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In this paper, we study the following type of a recursive sequence

x(n— pk +1)
—————n=

1+ ] xtn- ik +1)
j=1

x(n+1)=

where p > 2, k > 1 are fixed integers, with the initial values x(n) > 0 for n = -pk+1,-
pk+2,...,0. Our results generalize some results in the literature. We give illustrating
examples of which solutions are calculated and plotted by the MatLab programming.

Convergence, pk periodic solution, recursive sequence.

Azalan Dizilerin Bir Sinifi Uzerine

Bu calismada, n = -pk+1,-pk+2,...,0 igin x(n) > 0 baglangi¢ sart1 ile p > 2, k > 1 sabit
tamsayuilari i¢in asagidaki azalan dizilerin bir tlirlinii

x(n-pk+1)
—

1+]Ix(n- jk+1)

i=1

x(n+1) = ,n=012,..,

calistik. Bizim sonuglarimiz literatlirdeki bazi sonuglarin genellestirilmesidir. Matlab
programi tarafindan 6rneklerin ¢oziimlerinin hesaplanmasini ve ¢izimini gosterdik.

Yakinsaklik, pk peryotlu ¢oziimler, azalan diziler.
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INTRODUCTION

Difference equations are always attracting very much interest, because these equations
appear in the mathematical models of some problems in biology, ecology and physics, and
numerical solutions of differential equations (see [9]).

Recently there has been a lot of studies on the periodic nature of nonlinear difference
equations. We refer readers to [1, 6, 7], for some recent results concerning among other problems
and the periodicity of scalar nonlinear difference equations.

Gibbons posed the problem in [2] that whether there is a solution of the following
difference equation

_ -1 -
x(n+1) = 5 1for n=0, (1)

where x(-1),x(0) > 0 and g > 0 is a constant, which converges to zero at infinity. [8]
includes a particular answer given by Stevi¢ to Gibbon's problem by letting # = [ in (1) , the
following equation

x(n+1) =

x(n-1) _
e for n=01,..., (2)

where x(-1),x(0) > 0. Also, Stevi¢'s result was generalized to the equation having the
following form

x(n+1)=x(n71) for n=0,1,...,
g(x(n))

where x(-1),x(0) > 0 in the same paper.
Dagistan et. al., studied the following problems with positive initial values

_ X(n-=3)
x(n+1)_1+ x(n-1) (3)
x(n+1) = X(n -5)
1+x(n-2)
_ x(n—5)
X+ = a3 (4)

for n=0,1,..., in [1,3,5] respectively.
Here, in this paper, we study the following rational difference equation

x(n—pk +1)
— =012,

1+]x(n- jk+1) ()

j=1

x(n+1) =
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where p > 2, k > 1 are fixed integers, with the initial values x(n) > 0 for n = -pk+1,-

pk+2,...,0. Lettingp=2,k=21andp=2,k=2and p =3, k=2 (5) reduces to (2),(3) and (4)
respectively. Hence, our results generalize and extend the results in [3,5,8].

MAIN RESULT

Theorem 1. Let p, k be fixed integers and the initial values x(n) > 0 for n = -pk+1,-

pk+2,...,0. If {x(n)}z, is a solution of the difference equation (5), then the followings are true:

(a) for each ¢=1,2...,pk the subsequence {x(pkn+/)}-, is decreasing and there exist pk

nonnegative constants L, for £=1,2, ...,pk, satisfying

used.

lim x(pkn+¢) =L, for ¢=1,2,...,pk.

(b) The semi-cycle L, L,.... Ly, L, L,.... L. IS @solution of equation (5) with the period pk.

p
(© l_Iij+i = Oholds for each i = 1,....k. Here the convenience L., =L, ((=1,2,...,pk) is
j=1

(d) If there exists n, eN such that x(n-(p-1)k) >x(n) for all n>n,, then lim x(n) =0 holds.
(e) For each ¢=1,2...,pk, the following formulation holds:

1 pi

x(pkn+ ) =x(pk+ ) L+ Lo =2 I ey |

where

w(n, /) :l+ﬁx(n —jk+20),

j=1
forall n > 1.

Proof.
We start the proof by (a).

Since ﬁx(n—jk+1)>o for all nen(5) indicates that x(n+1)<x(n-pk+1 holds for all nen.

j=1

Hence for each ¢=1,2, ...,pk the subsequences {x(pkn+¢)}7, are decreasing and bounded below by 0.
Therefore there exist pk nonnegative constants L, for ¢=1,2, ...,pk, satisfying

lim x(pkn+ ) =L, for ¢=1,2,...,pk.

The proof of (a) is completed.

(b) Proof directly follows from the discussion in (a).
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Replacing n with pkn+i-1Gi=12,...k) in (5), we obtain

x(pkn— pk +1)
p-1
1+] [ xkpn— jk +1i)

i=1

x(pkn+i) =

x(pk(n-=1) +1i)

1+ﬁx(k(pnfj)+i) (6)
=1

for neN. Limiting on both sides of (6) as n— and considering the convenience

L, =Ly, = lim x(pk(n +1) + £ = [im x(pkn+ ) = |[im x(pk(n -0 + ) for €=1,2,...,pk

n—o n—ow n—wo

we get

L _ ka+i

k+i — — .
L ﬁ Ly ()
j=1
Then from (7), we see that

P
Lowi =00 JLy. =0 for i=1,2,.. k.

Hence the proof of (c) is completed.

(d) Let n,en satisfy x(n-(p-1)k) > x(n) for all n>n,. It suffices to prove that L, =o for all
t=1,2,...,pk. Now we prove that L, , =0 forj=1,2,...pandi=12, ...k We have

xX(pkn+i) > x(pkn+(p-1)k+i)
> x(pkn+2(p-1)k+i)

(phkn+(p-1) (p-1)k+i)
X(pkn+p(p-1)k+i)

(AVARRY]

for all n>n, and i=1,2,...,k. Limiting on both sides as n—«, we see that

Li > Lo aykei = Logpasi 22 Lpaypksi = Lpponisi = Lis
which implies that
L=L, forallj=12 .. pandi=12,.. .k (8)

Using (c), we get
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P
L :Hij+i =0,
j=1

which implies L, =0 for all i=17,2,...,k. And hence L, =0 for all £=1,2,...,pk by (8), which is

equivalent to
lim x(n)=0.

n—w0

(e) From (5), we obtain

x(n+1) — x(n— pk +1):[L—1}x(n— pk +1)

w(n,1)

P
Hx(n —jk+1)
=

w(n,1)
_ xX(n-k+1) P o
=D [ [x00-G+ok+D)

j=1

forall n = 0,1, .... Using (5) and (9), we get

x(n+1) —x(n— pk +1) = wind)

1
w(n,1)

[X(n =k +1) —x(n— (p + Dk +1)]

forall n = 0,1,.... Replacing n with kn+¢—-1(+=12,.., pk) in(10), we get

_y(n-17)
y(n,0)= —w(kn, N forn>1,

where y(n, ¢) =x(kn+ ) — x(k(n - p) + ¢) . Iterating (11), we deduce the following formula

forn>1.

n 1
) =vy(0,¢ :
y(n, £) = y( )g w(jk, £)

Replacing n with pn in (12), we get

pn 1
y(pn, 0)=y(©O,0)[ |

. forn>1,
i W(ik, 0)

and summing up (13) from 0 to n, we deduce

n_ pi

u . 1
gy(pl,é) =y(0, Z)ZH WD) forn>1,

i=0 j=1
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©)

(10)

(11)

(12)

(13)
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which is equivalent to

n pi l
kn+ 4) — X(=pk + #) = [x(#) = X(—pk + 7
x(pkn+ £) — x(—pk + £) =[x(£) = x(~p +)]§1;!W(jkyz)

forn>1. (]_4)

Using (5) and (14), we get

n pi 1
kn+¢)=x(—pk + ¢ ?) — X(—pk + ¢
x(pkn -+ £) = X(—pk + £) +[x(¢) = x(~pk + )]ggw(jkyz)
n pi l
iz ja W(ik, 0)

X(—pk +¢)
w(0, )

=x(—pk+é)+{ —x(—pk+€)}

=x(—pk +0)[1+ 1 —Zn:pl =
—P wo.) & dwikn |

which is the desired equality.
Thus the proof is completed.

Example 1. Consider equation (4), which is a special case of (5) p=3, k=2. The following
graphic belongs to the solution with the initial values x(n)=1 for n = -5,-4,...,0 and of 100
iterates:

o8
ers
o
s

o4

.D;
o3
[ 313

% B > -

It is not hard to see that Theorem 1(a) holds.

8
L}
“

Example 2. Consider the following equation

x(n—4)

x(n+1) = , nN=
1+ x(n)x(n =D x(n—2)x(n-3)

which is a special case of (5) with p=5, k=1. The following graphic belongs to the solution
with the initial values xm)=v-n+1 for n =-4,-3,...,0 and of 100 iterates:
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It is not hard to see that Theorem 1(c) holds.
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