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Abstract Electrochemical reduction mechanism of some salicylaldimine podands derived from 

salicylaldehyde and diamines having general formula of HO-C6H4-CH=N-R-N=CH-C6H4-

OH [R = ‒, (CH2)6, (CH2CH2)2NH, (CH2CH2OCH2)2],  namely N,N’-bis(salicylidene)-

diamine (BSA), N,N’-bis(salicylidene)-1,6-hexanediamine (BSH), 1,7-bis(2-

hydroxybenzyl)-1,4,7-triazaheptane (BST), 1,10-bis(2-hydroxybenzyl)-4,7-dioxa–1,10-

diazadecane (BDD), respectively, were investigated by using various electrochemical 

techniques in 0.1 M tetrabutylammonium tetrafluoroborate (TBATFB) in acetonitrile 

(MeCN) at a glassy carbon (GC) electrode. Schiff base podand derivatives show cyclic 

voltammetric (CV) irreversible one-electron reduction peaks at about -1.82 V, -2.20 V, -

2.14 V and -2.10 V at a scan rate of 0.1 V/s at GC electrode (vs. Ag/Ag
+
), respectively. The 

reaction mechanism was investigated by CV and decided to be electrochemical-chemical 

(EC) route and this mechanism was verified by digital simulation. The number of electrons 

transferred (n) and diffusion coefficients (D) of the compounds were determined using an 

ultramicroelectrode (UME) by CV, chronoamperometry (CA) and hydrodynamic 

voltammetry. 

Keywords: Podand, digital simulation, EC mechanism, cyclic voltammetry, hydrodynamic voltammetry 

 

Özet 

 

HO-C6H4-CH=N-R-N=CH-C6H4-OH [R = ‒, (CH2)6, (CH2CH2)2NH, (CH2CH2OCH2)2],  

adlandırması N,N’-bis(salisiliden)-diamin (BSA), N,N’-bis(salisiliden)-1,6-hekzandiamin 

(BSH), 1,7-bis(2-hidroksilbenzil)-1,4,7-triazaheptan (BST), 1,10-bis(2-hidroksibenzil)-4,7-

dioxa–1,10-diazadekan (BDD) olan salisilaldehit ve diaminlerden sentezlenen bazı 

salisilaldimin podandların bazı elektrokimyasal tekniklerle asetonitrilde hazırlanmış 0,1 M 

tetrabutilamonyum tetrafloroborat (TBATFB) ortamında ve camsı karbon elektrot 

kullanılarak elektrokimyasal indirgenme mekanizması araştırılmıştır. Dönüşümlü 

voltametri tekniği kullanılarak 0.1 V tarama hızında (Ag/Ag
+ 

yardımcı elektrot kullanılarak) 

ve camsı karbon elektrotta Schiff baz türevlerine ait tersinmez bir elektronlu indirgenme 

pikleri sırasıyla, yaklaşık olarak -1.82 V, -2.20 V, -2.14 V ve -2.10 V olarak bulunmuştur. 

Reaksiyon mekanizmaları EC olduğuna karar verilmiş ve EC mekanizması dijital 

simülasyon ile kanıtlanmıştır. Bileşiklerin elektron aktarım sayısı (n) ve difüzyon katsayısı 

(D); ultramikroelektrot kullanılarak, dönüşümlü voltametri (CV), kronoamperometri (CA) 

ve hidrodinamik voltametri teknikleri ile elde edilmiştir. 

Anahtar 

Sözcükler 

podand, dijital simülasyon, EC mekanizması, dönüşümlü voltametri, hidrodinamik 

voltametri 
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1. INTRODUCTION 

Podand is the family name given to acylic polyethers which have been widely used as host type 

molecules in metal complex formations [1] and supramolecular chemistry [2]. Over the past 25 

years, extensive research has surrounded the synthesis and use of salicylaldimine podands which 

are the condensation products of salysilaldehyde and amines. This is originated from the fact that 

the salicylaldimine podands and their metal complexes exhibit wide applications [3-9], especially 

in biological systems including antibacterial [10,11], antifungal [12], anticancer [13]
 

and 

herbicidal [14] activities. Recent publications show increased attention to podand type 

compounds as corrosion inhibitors in especially acidic environments for various metals such as 

steel, aluminium and copper [15,16]. The use of some salicylaldimine podands in the 

construction of PVC-based membrane selective sensors for some transition metal ions have also 

been an area of interest in chemistry [17-19]. In addition, their complexes have important 

contribution in the development of catalysis [20]. Since salicylaldimine podands exhibit good 

luminescent properties [21,22] and remarkable photochromic and thermochromic behaviors [23-

27] as a consequence of intramolecular proton transfer between phenolic oxygen and imine 

nitrogen sites in the six-membered chelate ring formed, much work has been devoted in the last 

few years to the physicochemical characterization of these compounds. In view of the importance 

of this class of compounds, our group has focused on the synthesis and structural investigations 

of salicylaldimine podands derived from salicylaldehyde and various diamines and 

intramolecular hydrogen bonds and tautomerism in these compounds [28-30].  

In the present work, we investigated the electroreduction of four Schiff base podand derivatives 

which represents potential tetradentate salicylaldimine Schiff bases, namely N,N’-

bis(salicylidene)-diamine (BSA), N,N’-bis(salicylidene)-1,6-hexanediamin (BSH), 1,7-bis(2-

hydroxybenzyl)-1,4,7-triazaheptane (BST), 1,10-bis(2-hydroxybenzyl)-4,7-dioxa–1,10-

diazadecane (BDD) at the glassy carbon (GC) electrode in acetonitrile. The mechanism of the 

electrochemical reduction and the kinetics for the electron transfer of some Schiff base podands 

was determined with cyclic voltammetry, chronoamperometry and hydrodynamic voltammetry.  

2. EXPERIMENTAL SECTION 

2.1. Reagents and Chemicals 

All preparations of the aqueous solutions, cleaning of the glassware and the polishing of the 

electrodes were carried out using ultra pure water with a resistance of 18.3 M cm
 
(Human 

Power I
+
 Scholar purification system). Chemicals, acetonitrile (MeCN) (Riedel), isopropyl 

alcohol (IPA) (Riedel), AgNO3 (Fluka), activated carbon (Sigma-Aldrich), tetrabutyl-

ammoniumtetrafluoroborate (TBATFB) (Fluka) and ferrocene (Sigma), salicylaldehyde (Fluka), 

hydrazine hydrate (Merck), hexane-1,6-diamine (Merck), diethylenetriamine (Merk) and 3,6-

dioxa-1,8-diaminooctane (Acros) were of reagent grade and used without further purification. 

BSA [31], BSH [32], BST [33] and BDD [34] podands were synthesized according to the method 

reported in the literature. Solutions were deaerated by purging using pure argon gas (99.999 %) 

for 10 minutes prior to the electrochemical experiments. An argon blanket was maintained over 

the solutions to supply an inert atmosphere during voltammetric measurements. All 

electrochemical experiments were performed at room temperature. 

Thin layer chromatography (TLC) was performed to investigate the final products of the 

electrochemical reduction. Before TLC experiments, bulk electrolysis (BE) was performed with 

the solution of BSH podand. The resulting solution of the bulk electrolysis was evaporated to 

dryness to remove the solvent. The residue was dissolved in toluene:petroleum 

ether:ethanol:triethylamine (10:50:5:0.5) mixture of (Isse et al. 1997) and subjected to TLC 

separation. 
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2.2. Syntheses of the Schiff base podand derivatives 

Salicylaldimine podands,  BSA, BSH, BST and BDD have been obtained from the reaction of 

salicyaldehyde and hydrazine monohydrate [31], hexane-1,6-diamine [32], 3,6-dioxa-1,8-

diaminooctane [34], respectively, in MeOH and diethylenetriamine in MeCN [33] according to 

the method reported in the literature given in paranthesis. The structural formula of these podand 

type molecules are shown in Scheme1. 

 

 
Scheme 1. Structural formula, general and short names of the Schiff base podand derivatives. 

2.3. Instrumentation 

A conventional three-electrode electrochemical system was used for all electrochemical 

experiments. Ag/Ag
+
 (0.01 M AgNO3) in MeCN (0.1 M TBATFB) reference electrode and a Pt 

wire counter electrode were used in all voltammetric measurements. To prepare the Ag/Ag
+
 (0.01 

M AgNO3) reference electrode, pure solid AgNO3 was dissolved in 0.1 M TBATFB in MeCN to 

obtain a 0.01 M Ag
+
 inner solution and this electrode was calibrated against ferrocene and 

checked monthly for its potential. BAS Model MF-2012 GC electrodes with a geometric area (A) 

of 0.071 cm
2
 were used to investigate the electrochemical behavior of the Schiff base podand 

derivatives. BAS Model 10 m MF-2007 GC UME was used for the determination of number of 

electrons transferred. BAS Model MF-2066 rotating disc GC electrode was used in 

hydrodynamic voltammetric experiments. Experiments of cyclic voltammetry, 

chronoamperometry and hydrodynamic voltammetry were carried out using a CV-50W 

electrochemical analyzer (Bioanalytical Systems, West Lafayette, IN, USA) equipped with a 

BAS C3 Cell Stand. 

2.4. Glassy carbon electrode preparation 

GC electrodes were prepared by polishing to get a mirror-like appearance, first with fine wet 

emery papers (grain size 4000) and then with 0.3 µm and 0.05 µm alumina slurry on micro cloth 

pads (Buhler, USA). First, GC electrodes were sonicated in the water twice and then in 1:1 (v/v) 

isopropyl alcohol and acetonitrile mixture (IPA+MeCN) to eliminate the alumina dust residues. 
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IPA and MeCN were separately treated with an equal volume of Norit A activated carbon for 10 

min. each, to eliminate the organic impurities. 

3. DISCUSSIONS and CONCLUSIONS 

3.1. Electrochemical reduction of some Schiff base podand derivatives 

Electrochemical reduction of some Schiff base podand derivatives on glassy carbon electrode 

have been investigated by using cyclic voltammetry and hydrodynamic voltammetry techniques. 

Cyclic voltammetry technique is especially used to characterize the surface electrochemistry of 

the electrode material and the mechanism of the number of electrons transferred of the system. 

Hydrodynamic voltammetry technique is also used to characterize the number of electrons 

transferred. In this study the current-potential curves of 1 mM solutions of some Schiff base 

podand derivatives are given in Fig. 1(a-d). 

 

 
Figure 1. i-E curve for 1 mM solution of (a) BSA (b) BSH (c) BST (d) BDD Schiff base podand 

derivatives in 0.1 M TBATFB in MeCN. 

Voltammetric behavior of BSA, BSH, BST and BDD in MeCN (0.1 M TBATFB) are featured by 

a single reduction peak at a GC surface. Peak potentials and peak currents of the Schiff base 

podand derivatives are given with their standard deviation for four CV experiments in Table 1. 

These values are at about -1.82 V, -2.20 V, -2.10 V and -2.10 V at a scan rate v = 0.1 V/s.  

Table 1. Cyclic voltammetric peak potentials and currents of the Schiff base podand derivatives (1 mM 

each). 

Compound -Ep (V) ip (10
5
)(A) 

BSA 1.82 2.26 

BSH 2.20 2.80 

BST 2.14 3.31 

BDD 2.10 2.36 

* Standard deviations for four measurements. 

On the other hand, no anionic peak was observed. It means that, the charge transfer reaction of 

adsorbed protonated species on the electrode surface is irreversible. Thus, each of these peaks 
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corresponds to a one-electron irreversible reduction as shown in Fig. 1(a-d). The electrode 

reaction mechanism of the Schiff base podand derivatives seems to be EC or ECEC type up to 

the switching potentials, as will be discussed later. 

3.2. Determination of the n and D values 

Baranski et al. investigate to determine the n and D values in their articles (Baranski, Fawcett and 

Gilbert 1985). Due to this article, CA and CV experiments were achieved at a conventional GC 

electrode and a GC ultramicroelectrode for 1 mM of the podand derivatives, respectively. 

Ferrocene solution (1 mM) was used as reference solution in CV experiments for determination 

of n according to the method developed by Baranski et al. [35]. Steady-state voltammograms at 

the UME for ferrocene and the podand derivatives are shown in Fig. 2(a-e). 

 
Figure 2. Cyclic voltammetric experiments that carried out at a GC ultramicroelectrode for 1 mM solution 

of (a) ferrocene (b) BSA (c) BSH (d) BST (e) BDD. 

Also, n and D values were calculated by using Equation 1 and Equation 2; where S is the slope of 

the Cottrell plot, i is the steady-state current (A), C is the concentration (mol/cm
3
) for the Schiff 

base podand derivatives. iS, CS and SS are the same terms but the standard system values for 

ferrocene. 

iCS

CiSn
n

2

S

SS

2

S

 

(1) 

2

S

2

22

S

iS

iSD
D S

 

(2) 

All of the terms of the Cottrell slopes, steady-state currents, n and D values for the Schiff base 

podand derivatives and ferrocene determined from the CA and CV studies are shown in Table 2. 

As can be seen in Table 2, the number of electrons transferred for the reduction of the Schiff base 

podand derivatives were calculated as 1.  
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Table 2. The Cottrell slopes, steady-state currents, n and D values for the Schiff base podand derivatives 

and ferrocene. 

Compound Cottrell Slopes (S) 
UME steady-state 

currents (i, A) 

Numbers of 

e- transfer 
D, cm

2
/s 

BSA 6.30 1.18 0.9 (0.480.07)10
–5

* 

BSH 8.93 1.65 1.3 (1.880.62)10
–5

 

BST 7.53 2.05 0.7 (2.070.33)10
–5

 

BSD 1.02 1.76 1.4 (2.850.37)10
–5

 

Ferrocene 8.15 1.72 1


 (1.700.06)10
–5

 

* Standard deviations for four measurements. 


[36] 

3.3. Hydrodynamic Voltammetry Measurements 

The number of electrons transferred of BSA, BSH, BST and BDD were determined with a 

rotating disc GC electrode by hydrodynamic voltammetry [36]. Due to the hydrodynamic 

voltammetry, the solution is stirred by the rotating electrode and the current is measured as the 

function of the potential applied to a solid working electrode. For 1 mM solution of each Schiff 

base podand derivatives, all CV experiments were performed with 0.1 V/s scan rate at an angular 

velocity of 400 rpm. As shown in Fig. 3(a-d) voltammograms of BSA, BSH, BST and BDD were 

acquired by rotating disc GC electrode to show peak current and potential for the reduction of the 

podand derivatives. 

 

 
Figure 3. Hydrodynamic voltammograms of 1 mM solution of (a) BSA, (b) BSH, (c) BST, (d) BDD at a 

scan rate of 0.1 V/s and 400 rpm angular velocity vs. Ag/Ag
+
 reference electrode. 

Furthermore, due to Equation 3, n values were calculated according to the Levich Equation; 

where i is the peak current (A), F is the Faraday constant, A is the surface area of the electrode 

(cm
2
), C is the concentration of the solution (mol/cm

3
), D is the diffusion coefficient, υ is the scan 

rate (V/s),  is the angular velocity (s
-1

). 

i = 0.62nFACD
2/3

υ
–1/61/2

 (3) 
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Using this equation e- transfer number, n was determinate [36]. To determine n, the value of A 

was used from the ferrocene experiments and it shows the real surface area. Table 3 shows the 

half wave potential (E1/2), steady-state current (il), diffusion coefficient (D) and numbers of 

electron transferred (n) for the Schiff base podand derivatives obtained from the CV and 

hydrodynamic voltammetry experiments. 

Table 3. Half wave potential (E1/2), steady-state current (il), diffusion coefficient (D) and numbers of 

electron transferred (n) for the Schiff base podand derivatives. 

Compound -E1/2 

(V) 
il  10

5
(A) D (cm

2
/s) n 

BSA 1.85 4.42 (0.480.07)10
–5

* 1.30 

BSH 2.13 5.44 (1.880.62)10
–5

 0.80 

BST 2.11 5.10 (2.070.33)10
–5

 0.70 

BDD 2.10 4.01 (2.850.37)10
–5

 0.45 

Ferrocene – 6.40 (1.700.06)10
–5

 1


 
*
 Standard deviations for 4 measurements 

 
[36] 

As shown in Table 3, the number of electrons transferred for the reduction of the Schiff base 

podand derivatives was calculated as one from the rotating disc electrode experiments. Using 

rotating disc GC electrode, CV voltammograms of BSA, BSH, BST, BDD and ferrocene 

molecules were taken at 5 different angular velocity as 400, 600, 800, 1000 and 1200 rpm and 

scan rate of 0.1 V/s. Then, heterogen standard rate constant (k
°
) and transfer coefficient () 

values for the reduction of the Schiff base podand derivatives in MeCN solution were determined 

according to the Kotecky-Levich Equation and from the graph of 1/il vs. 1/(ω)
1/2 

as
 
shown in 

Table 4. 

Table 4. Transfer coefficients and heterogen standard rate constants of podand derivatives. 

Compound  k
°
 

BSA 0.52 1073 

BSH 0.46 1198 

BST 0.36 424 

BDD 0.26 409 

When the n values of the Schiff base podand derivatives that were determined from UME and 

RDE experiments are compared, it can easily be said that the electrode reaction of the Schiff base 

podand derivatives occurs through the irreversible one electron reduction mechanism. 

Comparison of numbers of electrons transferred for the Schiff base podand derivatives were 

given in Table 5. 

Table 5. Comparison of the n values found from the experiments at UME and RDE for the podand 

derivatives. 

Compound n (from UME) n (from RDE) 

BSA 0.9 1.3 

BSH 1.3 0.8 

BST 0.7 0.7 

BDD 1.4 0.5 

Ferrocene 1

 1


 


[36] 
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It is shown that the final n values those were determined form the UME and RDE measurements 

for the Schiff base podand derivatives are approximately closer to each other. This means that, 

one of the kinetic properties as the number of electrons transferred values (n) for the Schiff base 

podand derivatives those were 1, was verified by two voltammetry technique and overlapping 

with each other. 

3.4. Electrode reaction mechanisms of the Schiff base podand derivatives at the glassy 

carbon electrode 

For the investigation of mechanism for the electrode reactions of Schiff base podand derivatives 

at the GC electrode, CV voltammograms of the Schiff base podand derivatives were acquired at 

different scan rates between 1 V/s and 10 V/s at the same potential ranges. CV voltammograms 

of the Schiff base podand derivatives are given in Fig. 4. 

 

 
Figure 4. CV voltammograms of 1 mM solution of BSA, BSH, BST and BDD at (a) 1 V/s and (b) 10 V/s 

vs. Ag/Ag
+
 reference electrode. 

All the Schiff base podand derivatives have one cathodic peak but no anodic peak at the lower 

scan rates. When the scan rate was increased 10 fold, a small anodic peak appeared in the 

voltammograms of all derivatives, indicating the presence of a follow up chemical reaction 

accompanying the electron transfer reaction. The follow up chemical reaction might be a 

protonation, dimerization or polymerization reaction that uses the reduced podand moieties. To 

investigate and understand that the homogeneous follow up reaction is a protonation reaction or 

not, the voltammetric experiments were occured in dry acetonitrile medium [37]. In the end of 

these voltammetric experiments, it is shown that voltammogram of the Schiff base podand 

derivatives in dried acetonitrile medium is similar to the one acquired in undried acetonitrile 

medium and implying that the following chemical reaction is not a protonation reaction.  

In the following, Scheme 2 shows the proposed reaction mechanism of the Schiff base podand 

derivatives.  
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Scheme 2. Schematic representation of the proposed reaction mechanism for the electrochemical reduction 

of the Schiff base podand derivatives. 

According to Scheme 2, podand (A) is reduced to an anion radical with a one electron transfer to 

the one of the imine groups. Since the anion radical is a very reactive moiety, it is immediately 

hydrolyzed by the trace amount of the water in acetonitrile. [38]. As a result of this hydrolysis 

reaction, salicylaldehyde (B) and a Schiff base (C) are produced. The Schiff base product is then 

converted to the salicylaldehyde and diamine products thorough the hydrolysis reaction, as 

shown in Scheme 2. To confirm the electrode reaction mechanism, following the bulk 

electrolysis of BSH podand as a representative compound, the solution is evaporated to dryness 

to remove the solvent. The residue is dissolved in toluene (0.1) + petroleum ether (0.5) + ethanol 

(0.05) + triethylamine (0.005) mixture [39] and subjected to TLC seperation. The electrolysis 

products of BSH podand are detected at TLC with the Rf values of 0.625 for salicylaldehyde; 

0.042 for BSH and 0.069 for 2-hydroxybenzyl alcohol. 

We used DigiSim
®
 3.03 simulation software to confirm the reaction mechanism and to estimate 

the kinetic parameters for electrochemical and chemical steps. After establishing the EC 

mechanism, the appropriate parameter values such as heterogeneous rate constant (k
0
), 
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equilibrium constant (K), and forward and backward rate constants (kf, kb) of the chemical step 

were optimized by varying the associated parameter values and following the effects of these 

parameters on the CV responses. The values of the various parameters are given for the 

simulation after fitting to the experimental voltammograms in Table 6. 

Table 6. Optimized parameters for the electrochemical reduction of Schiff base podand derivatives by 

comparing the theoretical and experimental voltammograms. 

Compound k
° 
(cm/s) K kf (s

–1
) kb (s

–1
) 

BSA  0.85 1103 100 0.1 

BSB  0.95 1103 100 0.1 

BSD  0.95 1103 100 0.1 

BDD  0.80 1103 100 0.1 

 

The final fitted and experimental voltammograms are shown in Fig. 5(a-d). The dotted graphs 

show the theoretical CV voltammograms while the solid lines show the experimental ones. 

During the simulation work, the electrode mechanism that was accepted as ECEC and the criteria 

were chosen suitable for this. On the other hand, nearby the criteria of the ECEC, mechanism of 

EC was chosen and because of the occurrences of the electrochemical reduction and chemical 

reaction. Toward this, the Schiff base podand derivative in the medium was given an 

electrochemical reaction and then given a rapid chemical reaction with the trace amount of the 

water. At last, Schiff base podand derivative transforms to the products. One of the products 

namely, salicylaldehyde was reduced to radical form with electrochemical reduction. Then 

chemically reacted with the trace amount of the water in the medium and another product was 

occurred in the end. Finally, simulations of the experiment voltammograms were done due to the 

two of EC mechanism those were occurred following one after another. 

 
Figure 5. Comparison of the experimental and theoretical CV voltammograms of (a) BSA, (b) BSH, (c) 

BST, (d) BDD vs. Ag/Ag
+
 reference electrode at the scan rate of 0,1 V/s. 

 

According to fit of the theoretical and experimental voltammograms above, it is easily seen that 

the suitability of EC mechanism is more acceptable for the electrode mechanisms of these type 

Schiff base podand derivatives. In Table 6, the electrons transferred rate constants of the Schiff 
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base podand derivatives were determined 0.6 cm/s. Voltammograms of the Schiff base podand 

derivatives that were recorded from the experimental studies, especially due to the peak forms 

and Ep at the low scan rates show that Schiff base podand derivatives have high electrons 

transferred in acetonitrile medium. 

 

Electrochemical reduction mechanism of the Schiff base podand derivatives were investigated by 

using various electrochemical techniques at a glassy carbon (GC) electrode. The number of 

electrons transferred (n) and diffusion coefficients (D) of the compounds were determined using 

an UME by CV, CA and hydrodynamic voltammetry. The reaction mechanism was investigated 

by CV, and then two of EC mechanism was verified a following one after another by digital 

simulation. And the simulations were given well suitability of the experiments and the theoretical 

voltammograms of the Schiff base podand derivatives.  
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