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Abstract In this paper, we study the following type of a recursive sequence 
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where p ≥ 2, k ≥ 1 are fixed integers, with the initial values x(n) > 0 for n = -pk+1,-

pk+2,…,0. Our results generalize some results in the literature. We give illustrating 

examples of which solutions are calculated and plotted by the MatLab programming. 

Keywords Convergence, pk periodic solution, recursive sequence. 

 

Azalan Dizilerin Bir Sınıfı Üzerine  

Özet Bu çalışmada, n = -pk+1,-pk+2,…,0 için x(n) > 0 başlangıç şartı ile p ≥ 2, k ≥ 1 sabit 
tamsayıları için aşağıdaki azalan dizilerin bir türünü  
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çalıştık. Bizim sonuçlarımız literatürdeki bazı sonuçların genelleştirilmesidir. Matlab 
proğramı tarafından örneklerin çözümlerinin hesaplanmasını ve çizimini gösterdik.  

Anahtar 

Kelimeler: Yakınsaklık, pk peryotlu çözümler, azalan diziler. 
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INTRODUCTION 

 

Difference equations are always attracting very much interest, because these equations 
appear in the mathematical models of some problems in biology, ecology and physics, and 

numerical solutions of differential equations (see [9]). 

Recently there has been a lot of studies on the periodic nature of nonlinear difference 
equations. We refer readers to [1, 6, 7], for some recent results concerning among other problems 

and the periodicity of scalar nonlinear difference equations. 

Gibbons posed the problem in [2] that whether there is a solution of the following 

difference equation 
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where x(-1),x(0) > 0 and β > 0 is a constant, which converges to zero at infinity. [8] 
includes a particular answer given by Stević to Gibbon's problem by letting β = 1 in (1) , the 

following equation 
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where x(-1),x(0) > 0. Also, Stević's result was generalized to the equation having the 

following form 
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where x(-1),x(0) > 0 in the same paper. 

Dağıstan et. al., studied the following problems with positive initial values 
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for  n=0,1,…, in [1,3,5] respectively. 

Here, in this paper, we study the following rational difference equation 
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where p ≥ 2, k ≥ 1 are fixed integers, with the initial values x(n) > 0 for n = -pk+1,-

pk+2,…,0. Letting p = 2, k = 1 and p = 2, k = 2 and p = 3, k = 2 (5) reduces to (2),(3) and (4) 

respectively. Hence, our results generalize and extend the results in [3,5,8].  

MAIN RESULT 

 

Theorem 1. Let p, k be fixed integers and the initial values x(n) > 0 for n = -pk+1,-

pk+2,…,0. If  1)( nnx  is a solution of the difference equation (5), then the followings are true: 

 

(a) for each ℓ=1,2…,pk the subsequence   1)( npknx   is decreasing and there exist pk 

nonnegative constants L for ℓ=1,2,…,pk, satisfying 
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(b) The semi-cycle ,...,...,,,,...,, 2121 pkpk LLLLLL  is a solution of equation (5) with the period pk. 
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0 holds for each i = 1,…,k. Here the convenience  LLpk  (ℓ=1,2,…,pk) is 

used. 
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(e) For each ℓ=1,2…,pk, the following formulation holds: 
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for all n ≥ 1. 
 

Proof. 

We start the proof by (a). 
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Hence for each ℓ=1,2,…,pk the subsequences   1)( npknx  are decreasing and bounded below by 0. 

Therefore there exist pk nonnegative constants L for ℓ=1,2,…,pk, satisfying 
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The proof of (a) is completed. 

 
(b) Proof directly follows from the discussion in (a). 
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Replacing n with ),...,2,1(1 kiipkn   in (5), we obtain 
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for Nn . Limiting on both sides of (6) as n  and considering the convenience 
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Then from (7), we see that 
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Hence the proof of (c) is completed. 
 

(d) Let Nn 0  satisfy x(n-(p-1)k) ≥ x(n) for all 0nn  . It suffices to prove that 0L  for all 

ℓ=1,2,…,pk. Now we prove that 0ijkL  for j=1,2,…,p and i=1,2,…,k. We have 
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for all 0nn   and i=1,2,…,k. Limiting on both sides as n , we see that 
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which implies that 

 

ijki LL   for all j=1,2,…,p and i=1,2,…,k (8) 

 

Using (c), we get 



Şimşek, Doğan.; On a Class of Recursive Sequence  

20 

 

MANAS Journal of Engineering © 2014 

journals.manas.edu.kg 
 

 

,0
1






p

j

ijk
p
i LL   

 

which implies 0iL  for all i=1,2,…,k. And hence 0L  for all ℓ=1,2,…,pk by (8), which is 
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for all n = 0,1,…. Using (5) and (9), we get 
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for all n = 0,1,…. Replacing n with ),...,2,1(1 pkkn    in(10), we get 
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which is equivalent to 
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which is the desired equality. 
Thus the proof is completed. 

 

Example 1. Consider equation (4), which is a special case of (5) p=3, k=2. The following 
graphic belongs to the solution with the initial values x(n)=1 for n = -5,-4,…,0 and of 100 

iterates: 

 
It is not hard to see that Theorem 1(a) holds. 
 

Example 2. Consider the following equation 

 
 

 

 

which is a special case of (5) with p=5, k=1. The following graphic belongs to the solution 

with the initial values  1)(  nnx  for n = -4,-3,…,0 and of 100 iterates: 
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It is not hard to see that Theorem 1(c) holds. 
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