10 ЛЕТ НЕЗАВИСИМОСТИ

ЭКОНОМИКА: ИСТОРИЯ, СОВРЕМЕННОСТЬ, БУДУЩЕЕ

БУДУЩЕЕ ЭКОНОМИКИ И ОСВОЕНИЕ ГОР

Т. КОЙЧУЕВ, академик НАН КР, К.ГУСЕВ, профессор, Е.ИВАНОВ

выше 90% территории Кыргызстана занимают горы. Запасы (лед-ники и снега) находятся на вершинах гор, отсюда берут начало Долинное орошаемое земледелие все реки. полностью зависит от этих спускающихся с гор потоков. Bce гидроэнергетические водных ресурсы соответственно являются горными ресурсами. Полезные ископаемые (золото, серебро, олово, сурьма, железо, ртуть, алюминиевое сырье, ред-коземельные элементы и т.д.), драгоценные и строительные камни, топливные ресурсы (уголь, нефть, практически полностью или преи-мущественно расположены в высокогорной местности. Летние пастбиша скота также являются высокогорными. Горы богаты разно-образными лекарственными травами и органи-ческими элементами для фармацевтики. Именно горы вне конкуренции ценны для развития туризма. Поэтому и экономику Кыргызстана не-возможно представить без гор и их ресурсов.

Конечно, напрашивается естественный воп-рос: а как в горных районах в комплексе склады-вается хозяйственная жизнь и каковы возмож-ности наращивания их экономического потен-циала?

Прежде всего нужно решить, а что мешает более интенсивному хозяйственному освоению районов? Это горных сложные природно-клима-тические, тектонические, рельефно-морфологи-ческие условия, затрудняющие использование ресурсов организацию хозяйственной деятель-ности, требующие сравнительно крупных зат-рат. Суровая зима, которая продолжается не три месяца, а больше, создает дополнительные

слож-ности для производства, инфраструктуры. Поэто-му размещение и расширение производства в горных районах ограничено. Отсутствие финан-совых средств (или их недостаточность) не поз-воляет государству вкладывать большие сред-ства непосредственно в экономику горных райо-нов для создания необходимых инфраструк-турных условий для быта и хозяйственной дея-тельности и полнее осваивать имеющиеся сы-рьевые, энергетические и другие ресурсы.

Значительная часть населения занимает рав-нинные районы республики, гле сосредоточена основная хозяйственная В деятельность. силу тяжелых природно-климатических условий насе-ление в горных (вернее, высокогорных) районах страны малорасселено. В этих высокогорных районах хозяйственная жизнь протекает срав-нительно менее интенсивно. Большой приток населения из районов здесь мало-вероятен, маловероятно достижение в них такой же интенсивности хозяйственной жизни, как в более благоприятных И развитых районах. закрепить по возможности в высокогорных районах местное адаптированное население надо путем улучшения условий проживания с учетом местных особенностей и создания рабочих мест. Необходимо также вовлекать в хозяйственное освоение богатые природные ресурсы. При со-ответствующем стимулировании возмож-но, и будет обеспечен приток населения в эти районы.

При оценке значения горных районов для экономики Кыргызстана необходимо выяснить, что дают горы всей экономике страны? А ини-циирование, стимулирование,

интенсификация хозяйственной жизни непосредственно в горных районах имеют более локальное, хотя и большое значение. Однако эти два экономических аспекта не противоречат друг другу, а взаимодополняют и взаимообусловливают.

Какой должна быть хозяйственная политика в горных районах? Для закрепления трудовых ресурсов на местах (известно, что идет отток этих ресурсов из горных районов) необходимо размещать там малые и средние предприятия: молочно-маслосыродельные, мясо-колбасные, консервные, швейные, шерстомойки, розлив вод и т.д., которые не только дадут рабочие места, но и в значительной степени обеспечат местное население продуктами питания и некоторыми потребительскими товарами. В основном это бу-дут быть предприятия, И должны удовлетворяющие трудозанимаю-щие И внутреннее потреб-ление, но излишки можно вывозить в другие рай-оны республики. Однако существенно усилить экономический потенциал района они не смогут.

Этого можно добиться, осваивая и используя ресурсы, имеющие значение для экономики всей страны и представляющие интерес для других государств. Это природные, сырьевые, энергети-ческие ресурсы и условия для развития туризма. использование Их поможет существенно поднять экономику Кыргызстана и принести валюту стране. Однако это связано с инвестициями, которых (собственных) в стране пока ничтожно мало. Выход на международные неизбежен. Новой "Меккой" СВЯЗИ международного туризма могли бы стать горы Кыргызстана при условии их эффективного освоения с помощью мировых лидеров туризма.

Экономическое укрепление горных районов имеет большое значение для национальной безопасности республики. Затухание или угаса-ние хозяйственной жизни в горных районах (а они, как правило, приграничные) представляет опасность для территориальной целостности страны. Отток населения ведет к обезлюдению, неблагоприятным экономическим, экологичес-ким и социальным последствиям.

По большому счету, применительно к Кыр-гызстану в экономике страны более корректно выделять не "экономику гор", а "экономику высокогорья".

1. Ресурсы для развития промышленности

А. Развитие энергетического потенциала

Оздоровление экономики, социальной обеспечение сфе-ры, комплексного сбалансирован-ного их развития не только в горных районах, но и во всей республике невозможно без решения вопросов ускоренного развития энергетического потенциала, широкой электрификации экономи-ки быта. Необходимость приоритетного разви-тия электроэнергетики еще усиливается суще-ственным отставанием республики электрово-оружении труда, что в значительной конкурентоспособность влияет предприятий, воз-можность преодоления на отставания в экономи-ческом развитии бедности, особенно в горных районах.

Уровень освоения республике В топливно-энергетических ресурсов очень низкий 5%. И сос-тавляет менее Топливно-энергетический ба-ланс, структура, покрытие потребности рес-публики в энергоносителях являются высокозат-ратными, ориентированными на импорт. Затраты топливно-энергетического комплекса (производ-ство, доставка потребителям) оцениваются 7,2 млрд.сом. Завоз энергоносителей в республику превышает 50% общего потребления и обошелся государству только в 1991-1998 гг. в 600 млн.-долл.США. В то же время потенциальные, возоб-новляемые высокоэффективные водно-энерге-тические ресурсы, оцениваемые в 145 млрд. кВт. ч в год, используются менее чем на 8%.

Водные ресурсы, их ежегодный сос-тавляет 51 млрд.м³. - это огромное богатство Кыргызстана, уровень использования которого продолжает оставаться очень низким. Всего 16-18% стока находит применение для орошения сельскохозяйственных земель в республике, а остальные 82-84% воды основном R безвоз-мездно потребляются в Узбекистане, Экономическая Таджикистане. Казахстане, эффективность вовлечения народнохозяйственный оборот этого ресур-са, обеспечивающего значительной В решение проблемы развития экономики и повы-шения уровня жизни населения, особенно в гор-ных районах, весьма высока. Средняя себестои-мость 1 кВт.ч электроэнергии, вырабатываемой на гидростанциях, в 15-16 раз ниже, чем на ТЭЦ.

Покрытие потребности в ресурсах Кыргыз-стана осуществляется с большими затратами. Не-смотря на огромные запасы угля и гидро-энергетических ресурсов, республика не

в сос-тоянии покрывать возрастающий спрос потреби-телей в энергоносителях. Импорт угля, нефте-продуктов стимулирует постоянное повышение тарифов, a это существенно увеличивает издер-жки в реальном секторе, социальной сфере И снижает конкурентоспособность предприятий Кыргызстана как на внутреннем, так и на международных рынках. Под воздействием этих, других факторов эффективность И сельскохозяйственных про-мышленных предприя-тий снижается, некоторые состоянии преодолеть трудности останавливаются. За годы рыночных реформ объем промышленного производства сократился более чем в 2 раза, а в отраслях, определяющих технический прогресс, насыщение внутреннего рынка товарами, а также поставку на экспорт (машиностроение и метал-лообработка, легкая, пищевая промышленности и др.),- в 5-8 раз.

Основные запасы гидроэнергетических ре-сурсов сосредоточены в бассейнах рек Нарын, Сары-Джаз, Чаткал.

Вовлечение гидроэнергетических ресурсов в хозяйственный оборот и обеспечение комплекс-ного эффективного использования должно стать важнейшим приоритетом в развитии энергети-ческого потенциала, оздоровлении экономики и социальной сферы.

В кыргызстанской энергосистеме из общей установленной мощности 3586 тыс. кВт на долю гидроэлектростанций приходится 2948 тыс. кВт (82%). Выработка электроэнергии составила 13,7 млрд. кВт.ч, из них 92% произведено на ГЭС. Работа ГЭС, за исключением Ат-Башинской, подчинена ирригационному режиму, что обусловливает соответствующие особенности в покрытии спроса на энергетическом рынке республики.

Расчеты подтверждают экономическую целесообразность и возможность сооружения на реках Кыргызстана около 100 гидроэлектро-станций. Наиболее крупными водно-энергети-ческими ресурсами обладает река Нарын.

Основные направления развития на долго-срочный период (примерно 15-20 лет) гидроэнер-гетического потенциала в Кыргызской Респуб-лике, в соответствии с предполагаемым разви-тием рынка энергоносителей в Центральной Азии и экспортом электроэнергии в государства дальнего зарубежья, обосновывают целесо-образность строительства 16 ГЭС на реке Нарын установленной мощностью около 6,0 млн.

кВт, годовой выработкой примерно 15 млрд. кВт.ч. При этом вся установленная мощность ГЭС республики к концу периода составит более 9,0 млн. кВт, а производство электроэнергии возрас-тет ДО 28 млрд. кВт.ч Строительство ЭТИХ гидростанций, их функционирование осно-вывается на комплексном, сбалансированном использовании водно-энергетических ресурсов, одновременно решается проблема ирригации и производства электроэнергии. Эти ГЭС будут работать в энергетическом, базовом режиме, что позволит эффективно регулировать меняю-щиеся нагрузки на рынке электроэнергии.

Природные и строительно-хозяйственные условия, экономическая целесообразность строи-тельства и эксплуатации гидростанций обуслов-ливают необходимость объединения ГЭС в каскады с головным регулирующим водохрани-лищем, состоящие из 2-4 электростанций:

- * Камбаратинский каскад (ГЭС № 1 и 2)
 -2260 тыс. кВт;
- * каскад Верхненарынских ГЭС (Алабукин-ская, Нарынская №1,2,3) 380 тыс. кВт;
- * каскад Суусамыро-Кокомеренских ГЭС (Кокомеренская, Суусамырская) 1500 тыс. кВт;
- * каскад Казарманских ГЭС (Алабукинская, Карабулунская, Тогузтороузская) 1000 тыс. кВт;
- * каскад Кулапакских ГЭС (Учкунская, Ак-талинская, Джиланарыкская №1,2) 350 тыс. кВт.

Сооружение ГЭС в рамках соответствующих каскадов позволит, по предварительным оцен-кам, сэкономить порядка 10% стоимости строи-тельства ГЭС по сравнению с сооружением их по индивидуальным проектам. При этом замора-живание капитала существенно сократится.

Наполнение головных водохранилищ в связи поэтапным вводом каскалов может "эстафетной произво-диться методом рокировки" последующее каж-дое водохранилище занимает часть стока предыдущего, что позволит избежать ущерба для водопотребителей р.Сыр-Дарьи. бассейна Глубоководность намеченных водохрани-лищ предопределяет относительно небольшие площади затоплений, в которые попадают в основном скальные каньоны частично мало-продуктивные пастбища.

Конструктивно-компоновочные решения, а строительство также головных **У**ЗЛОВ плотина-ми из местных строительных материалов и бетона, деривациями на притоках обеспечат снижение стоимости, сокращение сроков строи-тельства за счет широкого использования прог-рессивных методов возведения плотин с помо-щью направленных крупномасштабных применения взрывов, шиклично-поточных технологий отсыпки грунта и укатки малоцементных бето-нов, выполнения дериваций, соору-жения туннельных производственных баз из инвентарных зданий и конструкций.

Надежность эффективность функцио-нирования уникального этого водно-энергети-ческого комплекса будут связаны с разработкой автоматизированной управления рацио-нальным системы использованием водных ресурсов, под-чинением стока воды оптимальному режиму попусков для орошения земель, а также наиболее эффективной выработкой электроэнергии. Осо-бенность гидростанций работы ЭТИХ обусловлена необходимостью введения энергетического ре-жима, варьированием объемов выработки в зависимости OT конъюнктуры спроса энерге-тическом обеспечением рынке И покрытия ме-няющихся в системе нагрузок. Это особенно важно при колебаниях потребления электроэнергии в течение года в республике: в летний период - 16-18 млн. кВт.ч в сутки, а в зимний - 50-55 млн. кВт.ч.

Район предполагаемого строительства ГЭС относится к среднему Тянь-Шаню с перепадом высот от 300 до 1500 м, чередованием широких межгорных котловин и узких каньонов с абсолютными отметками от 900 до 2500 м.

Территория застройки в экологическом отно-шении относительно благополучная. Эта отдельными живописными мест-ность, ландшаф-тами различных природно-климатических зон - от горного лесолугового пояса до высокогорных степей, позволяет создать здесь зоны отдыха и туризма. Отсутствие промышленных крупных предприятий обеспечивает гарантию сохранения природного качества воды высокого намечае-мых створах. Образование вызовет существенных водохранилищ не изменений в видовом составе растительного и животного мира. Соору-жение гидроэнергетических объектов окажет положительное влияние на организацию

терри-тории населенных пунктов в горных районах.

Сооружение ГЭС в рамках отдельных каска-дов позволит осуществлять последовательное проектирование, непрерывное финансирование гидроэлектростанций единого строительного комплекса с ведением работ на нескольких створах, что наиболее эффективно возможность эксплуатировать строительные базы, подсобные предприятия, технику и механизмы, трудовые ресурсы, широко использовать прио-бретенный достижения научно-техничес-кого опыт И получить предпринимателям прогресса, значительную экономию инвестиций, последова-тельно, по мере готовности, вводить энергети-ческие мощности И вырабатывать электроэнер-гию, соответствующие иметь доходы с началь-ного года эксплуатации ГЭС.

Такой подход даст возможность предприни-мателям несколько ограничить объем заемных средств, привлекаемых для строительства ГЭС, и положительно повлияет на окупаемость, рента-бельность работы станций.

Строительство тепловой станции. В целях обеспечения стабильного, надежного функцио-нирования в республике энергосистемы обосно-вывается целесообразность строительства в перс-пективе ГРЭС мощностью 800 мВт на крупном угольном месторождении Кара-Кече. Эта стан-ция должна ориентирована на работу в базовом режиме, и согласованном взаимодо-полняющем функционировании с гидроэнерге-тическими станциями, покрывающими пиковые нагрузки, должна обеспечивать высокую ста-бильность работы энергосистемы на энергети-ческом рынке Центральной Азии.

Освоение крупного Кара-Кечинского буро-угольного месторождения с объемом добычи 3-4 млн. т в год позволит обеспечить надежную подачу угля для Кара-Кечинской ГРЭС и ТЭЦ г. Бишкека, котельным, работающим на угле в Нарынской, Чуйской, Иссык-Кульской и Талас-ской областях, а также для реализации населе-нию.

Строительство железнодорожной ветки Кара-Кече - Балыкчы, сооружение которой на-чато в 1999 г., позволит с относительно низкими транспортными расходами ежегодно обеспечи-вать поставку угля на внутренний рынок республики.

Развитие нетрадиционных возобновляе-мых источников энергии, которая

может широко применяться для электрификации объектов отдельных горных районах (чабанские жи-вотноводческие объекты, геологические экспе-диции, гидрометеорологические станции, телера-диотрансляторы, жилые дома дома, отдыха, пан-сионаты и др.), позволит решить многие эколо-гические и социальные проблемы в отдаленных горных поселках.

Значительный В производство вклал электро-энергии могут также внести малые ГЭС респуб-лики. Суммарные гидроэнергетические возмож-ности освоения малых рек и водотоков (с расхо-дами воды от 0,3 до 50 м³/с) оцениваются 5-8 млрд. кВт.ч в год. Использование их позволит электрифицировать объекты отгонного животно-водства И горного земледелия, относительно небольшие производственные и особенно социально-бытовые объекты, труднодоступных горных районах.

предварительным По проработкам, на терри-тории республики обосновывается первоочеред-ное сооружение ГЭС малых суммарной мощностью примерно 300 тыс. кВт, годовой выработкой около 1,5 млрд. кВт.ч. К их соору-жению предполагается широко привлечь пред-принимателей республики и иностранных инвес-торов. В настоящее время в Кыргызстане экс-плуатируется 10 малых ГЭС суммарной установ-ленной мощностью 39 тыс. кВт, годовой выра-боткой 123 млн. кВт.ч. Себестоимость выраба-тываемой электроэнергии действующих ма-лых ГЭС составляет тыйынов за кВт.ч., что почти в 10 раз ниже, чем на ТЭЦ.

Капитальные удельные вложения на $1~\mathrm{kBT}$ мощности вновь возводимых малых ГЭС оцениваются в пределах 600-800 долл., а затраты на восстановление ранее законсервированных малых ГЭС в 1,3-1,5 раза ниже стоимости вновь возводимых.

Солнечная энергия, поступающая на терри-торию республики, оценивается 4,64 млрд. мВт. ч, или 23,4 кВт. ч на $1~{\rm кm}^2$, а продолжительность солнечного сияния по территории колеблется от 2100 до 2900 час.

Эта энергия пока еще слабо используется в Кыргызстане, особенно в горных районах, хотя создаются мощности по производству приборов на полупроводниках для преобразования солнеч-ной энергии в электрическую.

Ресурсы **геотермальной** энергии с темпе-ратурой $40-60^{0}$ оцениваются более чем в 610 млн. ГДж в год, а наиболее доступные

месторождения (170 тыс. ГДж) расположены в Ак-Суу, Иссык-Ате, Джергалане и др. Этот вид энергии, как правило, используется для теплохладоснабжения различных объектов на основе тепловых насосов, а также в бальнеологических целях. Уровень их использования продолжает оставаться низким.

Комплексное освоение гидроэнергетических ресурсов послужит основой технического и технологического преобразо-вания экономики Кыргызстана, совершенство-вания ее структуры и территориального разме-щения, повышения эффективности, развития реального сектора и социальной сферы в населенных пунктах горных районов.

Увеличение электропотребления в сельском хозяйстве даст возможность постепенно решить проблемы технического перевооружения фермерских хозяйств, перевести сельхозпроиз-водство на интенсивные технологии, значи-тельно повысить уровень механизации трудоем-ких процессов и увеличить производительность труда в растениеводстве, животноводстве, ирригации.

Увеличение электропотребления в комму-нально-бытовой сфере позволит преобразить социальные условия жизни населения, повысить комфортность в быту.

Решение вопросов устойчивого развития гидроэнергетики потребует подготовки специа-листов для строительства, эксплуатации ГЭС. Высшая и среднетехническая школа Кыргыз-стана вполне может решить вопросы подготовки специалистов широкого профиля для гидроэнер-гетических станций и сооружений.

Последовательное приоритетное развитие крупного энергетического комплекса В респуб-лике потребует восстановления развития соот-ветствующей научно-технической проведе-ния фундаментальных базы, И исследований прикладных научных по важнейшим проблемам энерге-тики.

Б. Освоение в горных районах крупных месторождений полезных ископаемых

Крупные месторождения составляют значи-тельный сырьевой потенциал для развития про-мышленности, создания дополнительных рабо-чих мест.

В Кыргызстане разведано много минераль-ных ресурсов, которые являются крупной сырьевой базой развития промышленности в горных районах. Обнаружены промышленные месторождения

металлов: золота, олова, вольф-рама, ртути, сурьмы, меди, серебра, железа, вис-мута, свинца, бериллия, цинка, редкоземельных металлов; неметаллов: гипса, гранита, мрамора, фарфорового камня, волластонита, различных облицовочных камней, цемента и мн. др.

Вовлечение в отработку соответствующих минеральных ресурсов имеет различную эконо-мическую эффективность, но по мере совер-шенствования технологии разработки рудных месторождений, получения концентратов и чис-тых металлов, развития производственной И социальной инфраструктуры, изменения конъ-юнктуры спроса на рынках в таких металлах все большее значение будет приобретать целесо-образность развития горной отрасли промыш-ленности в республике в следующих направ-лениях.

Цветная металлургия преимущественно представлена горнорудными предприятиями, расположенными в горных районах республики. Функционирование этих предприятий, освоение новых месторождений оказывает благоприятное влияние на формирование социальной инфра-структуры, создание дополнительных рабочих мест и повышение доходов населения.

отрасли цветной металлургии золото-добывающая промышленность представлена действующими двумя предприятиями, отраба-тывающими месторождения в Кумторе и Макмале. Кумтор крупнейшее месторождение золота, которое разрабатывается совместно канадской компанией и Кыргызстаном. Макмальское - предприятием концентрат "Кыргызалтын". Золотоносный аффинируется в республике на КГМК.

В разной мере подготовлены для отработки такие месторождения, как Джеруй, Талды-Булак Левобережный, Солтонсары, Куранджайляу и др. В Кыргызстане выявлены и в разной степени изучены более тысячи месторождений, из них балансом учтено семь месторождений и 14 россыпей коренного золота. Объем добычи золота может достичь примерно 30 т в год.

Серебро в настоящее время попутно получа-ют на предприятиях Кумтора, Макмала, предпо-лагается его производство на предприятиях Джеруя, Талды-Булака Левобережного и др. Общие балансовые и забалансовые запасы сере-бра оцениваются примерно 300 т.

Ртутные месторождения — Хайдаркан-ское, Чаувайское, Чонкойское, Новое и др. - содержат запасы, составляющие до 30% Реформа 2/2001

всех запасов ртутных руд СНГ. Наиболее крупным является Чонкойское месторождение, здесь сконцентрировано более 50% всех запасов. В настоящее время отрабатывается Хайдарканское месторождение, где добывается 600-650 т ртути.

Сурьмяные месторождения являются относительно некрупными и обеспечивают 10% мощности Кадамжайского комбината. Остальное сырье (концентраты) поставляется из Таджикис-тана, России (Саха-Якутия). В 1990 г. в республике производилось 9000 т сурьмы, и она занимала 3-е место в мире после Китая и Боливии. В настоящее время производство сократилось в 9 раз.

Редкоземельные металлы и их соединения производятся в горной местности Кеминского района Чуйской области. Социальная инфра-структура и кадры, работающие на этом пред-приятии, размещены в п.г.т. Быстровка Чуйской области. Это предприятие имеет огромное значе-ние для формирования ряда производств в гор-ных районах.

Редкие металлы и их соединения находят широкое применение в черной и цветной метал-лургии, в производстве атомной техники, авиа- и ракетостроении, радиоэлектронике, стекольной и керамической промышленности, сельском хозяйстве, фармакологии и других отраслях.

Редкоземельные металлы представлены двумя группами: цериевой - лантан, церий, празеодим, неодим, самарий, европий; иттриевой - гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций, скандий, иттрий.

Применение редкоземельных металлов и их соединений позволит создать новые кри-сталлов (фарриты - гранты), которые необхо-димы для производства новых типов электрон-ных приборов, лазеров и др. Они широко применяются в производстве ювелирных укра-шений (имитация бриллиантов, александритов, топазов и др.), которые по внешнему виду и оптическим характеристикам близки к натураль-ным.

Добавка соединений редкоземельных метал-лов с азотом в минеральные удобрения ускоряет рост растений и повышает урожайность сельско-хозяйственных культур.

Развитие редкоземельного производства поз-волит создать новые малые предприятия, совер-шенствовать технологию работы действующих предприятий в промышленности и сельском хозяйстве, а также улучшить качество и

конку-рентоспособность многих видов изделий, расши-рить ассортимент новых товаров, повысить эффективность и стойкость изделий в промыш-ленности, строительстве и других отраслях.

Для развития промышленности в горных районах республики имеет огромное значение вовлечение в отработку таких крупных место-рождений полезных ископаемых, как олово, вольфрам.

Олововольфрамовое месторождение "Тру-довое" расположено в Аксуйском районе Иссык-Кульской области в 380 км юго-восточнее г. Балыкчы (540 км от г. Бишкека) и относится к разряду крупных. Утвержденные госу-дарственным Комитетом по запасам СССР запасы балансовые ПО категории C_1+C_2 составляют 149 тыс.т олова и свыше 95 тыс.т вольфрама, а вместе с прогнозными запасы оцениваются в 281 тыс.т олова и 172 тыс. т вольфрама.

В 1980 институтом "Гипроникель" Γ. (Рос-сия) разработан проект строительства предпри-ятия И создание социальной инфраструктуры. Мощность горнообогатительного комбината по добыче руды составляет 1 млн. т в год, с ежегод-ным производством металла в концентрате: олова -1424 т и вольфрама - 767 т.

За годы строительства освоено около 50% сметной стоимости предприятия. Построены: автодорога, горный и жилищный комплекс, обогатительная фабрика и многие объек-ты. Из-за ограниченности в республике финан-совых ресурсов строительство предприятия прекращено. Уровень готовности фабрики, наличие социальной инфраструктуры, транспортных коммуникаций (автодороги, аэро-порт), средств связи, линий электропередач обеспечивают возможность при минимальных инвестициях организовать добычу металла в относительно короткий период времени (два года).

Представляется возможным и экономически оправданным месторождении ЭТОМ строитель-ство мини-завода ПО плавке относительно ограниченного количества олова, что обеспечит в соответствии со спросом на товарном рынке Центральной Азии реализацию металла ДЛЯ широкого круга промышленных потреби-телей (предпринимателей).

Обогащенный концентрат, не переработан-ный на мини-заводе и содержащий

40% получения ДΟ олова ДЛЯ чистого высококачественного металла может направляться на переработку в Новосибирск (Россия), где имеются крупные специализированные производственные мощнос-ти, а концентрат триоксивольфрама на-правляться дальнейшей может ДЛЯ переработки на Кыргызский горнорудный комбинат, который располагает соответствующими специализи-рованными мошностями.

Продукция этого комбината имеет огромное значение для работы и развития смежных предприятий малых кустарно-ремес-ленных промыслов и т.д. не только в горных рай-онах, но и в целом в Использование вольфрама республике. получения высококачественных металлов строительного профиля, инструмен-тальных и сталей, предназначенных других производства машин и оборудования, различной техники, позволит в перспективе избежать им-порта, больших транспортных расходов при дос-тавке в республики Центральной крупнога-баритных металлоизделий качественных сталей.

Развитие черной металлургии может быть основано на отработке крупнейшего в Средней Азии Джетымского месторождения, запасы которого оцениваются более чем в 10 млрд. т. Это месторождение находится в 60 км к востоку от областного центра - г. Нарына. Главными компонентами джетымских железных руд являются железо (31-33% в среднем), кремнезем (20-30%), пятиокись фосфора (0,1-0,7%), марганец (0,5-1,0%) и другие элементы примеси.

Первым этапом В освоении этого месторождения быть строительство может отно-сительно некрупного металлургического пред-приятия, работающего применением c электро-плавки, частичным использованием железа Дже-тымского месторождения, вып-лавляющего металлолома И внутренних высококачественные стали для потребностей Центральноазиатского региона и на экспорт.

Развитию черной металлургии Кыргыз-стане, производству высококачественных сталей будет способствовать предусматриваемый рост производства относительно дешевой электро-энергии, также намечаемое республике производство вольфрама, редкоземельных метал-лов и их соединений, применяемых в виде добавок для получения высококачественных сталей. В последующем металлургический комплекс может работать с использованием кок-сующих углей, которые расположены в Узгене, и производить разнообразные виды проката черных металлов для промышленности и строительства, а также на экспорт.

Для организации комплексной отработки этого крупного месторождения черных металлов необходимо провести целевые научно-иссле-довательские работы, экономи-ческую подтверждающие эффективность целесообразность стро-ительства горнорудного металлургического предприятия, его мощность, включая проведение детальной разведки, технологии отработки обогащения руд, получение В первую очередь высококачественных металлов.

В горных районах Кыргызстана имеются крупные запасы разнообразного нерудного сырья: инертных материалов, глин и суглинков, строительных известняков, гипса, доломита, облицовочных материалов из естественного (гранита, известняка-ракушеч-ника и др.), на базе которых создавались и могут быть созданы новые средние И малые крупные, предприятия (карьеры, заводы, перерабатываю-щие сырье и вырабатывающие разнообразные строительные и отделочные материалы - цемент, керамзит и аглопорит, кирпич, гипс, гранит, известняки-ракушечники и др.).

В результате финансовых трудностей в республике (включая внутренние источники и инвестиционный капитал других государств) значительно ограничены объемы строительства в реальном секторе и социальной сфере, что резко снизило объемы спроса на строительные материалы в Центральной Азии. Однако по мере оживления экономики, строительства новых сельскохозяйственных промышленных, пред-приятий, инфраструктуры развития возведения объектов жилищного социально-культурного назначения потребность (спрос) строительного рынка в разнообразных материалах будет возрастать. Это потребует не только разработки соответствующих месторождений для добычи соответствующего сырья в горных районах, но и создания здесь перерабатывающих мощностей по производству строительных и отделочных материалов.

Остальные промышленные производства в горных районах могут и должны развиваться для покрытия относительно некрупных потребнос-тей, удовлетворяющих преимущественно спрос местных товарных рынков в разнообразных товарах.

В горных районах вполне оправдано строительство малых и средних предприятий, осуществляющих переработку местных ресурсов и обеспечивающих создание дополнительных рабочих мест, наполняемость местных товарных рынков разнообразными промышленными потре-бительскими товарами и оказание услуг.

Такие предприятия могут создаваться в следующих отраслях:

горнодобывающей промышленности - старательские артели и малые предприятия по разработке некрупных месторождений золота, серебра, олова, меди, угля, гранита, мрамора, строительных, облицовочных, отделочных кам-ней и мн. др.;

электроэнергетике - сооружение малых ГЭС на небольших реках и водотоках, уровень использования которых составляет в настоящее время всего 3%;

легкой промышленности - первичная обработка кожевенно-мехового сырья, шерсти, организация производства товаров широкого потребления - швейных, трикотажных изделий, шерстяной пряжи, кожевенно-меховых изделий для чабанов и т.д.;

пищевой промышленности - переработка вторичного сырья, сыворотки, крови, производ-ство хлебобулочных изделий, консервов из овощей, фруктов и ягод, переработка мяса и молока и др.;

металлообрабатывающей и деревообраба-тывающей промышленности - производство различных деревянных и металлических изде-лий, в основном по индивидуальным заказам;

производство строительных материалов - кирпич, гранитные и мраморные плиты, раствор и бетон, различные заполнители, инертные материалы и многое другое.

Для обеспечения наиболее эффективного развития промышленности в горных районах необходимо правительству, республики привле-кая ведущих специалистов иностранных экс-пертов, разработать соответствующую целевую комплексную программу на 15-20 лет, преду-смотрев в ней механизм стимулирования предпринимательства в этом регионе, а также

создание благоприятных условий для привлечения местных и иностранных инвесторов в освоение месторождений полезных ископае-мых и топливно-энергетических ресурсов, фор-мирования производственной и социальной инфраструктуры.

Осуществление такой программы позволит не только в горных районах, но и в республике преодолеть сложившуюся отсталость в развитии экономики и социальной сферы, приблизить уровень жизни к международным стандартам.

2. Вовлечение ресурсов высокогорных районов в сельскохозяйственное пользование

Территория республики отличается резко выраженной вертикальной зональностью, пере-сеченным рельефом местности, что значительно ограничивает размеры сельскохозяйственных угодий.

Они занимают всего лишь 54% территории республики, и, как свидетельствуют данные

табл.1, в последнее десятилетие общая площадь угодий не претерпела существенных изменений. Ее расширение возможно за счет таких фак-торов, как уточнение границ с сопредельными государствами и вовлечение в сельскохозяйст-венный оборот неиспользованных территорий.

Первый путь наиболее вероятен, но границы временного фактора размыты, второй требует крупных капитальных вложений и горной сельскохозяйственной техники, новых техноло-гий, (ни того, ни другого, ни третьего у нас нет).

Актуальность проблемы вовлечения в сель-скохозяйственный оборот новых земель заклю-чается в их дислокации. Так, по данным Научно-исследовательского института почвоведения Национальной академии наук, более 90% угодий расположены на высоте 2000-3500 м над уров-нем моря с уклоном местности: от 0 до 1^0 - 2,8%; от 1 до 4° - 11,2; от 4 до 10° - 18,8; от 10 до 20° - 11,0; свыше 20° - 56,2%.

Таблица 1 Ресурсы и структура сельскохозяйственных угодий в Кыргызской Республике, тыс. га

Г			7					
	Год	Площадь сельхозугодий	из них:					
			пашня	пашня % многолетние		%	пастбища,	%
					насажд., залежи		сенокосы	
	1990	10522,9	1374,4	13,1	76,9	0,7	9071,6	86,2
Ī	1997	10618,9	1362,7	12,8	85,0	0,8	9171,2	86,4
-	1998	10712,6	1360,5	12,7	89,8	0,8	9262,3	86,5
-	1999	10746,8	1367,6	12,7	87,9	0,8	9291,3	85,5

Зоной рискованного орошаемого земледелия считаются участки с уклоном более 7^0 , и именно это условие требует разработки специфических систем земледелия, направленных на недопуще-ние развития водной эрозии почв.

Анализ структуры сельскохозяйственных угодий показывает, что сокращается их наибо-лее продуктивная часть - пахотные земли, вследствие урбанизации, отвода земель под промышленные объекты, "самозахвата" земель, необеспеченности оборотными средствами и т.д., часть которых трансформирована в сенокосы, а последние - в пастбища.

По оценке ученых почвоведов, площадь пахотных земель можно расширить до 1,8 млн.

га, но этот уровень будет достигнут за преде-лами 30-х годов нового века.

Краткий анализ показывает, что дальнейшее развитие экономики сельского хозяйства освоения воз-можно счет сельскохозяйственных угодий средневысокогорных районов, которое сдерживается неразвитостью инфра-структуры (отсутствие автодорог, связи, необустроенность поселков и т.д.), закупок, сбы-та, реализации продукции, технология-ми низкими И другими экономическими факторами.

Уровень производства основной сельскохо-зяйственной продукции в рассматриваемых районах демонстрируют данные табл. 2.

Показатель	1998 г.	1999 г.	2000 г. 9 мес.	1999 г. уд. вес высокогорных регионов к республике				
Численность населения на 1	716,8			15,4				
января, тыс. чел.								
Производство сельскохозяйственной продукции, тыс. т								
Скот и птица (в живой массе)	85,1	88,6	61,7	29,0				
Молоко	203,2	228,7	187,1	21,5				
Яйца, (тыс. шт.)	15569	18018	16714	9,3				
Шерсть	4045	3994	3892	34,2				
Зерно	267,3	249,1	165,1	15,3				
Численность скота и птицы на конец года, тыс. гол.								
Крупный рогатый скот		223,0	246,5	23,9				
в.т.ч. коровы		127,1	129,7	24,8				
Овцы и козы		1333,4	1669,7	35,0				
Свиньи		0,4	0,2	0,3				
Лошади		13,5	15,1	38,7				
Птица		305,3	333,5	10,2				

Горный рельеф и антропогенные воздей-ствия на почвенный покров привели практи-чески к повсеместному развитию эрозионных процессов. Общая площадь эродированных зе-

мель на территории республики насчитывает 6435,8 тыс. га, в том числе слабоэродированных - 2771,5 тыс. га, среднеэродированных - 2577,4 тыс. га, сильноэродированных - 1136,3 тыс. га.

Естественная денудация, усложненная раз-витием эрозионных процессов, на фоне горного рельефа, определяющего формирование почво-образующих пород, создала условия для образования каменистых почв, площадь которых составляет 3808,7 тыс. га, в том числе: сла-бокаменистых - 1477,8, среднекаменистых – 1494,5, сильно- и очень сильнокаменистых - 826 тыс. га.

Наблюдается утрата плодородия резуль-тате интенсивного использования почв в сель-ском хозяйстве. Особенно это отражается на гу-мусовом состоянии почв, поскольку гумус яв-ляется основным носителем и показателем пло-дородия. Так, ежегодно дефицит гумуса в земле-делии республики исчисляется 358,7 тыс. т, что требует внедрения системы внесения органи-ческих удобрений, которой при основными поставщиками питательных веществ для возде-лываемых культур, кроме почвенных запасов, будут органические удобрения, корневые и пожнивные остатки многолетних трав (их посевы крайне необходимы).

Реформа 2/2001

Неблагополучное состояние почвенного по-крова требует пересмотра и усовершенство-вания организации сельскохозяйственного про-изводства.

Основополагающим фактором развития животноводства — основной сельскохозяйствен-ной отрасли горных районов является состояние естественных кормовых угодий. В их структуре летние пастбища занимают 3,9 млн. га (42%), весенне-осенние - 2,8 (30,1), зимние - 2,4 (25,8) и сенокосы - 0,17 млн. га (2,1%).

По материалам геоботанического обследо-вания пастбищ, более 1,2 млн. га закустарено, 1,3 млн. га засорены ядовитыми, грубосте-бельными, плохопоедаемыми травами, около 1,4 млн. га занимают каменистые пастбища, свыше 800 тыс. га - одновременно закустаренные и каменистые, 400 тыс. га относятся к категории труднодоступных (уклон более 45°, сильная закустаренность, удалены от автомагистралей) и в настоящее время не используются.

Сильная засоренность наблюдается на весенне-осенних и летних пастбищах, здесь же, на площади более 200 тыс. га, отмечается паст-бищная эрозия.

Приведенные данные показывают, что из-за наличия ядовитой непоедаемой массы траво-стоя, закустаренности, отдаленности и большой крутизны склонов около 3 млн. га пастбищ практически не используются (= 33%).

Чрезмерная интенсивная нагрузка на паст-бища в недалеком прошлом, бессистемный вы-пас скота, отсутствие исчерпывающих мер по улучшению естественных кормовых угодий

привели к ухудшению пастбищного травостоя. В среднем по республике урожайность пастбищ снизилась с 5,7 ц\га (в сухой поедаемой массе) до 4,4 ц\га (на 22,8%), соответственно на летних пастбищах - с 6,7 до 5,5 (на 18, весенне-осенних - с 5,4 до 4,2 (на 22,3) и зимних - с 3,4 до 2,7 ц\га (20,6%).

Со снижением урожайности пастбищ изме-няется и качественная характеристика их траво-стоя, из него выпадают наиболее ценные в кормовом отношении растения, их место зани-мают непоедаемые и ядовитые. Пастбища де-градируют, и за сравнительно короткий ис-торический период (1955-1990 гг.) их площадь увеличилась в 1,5 раза.

В последние годы (1995-2000 гг.) наблюда-ется стабилизация урожайности поедаемого травостоя на пастбищах, (за исключением летних), что объясняется резким снижением поголовья скота. Однако какие-то оконча-тельные выводы делать еще рано.

В настоящее время запас кормов в кормовых единицах составляет 2,8-3,0 млн. т, из них на летних пастбищах - 1,7 млн. т (59,8%), весенне-осенних - 0,9 (31,1) и зимних - 0,3 млн. т результате реорганизационных (9,1%).В реформированием процессов, вызванных аграрного сектора, круглогодичный выпас скота в основном производится на зимних пастбищах, т.е. 72,1% пастбищ (летние и весенне-осенние) с запасом кормов 2,6 млн. т (90,9%) минимально залейст-вованы процессе В получения животноводческой продукции, a зимние пастбища деградируют. Проблема пастбищ проблема животноводства и решать ее надо в рамках специализации и кооперации сельского хозяйства.

