. First, a multiple linear regression model with four predictor variables such as motor load 
current, actual power factor, power factor error and excitation current change is formed to estimate the SM excitation 
current. Then, recently introduced symbiotic organisms search (SOS) algorithm is benefitted in the hope of searching better 
values of regression coefficients in that model using the data collected from the prepared experimental setup. The 
supremacy of SOS over some recently published algorithms such as genetic algorithm, artificial bee colony and gravitational 
search algorithm is widely attested through comparative computer simulations for the similar compensation system. The 
results exhibited in this article show that the presented technique outperforms the other reported popular algorithms from 
the aspects of simplicity, robustness and accuracy. In view of this, the suggested tuning of regression coefficients of the 
multiple linear regression model yields a better estimating performance of SM excitation current than the earlier studies.  
Keywords: Synchronous motor, power factor correction, multiple linear regression model, symbiotic organisms search 

algorithm, optimization 

SİMBİYOTİK ORGANİZMALAR ARAMA ALGORİTMASI İLE OPTİMİZE EDİLMİŞ 
ÇOKLU DOĞRUSAL REGRESYON MODELİ KULLANILARAK SENKRON MOTOR 

UYARTIM AKIMININ TAHMİNİ 

Öz 

Bu belgede güç faktörü düzeltme işlemi için senkron motor (SM) uyartım akımının tahminine yönelik etkili ve basit bir yol 
sunulmuştur. Bu işlem için ilk olarak motor yük akımı, gerçek güç faktörü, güç faktörü hatası ve uyartım akımının değişimi 
karar değişkenleri olarak ele alınarak çoklu doğrusal regresyon modeli oluşturulmuştur. Ardından hazırlanan deneysel 
düzenekten toplanan veriler kullanılarak bu modeldeki regresyon katsayılarının iyileştirilmesi amacıyla yeni ortaya 
konulan simbiyotik organizmalar arama algoritmasından faydalanılmıştır. Bu algoritmanın benzer kompanzasyon işlemi 
için genetik algoritma, yapay arı kolonisi ve yerçekimi algoritması gibi yakın zamanda yayınlanan algoritmalara olan 
üstünlüğü karşılaştırmalı bilgisayar simülasyonları ile gösterilmiştir. Bu makalede sergilenen sonuçlar, sunulan tekniğin 
bahsi geçen literatürdeki algoritmalara göre basitlik, gürbüzlük ve doğruluk açılarından daha iyi performans verdiğini 
göstermiştir. Bu bağlamda çoklu doğrusal regresyon model katsayıların önerilen şekilde ayarı önceki çalışmalardan daha 
iyi SM uyartım akımı tahmin performansı sağlamıştır. 
Anahtar Kelimeler: Senkron motor, güç faktörü düzeltme, çoklu doğrusal regresyon modeli, simbiyotik organizmalar arama 

algoritması, optimizasyon 
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1. Introduction 

Synchronous motors (SMs) are the class of doubly-
excited, constant speed alternating current (AC) motors 
used in electrical power utilities to convert electrical 
energy to mechanical energy [1]. As its name intimates, 
they spins at a synchronous speed equal to that of 
rotating stator magnetic field regardless of the 

perturbation in load torque until the break torque is 
achieved. Such motors have the benefits and advantages 
of high efficiency, reliable operation and favorably high 
insensitivity to voltage dips [2]. Moreover, it shows SMs 
exhibits two important advantages: one is the 
controllable field current which makes the driver more 
flexible, and the latter is that there are no expensive rare 
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earth magnets on the rotor surface [3]. Since the 
excitation current can be controlled independently of the 
stator current, synchronous motors can either supply or 
absorb reactive power, which makes them beneficial for 
power factor correction of industrial loads [4-6]. The 
drawback of such motors is the dependence on brushes 
to inject the field current, which requires periodic 
maintenance, and is specifically a challenge in 
inflammable environments and electric vehicle 
applications where the brushes must be sealed from the 
coolant oil. There are works in the state-of-the-art 
literature overcoming the aforementioned phenomenon 
(see [7], for instance). 
Reactive power compensation (RPC) is a significant task 
for electric power network, as lack of reactive power in 
power grids leads them to instability, which causes 
voltage drop and oscillation [8]. The topic has also 
received considerable attention in the literature since it 
is related to electric energy savings, which is an 
important issue present in our today’s world. The role of 
RPC is to provide system with the required amount of 
reactive power by several techniques, some of which are 
optimally fixed capacitors (FCs), thyristor controlled 
reactor-fixed capacitors (TCR-FCs), thyristor switched 
capacitors (TSCs), thyristor controlled reactors with 
thyristor switched capacitors (TCRs+TSCs), and SMs [9]. 
Of these, the approaches based on static capacitor banks 
suffer from a number of deficiencies such as slow 
response, under or over compensation and harmonic 
content in current and voltage resulting from switching 
on/off capacitor groups in certain steps. On the other 
hand, smooth and faster reactive power compensation 
can be realized with TCRs and TSCs without leading to 
step changes and mechanical problems, whereas they 
exhibit voltage and current with harmonic content as 
well as instability in the system [9]. The aforementioned 
problems can be solved by using a SM as a dynamic 
power factor compensator, which has countless merits 
over its counterparts. When equipped with advanced 
controls, these machines can prove very efficient in 
allowing the system to settle to a desired power factor 
with ease.  
The underlying idea of how a SM can be used as a reactive 
power compensator is that the phase of armature current 
varies by altering the excitation voltage fed to the motor 
field winding and so does the power factor accordingly. 
When under-excited, the motor does operate with 
lagging power factor requiring reactive power from the 
grid and when over-excited with leading power factor 
supplying reactive power to the grid, which is associated 
with the role of SMs as reactive power compensators. In 
this sense, supplying some of the reactive power 
necessary for inductive elements from SMs installed near 
the load rather than the remote power station itself will 
improve the plant power factor and reduce the amount 
of reactive current circulating in transmission lines. As a 
result, active power capacity of the power network will 
be increased [10]. Between the two operating regions, 
there is an excitation current value that allows operation 

with unity power factor (cos𝜑 = 1.0) and minimum 
armature current.  
By feeding motor load current (𝐼𝐿) and power factor 
error (𝑒) to a designed fuzzy logic controller (FLC), the 
change of excitation current (∆𝐼𝑓) is obtained from the 

output of FLC in [10]. Experimental results show that the 
FLC estimates the excitation current properly based on 
the value of load current and power factor error without 
knowing the mathematical model amongst the 
concerned variables. An application of artificial neural 
network (ANN) is made in [11] to estimate the SM 
excitation current based on the input motor variables 
such as 𝐼𝐿 , 𝑒, ∆𝐼𝑓 and the actual power factor of the system 

(pf = cos𝜑𝑠𝑦𝑠𝑡𝑒𝑚) while the only output of the ANN 

controller is the excitation current (𝐼𝑓). In the study given 

by [12], a genetic algorithm-based k-nearest neighbor 
estimator (also termed as intuitive k-NN estimator, IKE) 
is deployed to search for optimum weighting parameters 
of < 𝐼𝐿 , pf, 𝑒, ∆𝐼𝑓 > to efficiently estimate the target 

parameter 𝐼𝑓, which therefore aims at discovering the 

correlation among those data. The comparative results 
ANN-based technique, classic k-NN-based estimator and 
the proposed IKE method affirm the superior 
performance of IKE method over the others. To model 
the SM excitation current in an easier way, a simple ANN 
with one hidden layer and 6 hidden nodes is suggested in 
[13] where the activation functions of the hidden 
neurons are determined by using GA. After training the 
resulting ANN with 394 samples and testing with 200 
test data, the estimation accuracies are found to be 
approximately similar to those reported in [9, 11, 12] 
despite having less number of hidden layers and neurons. 
It is stressed in [14] that artificial intelligence (AI)-based 
models produce good estimation results, but they cause 
problems in a real-time implementation such as 
increased computation burden, delay time resulting from 
a complex calculation process and the difficulty faced in 
realization of such complex models in real-time. To 
amend these problems, multiple linear and nonlinear 
regression models are developed in [14] in order to 
create the most representative mathematical equation 
for estimating the SM excitation current 𝐼𝑓 with regard to 

the considered input parameters < 𝐼𝐿 , pf, 𝑒, ∆𝐼𝑓 >, where 

the relationship among the SM parameters are regarded 
as mostly complex and nonlinear task [15-17]. To 
optimize the regression coefficients in the proposed 
models, genetic algorithm (GA), artificial bee colony 
(ABC) and gravitational search algorithm (GSA) are 
applied individually. It is shown that the proposed two 
models are simpler and more effective than other 
published studies [9, 11, 12], where GSA-tuned quadratic 
regression model is the pioneer for the estimation of 
excitation current which is followed by the models based 
on ABC and GA, respectively. In the study, mean response 
time comparisons with classical methods are also 
presented which verify that presented models have 
improved the response time compared to those using IKE 
and ANN. To the knowledge of this article’s author, there 
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may be a room for making better the estimation 
performance of the multiple regression model presented 
in [14]. In this sense, the values of the regression 
coefficients may even become more appropriate than the 
ones offered by GSA [14], ABC [14], and GA [14]. SOS 
algorithm that we use in this article, as the modern and 
powerful optimization algorithm, can solve this 
drawback by the ability to search for better regression 
coefficients, which may yield a decrease in estimation 
error value, and in turn contribute to the estimation 
performance.  
In the present study, a multiple linear regression model 
similar to that reported in [14] is assumed with four 
predictor variables < 𝐼𝐿 , pf, 𝑒, ∆𝐼𝑓 > to represent the SM 

excitation current 𝐼𝑓. Since the estimation performance of 

this model is greatly affected by the regression 
coefficients, we formulated the estimation problem as 
constrained optimization problem and SOS algorithm is 
employed for the first time to find out regression 
coefficients better than the reported ones. Several 
numerical results are presented which validate the 
performance of the suggested strategy. Finally, we 
conclude that comparing to the existing algorithms, such 
as GSA [14], ABC [14], and GA [14], the proposed SOS 
method in this paper is simpler, more robust and 
effective. Its superiority over the indicated evolutionary 
algorithms is demonstrated by the comparative analysis 
for the same model scheme with identical predictor 
variables. 

2. SOS-tuned Regression Model for Power Factor 
Correction 

Loads on electrical grids can be resistive, inductive and 
capacitive or a combination of them. While resistive 

loads draw active power from the grid, reactive power 
which maintains the magnetization in electrical devices 
is required by the inductive components. Since this 
reactive power alternately flows from source to the load 
and back from load to source without being transformed 
into any type of energy, it unnecessarily increases 
electricity generating costs, reduces the active power 
carrying capacity of the transmission line, and increases 
voltage drop when supplied from the power station itself 
through transmission line [18]. In order to increase the 
line capacity, reactive power requirement of the 
inductive elements must be met from a source connected 
near the load. This source of reactive power is extracted 
mostly from a synchronous motor dynamically and a 
group of capacitors statically [19]. By meeting reactive 
energy demand of inductive circuits in this way instead 
of from far away from the point the load is connected to 
power grid, reactive power flow in transmission line is 
reduced and accordingly active power capacity of the line 
is increased, which accordingly leads to enhance the 
power factor and efficiency of the electric power 
network. However, we herein stress that an adequate 
amount of reactive power is needed for controlling the 
voltage in a transmission network to transfer active 
power which requires the network voltage to be high 
enough. 
In the present study, reactive power compensation is 
performed by a SM operating at leading power factor 
condition as depicted in Fig. 1, and it is aimed to model 
the SM with the help of four predictor variables using 
multiple linear regression approach, which describes 
how a response/target variable depends linearly on a 
number of predictor variables. 
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Figure 1. Block diagram of reactive power compensation using a SM. 

 

In the case study, response variable or output/target 
parameter is excitation current 𝐼𝑓 while predictor 

variables are load current 𝐼𝐿 , power factor pf, power 
factor error 𝑒 and change of excitation current ∆𝐼𝑓, which 

is mathematically given as, 

𝐼𝑓
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =  ̂(𝐼𝐿 , pf, 𝑒, ∆𝐼𝑓) = 𝑤1. 𝐼𝐿 +𝑤2. 𝑝 + 𝑤3. 𝑒 +

𝑤4. ∆𝐼𝑓 + 𝑤5 (1) 

where the power factor error is  

𝑒 = 𝑐𝑜𝑠𝜑𝑟𝑒𝑓 − 𝑐𝑜𝑠𝜑𝑠𝑦𝑠𝑡𝑒𝑚 (2) 

and the excitation current change is computed by 
subtracting the previous SM excitation current 𝐼𝑓(𝑘−1) 

from its current value 𝐼𝑓(𝑘) as 

∆𝐼𝑓 = 𝐼𝑓(𝑘) − 𝐼𝑓(𝑘−1) (3) 

Notice that 𝑤1, 𝑤2, 𝑤3, 𝑤4 and 𝑤5 are regression 
coefficients which identify the importance of each 
feature over the value of 𝐼𝑓 in Eq. 1. For example, a 

relatively high value of 𝑤1 means that the corresponding 
feature 𝐼𝐿  affects 𝐼𝑓 more importantly than other features, 

and vice versa. In order to estimate the excitation current 
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value with a high accuracy, it is very crucial to obtain five 
optimal regression coefficients 𝑤1−5 jointly for which 
reason SOS algorithm is mainly utilized in this paper. In 
other words, by performing an efficient search of the 
regression coefficients in the range of 0.0-1.0 using SOS, 
it is expected to model the relationship among the 
features < 𝐼𝐿 , pf, 𝑒, ∆𝐼𝑓 > and the target parameter 𝐼𝑓 in a 

better way. The SM feature vector FSM including the 
corresponding one target parameter TSM can be 
represented as in Table 1. 

Table 1. Representation of feature/input vector and 
target parameter of SM. 

Feature vector 
Target 
parameter 

Load 
current 

Power 
factor 

Power 
factor 
error 

Change of 
excitation 
current 

Excitation 
current 

𝐼𝐿  pf 𝑒 ∆𝐼𝑓 𝐼𝑓 

3. SOS Algorithm in Estimating Excitation Current 
of SM 

In this section, a brief overview of SOS algorithm is 
initially given, then how to achieve appropriate values of 
𝑤1, 𝑤2, 𝑤3, 𝑤4 and 𝑤5 using the SOS is discussed. To the 
author’s knowledge, it is the first time that SOS is 
employed to design a multiple linear regression model 
with its coefficients optimized which offers a better way 
of predicting excitation current depending upon the 
considered feature vector. 

3.1. Overview of SOS Algorithm 
Symbiotic organisms search algorithm is a simple and 
high-performance metaheuristic algorithm developed 
recently as an alternative to the existing metaheuristics 
in literature [20]. The algorithm benefits from the 
simulated three common symbiotic interaction 
strategies that organisms living together adopt to 
maintain their existence in the ecosystem. These 
strategies in the applied order within algorithm are 
mutualism, commensalism and parasitism, respectively, 
which are visualized in Fig. 2. 

Mutualist relation
Parasitist 
relation

Commensalist 
relation

 
Figure 2. Strategies adopted by symbiotic organisms in 

the same ecosystem. 

Each strategy has its own characteristic serving to guide 
the algorithm toward a more promising area within 
specified search space. Considering two organisms, both 
are benefitted positively in the mutualism phase; one 
side is benefitted and the other is not affected in the 
commensalism phase; finally, in the parasitism phase, 

one side is benefitted while the other is harmed. Each 
organism interacts with other organisms via all phases in 
one iteration cycle. SOS algorithm does not require 
specific tuning parameters which is an important feature 
in terms of performance robustness over different kind 
of problems, and thereby makes it one step ahead 
comparing to most other algorithms that deal with a 
number of algorithmic parameters hard to be set. The 
superior performance of SOS over well-known 
optimization techniques are affirmed in the original 
paper using some unconstrained mathematical problems 
and structural engineering design problems [20]. 
Besides, the SOS algorithm and its modified versions 
have been successfully employed in the optimization of 
various benchmarks and real life engineering problems, 
such as load frequency control of multi-area power 
system [21, 22], load dispatch problem with valve-point 
effect [23], off-line optimization of PI parameters for 
DSP-based DC motor drives [24], optimization of pin-
jointed structures [25], economic dispatch problem [26], 
design of planar concentric circular antenna arrays [27], 
efficient PID based automatic voltage regulator design 
[28, 29], static optimal power flow problem [30], and 
optimal placement and sizing of distributed generators 
[31]. Nonetheless, in the light of our literature review, 
SOS has not been yet applied to optimal design of 
multiple linear regression model in attempting to 
estimate synchronous motor excitation current for 
power factor correction task. With this motivation, this 
research work may be recognized as the first 
contribution of SOS concerning the design of an 
estimation model among the SM input and output 
features. In order to avoid increasing the manuscript 
page number unnecessarily, interested readers are 
referred to [20] for detailed algorithm operations. 

3.2. Preparation of SOS Algorithm for the Concerned 
Optimization Task 

As shown in Eq. 1, the multiple linear regression model 
has five parameters which are given focus to determine 
the values of them optimally. As such, these parameters 
are suitably encoded into an organism in SOS using real 
numbers by 𝑂 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5]. Thus, each 
organism includes five members. If the ecosystem is 
composed of 𝑁𝑂 organisms, then its size becomes 
𝑁𝑂 × 5. In order to obtain a quantitative measure 
regarding how well each organism solves the given 
problem, the following simple equation based on the 
difference between the actual excitation current and the 
one estimated by Eq. 1 is chosen as fitness function to be 
minimized. 

𝐹𝑛(𝑂𝑛) = ∑ (𝐼𝑓𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝐼𝑓𝑖

𝑎𝑐𝑡𝑢𝑎𝑙)
2𝑁

𝑖=1  (4) 

It should be highlighted that the introduced regression 
model is not expected to predict excitation current value 
under only one operating condition, but under a large 
number of different operational scenarios. It is therefore 
a dataset, or maybe termed as training/exemplar data, is 
required during optimization. Assuming 𝑖 is an integer 
indicating each sample in training data of SM and 𝑁 is the 
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total number of collected training data. 𝐼𝑓𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  and 

𝐼𝑓𝑖
𝑎𝑐𝑡𝑢𝑎𝑙  are, respectively, estimated and actual excitation 

current of the 𝑖th training data, and 𝐹 is fitness value 
regarding the organism 𝑂. The aim of SOS technique is to 
tune the regression coefficients simultaneously 
considering all the training data in a way Eq. 4 is 
minimized so that the developed model could perform a 
promising prediction for an unseen feature vector within 

the domain covered by the training dataset. The whole 
dataset 𝐷𝑆𝑀 corresponding to selected SM feature 
variables and the associated target variable to be 
estimated can be represented in matrix form in Eq. 5.  

𝐷𝑆𝑀𝑗×4 = [

 𝐼𝐿[0,0]  𝑝𝑓[0,1]  𝑒[0,2]
⋮

 𝐼𝐿[𝑗,0]  𝑝𝑓[𝑗,1]  𝑒[𝑗,2]

 Δ𝐼𝑓[0,3] 𝑡𝐼𝑓[0,4]

 Δ𝐼𝑓[𝑗,3] 𝑡𝐼𝑓[𝑗,4]

] (5) 

 

Start
Generate initial 

ecosytem randomly

Compute fitness 

value using Eq. 4

iter = iter + 1; i =1
Identify best 

organism, Xbest

Choose Xj randomly, 

where j ≠ i

Modify Xi and Xj based 

on their mutualist relation

Accept the modified organisms if 

better than the original; otherwise 

continue with the previous

Choose Xj randomly, 

where j ≠ i

Modify Xi by aid of Xj 

and Xbest

Accept the modified organism if 

better than the original; otherwise 

continue with the previous

Choose Xj randomly, 

where j ≠ i

Replace Xj with Xparasite if worse 

than Xparasite; otherwise ignore 

Xparasite

Generate a parasite 

organism Xparasite using Xi

i ≤ eco_size ? YesNo
Is termination

criterion met?
No

Yes

Stop
Optimized w1, w2, w3, w4, 

w5 are ready for testing

Mutualism phase

Commensalism  phase

Parasitism  phase

i = i + 1

 
Figure 3. Implemented SOS flowchart. 

In this way, 557 data samples are carefully collected from 
the experimental test bench whose block diagram is 
depicted in Fig. 1, then the samples are saved into .xls file. 
Briefly, the data collection scheme is described as 
follows: the excitation current value of SM is firstly set to 
a value so that the SM can run at unity power factor under 
a slight load torque on the motor shaft. Then, while 
keeping the load torque constant, the value of excitation 
current is gradually increased until the leading power 
factor of 0.66 is accessed. In each step, the values of 𝐼𝐿 , pf, 
𝑒, and ∆𝐼𝑓 are recorded. Afterwards, the load torque is 

increased, and then the entire process is repeated until 

reaching the nominal torque value of the concerned 
synchronous motor available in our laboratory. A more 
detailed description of the data collection procedure can 
be found in [11, 14]. 70% of the collected experimental 
data is utilized as training data during the optimization 
of regression coefficients and the remaining portion is 
assumed as test data to check the prediction capability of 
the proposed model in presence of different values of SM 
predictor variables which are not presented to the model 
during optimization. We adopt the experimental results 
used in [14] in order to consider it as a benchmark 
method for comparison purpose. 



Emre Çelik 
Estimation of synchronous motor excitation current using multiple linear regression model optimized by symbiotic organisms search 

algorithm 

 

215 
 

In the presented technique, the optimization algorithm of 
SOS is written in Matlab R2017b/m-file script and the 
experimental data preserved in excel document is 
imported into that environment. At the beginning of the 
algorithm, a number of organisms are generated 
randomly; each organism has the members of 𝑤1, 𝑤2, 𝑤3, 
𝑤4 and 𝑤5 in the range of [0, 1]. Then, these organisms 
are used in Eq. 1 to compute the excitation current value 
and to evaluate the fitness value using Eq. 4 in the event. 
As the number of training samples is 𝑁, we arrive at 𝑁 
different costs. So the final cost regarding each organism 
is the sum of these 𝑁 costs. Eq. 4 shows this process 
mathematically. As expected, organisms in the ecosystem 
will have different fitness values. As our problem is a 
minimization problem, the less the fitness value is, the 
better the organism is. Next, organisms are updated for 
the next generation using the SOS operations through 
mutualism, commensalism and parasitism phases. In this 
sense, the algorithm is repeated until the squared error 

between 𝐼𝑓
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  and 𝐼𝑓

𝑎𝑐𝑡𝑢𝑎𝑙  for the entire training set 

falls below a specified error value. After the optimization 
progress, SOS optimized regression coefficients of the 
selected SM features are expected to be more optimal 
than the existing ones and accordingly achieve the 
desired efficiency in estimating the excitation current 
with regard to both training data and testing data. SOS 
flowchart for optimizing the regression coefficients are 
depicted in Fig. 3. 

4. Numerical Results 
This section evaluates the estimation performance of 
regression model introduced in this paper. A comparison 
study is also conducted, when the regression coefficients 
are replaced with those obtained with GSA [14], ABC [14] 
and GA [14]. The number of the training samples used 
during optimization is 390 which are picked up 
homogenously from the whole experimental data set, 
and the remaining 167 samples are designated as the test 
data set. Four of the collected experimental data are 
reported in Table 2. 

Table 2. Representation of feature/input vector and 
target parameter of SM. 

No 𝐼𝐿  pf 𝑒 ∆𝐼𝑓 𝐼𝑓 

6 3.0 0.76 0.24 0.301 1.481 

18 3.0 1.00 0.00 0.037 1.217 
359 4.9 0.99 0.01 0.140 1.320 

555 6.0 0.95 0.05 0.160 1.340 
 
In addition, excitation current variation for each of the 
training and test samples is plotted in Fig. 4. It is clear 
from this figure that average of excitation current 
gradually increases as sample index raises. This is 
attributed to the fact that load current is increased 
gradually during the experiments, which requires a 
greater excitation current for the synchronous motor to 
attain the same leading power factor value. 

 
(a) 

 
(b) 

Figure 4. Excitation current value in (a) training set (b) 
test set. 

A comparison of the adjustable parameters required by 
GA, ABC GSA and SOS are presented in Table 3. As seen, 
apart from the population size and maximum number of 
iterations, GA and ABC have four and three additional 
adjustable parameters, respectively, and two extra 
parameters must be tuned in GSA. In the case of the 
proposed SOS algorithm, there is no any other parameter 
that need to be adjusted depending upon the problem 
under consideration. Given this context, the presented 
SOS based regression model for estimating the excitation 
current of SM can be contemplated to be simpler than GA, 
ABC and GSA based models in terms of algorithm design. 
Notice also that since the values of the number of 
organisms and iteration number are much smaller in 
SOS, the presented approach is computationally more 
efficient than other three approaches. 
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Table 3. A comparison of the adjustable parameters required by GA, ABC GSA and SOS. 

Algorithm 
Number of 
parameters 

Adjustable parameters 

GA [14] 6 
number of chromosomes = 100/200, number of generation = 20000, 
parent selection method, crossover method, mutation coefficient = [0.001; 
0.01], mutation method 

ABC [14] 5 
number of ants = 100/200, maximum iteration number = 20000, onlooker 
bees = 50/100, employed bees = 50/100, neighborhood coefficient = 
[0.001; 0.01] 

GSA [14] 4 
population size = 100/200, number of iteration = 20000, α = 0.01, 
gravitational constant = 0.01 

SOS 2 number of organisms = 30, maximum number of iterations = 40 
 

By implementing the SOS algorithm using the parameter 
values in Table 3, the optimized regression coefficients 
and their respective fitness faction value are reported in 
Table 4, where the corresponding values in the case of 
employing GSA, ABC, and GA are also given for 
comparison. It is recognizable in Table 4 that SOS tuned 

regression coefficients are more optimal than the others 
as they yield less 𝐹 value (𝐹 = 2.66 × 10−4) as bolded 
compared to GSA (𝐹 = 76.26 × 10−4), ABC (𝐹 = 108.4 ×
10−4) and GA (𝐹 = 55.86 × 10−4).  

 

Table 4. Optimized values of regression coefficients and their fitness values using different optimization techniques. 

Method 
Regression coefficients Fitness 

function 𝐹 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 

SOS 0.000246 0.595301 0.611129 0.989786 0.584195 0.000266 
GSA [14] 0.069097 0.135676 0.815564 0.575546 0.824279 0.007626 
ABC [14] 0.010779 0.637809 0.637809 0.946734 0.533464 0.010840 
GA [14] 0.117146 0.286163 0.999948 0.304766 0.557133 0.005586 

 

Now that SOS based regression coefficients are available, 
we can constitute the linear relation equation for 
estimated SM excitation current with regard to the 
machine selected features < 𝐼𝐿 , pf, 𝑒, ∆𝐼𝑓 > as follows: 

𝐼𝑓
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 0.000246𝐼𝐿 + 0.595301𝑝 + 0.611129𝑒 +

0.989786∆𝐼𝑓 + 0.584195 (6) 

It is noticeable in Eq. 6 that the coefficients of 𝑝  and 𝑒 
are almost the same which means that both two have 
similar importance on 𝐼𝑓. It is reasonable as both of them 

are related to power factor. On the other hand, ∆𝐼𝑓 is the 

predictor variable that affects 𝐼𝑓 with the highest degree 

while the effect of 𝐼𝐿  upon the value of 𝐼𝑓 is found to be 

negligible. Using the regression coefficients in Table 4, 
the results of real and estimated excitation current 

values for the 167 test samples are given in Fig. 5. The 
real and estimated excitation current, 𝐼𝑓, 𝐼𝑓

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 , are 

painted with black and red traces, respectively. It is 
evident from Fig. 5 that the best estimation performance 
considering the test samples belongs to our proposal as 
it is very hard to distinguish the estimation from its 
actual value in Fig. 5(a). In all other three approaches, 
deviations from the real excitation current values are 
clearly viewed in varying amounts. At this point, 
however, it is difficult to stress that SOS tuned regression 
coefficients are optimal as their true optimal values for 
the concerned optimization problem is not known 
explicitly, but the reality is that they are now closer to the 
optimality compared to the existing ones.

         
 (a) (b) 
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 (c) (d) 

Figure 5. Estimation results of test samples (a) SOS (b) GSA (c) ABC (b) GA. 
 

In Fig. 6, actual error values between the real excitation 
current and output from the multiple linear regression 
model are also provided comparatively. As shown, it is 
the presented technique that responses to each of the 
test samples with similar error magnitude around zero. 
Maximum error values in ampere are measured from Fig. 
6 as 0.0018A for SOS, 0.1703A for GSA, 0.0474A for ABC 
and 0.2906A for GA, respectively. As a result, SOS can 
supersede the other indicated optimization techniques in 
terms of the issue of tuning a satisfied multiple linear 
regression model for the estimation of SM excitation 
current estimation since far less estimation error value is 
achieved by the SOS algorithm. 

 
Figure 6. Actual estimation errors of test samples. 

5. Conclusion 
A new SOS optimized multiple linear regression model is 
presented for solving the problem of estimating 
synchronous motor excitation current in a better way for 
use in an power factor correction system. First, a multiple 
linear regression model with four predictor variables is 
assumed and its coefficients are optimized by the SOS 
algorithm for the first time using the experimental data 
available. To provide additional value to this work, a 
recently published study that benefits from GSA, ABC, 
and GA for the same task is considered as a benchmark 
method. It has been found that SOS tuned regression 
model that we propose in this paper can estimate the 
excitation current value of synchronous motor with 
remarkably increased accuracy with respect to both 
training data and test data. Good estimating performance 

and computational simplicity are significant 
contributions of this research work, which render it 
convenient for real-time implementation of SM reactive 
power compensation system. 
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