MANAS Journal of Engineering

Solutions of The Rational Difference Equations $x_{n+1}=\frac{x_{n-3}}{1+x_{n} x_{n-1} x_{n-2}}$

Dağıstan ȘiMMŞEK
Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan; Selcuk University, Konya, Turkey
dagistan.simsek@manas.edu.kg
Mustafa ERÖZ
Sakarya University, Sakarya, Turkey
mustafaeroz@gmail.com

Received: 25.03.2016 ; Accepted: 18.04.2016
Abstract:
In this paper the solutions of the following difference equation is examined,

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-3}}{1+x_{n} x_{n-1} x_{n-2}}, \quad \mathrm{n}=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where the initial conditions are positive real numbers.
Keywords: Difference Equation, Period Four Solution

$$
x_{n+1}=\frac{x_{n-3}}{1+x_{n} x_{n-1} x_{n-2}}
$$

Rasyonel Fark Denkleminin Çözümleri

Öz: \quad Bu çalışmada aşağı̆daki fark denkleminin çözümleri incelenmiştir,

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-3}}{1+x_{n} x_{n-1} x_{n-2}}, \quad \mathrm{n}=0,1,2, \ldots \tag{1}
\end{equation*}
$$

Burada başlanglç şartları pozitif reel saylardır.
Anahtar Kelimeler: \quad Fark Denklemi, Dört Periyotlu Çözüm

INTRODUCTION

Recently there has been a lot of interest in studying the periodic nature of non-linear difference equations. For some recent results concerning among other problems, the periodic nature of scalar nonlinear difference equations see, [1-25].
Cinar, studied the following problems with positive initial values

$$
\begin{aligned}
& x_{n+1}=\frac{x_{n-1}}{1+a x_{n} x_{n-1}} \\
& x_{n+1}=\frac{x_{n-1}}{-1+a x_{n} x_{n-1}} \\
& x_{n+1}=\frac{a x_{n-1}}{1+b x_{n} x_{n-1}}
\end{aligned}
$$

for $n=0,1, \ldots$, in $[2,3,4]$, respectively.

In [18] Stevic assumed that $\beta=1$ and solved the following problem

$$
x_{n+1}=\frac{x_{n-1}}{1+x_{n}} \text { for } n=0,1,2, \ldots
$$

where $x_{-1}, x_{0} \in(0, \infty)$. Also, this results was generalized to the equation of the following form:

$$
x_{n+1}=\frac{x_{n-1}}{g\left(x_{n}\right)} \text { for } n=0,1,2, \ldots
$$

where $x_{-1}, x_{0} \in(0, \infty)$.

Simsek et. al., studied the following problems with positive initial values

$$
\begin{gathered}
x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}} \\
x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}} \\
x_{n+1}=\frac{x_{n-5}}{1+x_{n-1} x_{n-3}}
\end{gathered}
$$

for $n=0,1, \ldots$, in $[19,20,21]$ respectively.
In this paper we investigated the folloving nonlinear difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-3}}{1+x_{n} x_{n-1} x_{n-2}}, \quad \mathrm{n}=0,1,2, \ldots \tag{1}
\end{equation*}
$$

where $x_{-3}, x_{-2}, x_{-1}, x_{0} \in(0, \infty)$.

MAIN RESULT

Let \bar{x} be the unique positive equilibrum of Eq. (1), then clearly

$$
\bar{x}=\frac{\bar{x}}{1+\overline{x x x}} \Rightarrow \bar{x}+\bar{x}^{4}=\bar{x} \Rightarrow \bar{x}^{4}=0 \Rightarrow \bar{x}=0
$$

We can obtain $\bar{x}=0$.

Theorem 1. Consider the difference equation (1). Then the following statements are true.
a) The sequences $\left(x_{4 n-3}\right),\left(x_{4 n-2}\right),\left(x_{4 n-1}\right)$, and $\left(x_{4 n}\right)$ are decreasing and there exist p.q.r.s ≥ 0 such that

$$
\lim _{n \rightarrow \infty} x_{4 n-3}=p, \quad \lim _{n \rightarrow \infty} x_{4 n-2}=q, \quad \lim _{n \rightarrow \infty} x_{4 n-1}=r \text { and } \lim _{n \rightarrow \infty} x_{4 n}=s
$$

b) ($p, q, r, s, p, q, r, s, \ldots$) is a solution of equation (1) of period four.
c) p.q.r.s $=0$.
d) If there exist $n_{0} \in N$ such that $x_{n} x_{n-1} x_{n-2} \geq x_{n+1} x_{n} x_{n-1}$ for all $n \geq n_{0}$, then

$$
\lim _{n \rightarrow \infty} x_{n}=0 .
$$

e) The following formulas hold:

$$
\begin{aligned}
& x_{4 n+1}=x_{-3}\left(1-\frac{x_{0} x_{-1} x_{-2}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{n} \prod_{i=1}^{4 j} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \\
& x_{4 n+2}=x_{-2}\left(1-\frac{x_{0} x_{-1} x_{-3}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{n} \prod_{i=1}^{4 j+1} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \\
& x_{4 n+3}=x_{-1}\left(1-\frac{x_{0} x_{-2} x_{-3}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{n} \prod_{i=1}^{4 j+2} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \\
& x_{4 n+4}=x_{0}\left(1-\frac{x_{-1} x_{-2} x_{-3}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{n} \prod_{i=1}^{4 j+3} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) .
\end{aligned}
$$

f) If $x_{4 n+1} \rightarrow p \neq 0, x_{4 n+2} \rightarrow q \neq 0$ and $x_{4 n+3} \rightarrow r \neq 0$ then $x_{4 n+1} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. a) Firstly, we consider the equation (1). From this equation we obtain

$$
x_{n+1}\left(1+x_{n} x_{n-1} x_{n-2}\right)=x_{n-3} .
$$

If $x_{n}, x_{n-1}, x_{n-2} \in(0,+\infty)$, then $\left(1+x_{n} x_{n-1} x_{n-2}\right) \in(1,+\infty)$. Since $x_{n+1}<x_{n-3}, n \in N$, we obtain that $\lim _{n \rightarrow \infty} x_{4 n-3}=p, \lim _{n \rightarrow \infty} x_{4 n-2}=q, \lim _{n \rightarrow \infty} x_{4 n-1}=r$ and $\lim _{n \rightarrow \infty} x_{4 n}=s$.
b) ($p, q, r, s, p, q, r, s, \ldots)$ is a solution of equation (1) of period four.
c) In view of the equation (1), we obtain

$$
x_{4 n+1}=\frac{x_{4 n-3}}{1+x_{4 n} x_{4 n-1} x_{4 n-2}}
$$

Taking limit as $n \rightarrow \infty$ on both sides of the above equality, we get

$$
\lim _{n \rightarrow \infty} x_{4 n+1}=\lim _{n \rightarrow \infty} \frac{x_{4 n-3}}{1+x_{4 n} x_{4 n-1} x_{4 n-2}} .
$$

Then

$$
p=\frac{p}{1+\text { s.r. } q} \Rightarrow p+\text { p.q.r.s }=p \Rightarrow \text { p.q.r.s } s=0 .
$$

d) If there exist $n_{0} \in N$ such that $x_{n} x_{n-1} x_{n-2} \geq x_{n+1} x_{n} x_{n-1}$ for all $n \geq n_{0}$, then $p \leq q \leq r \leq s \leq p$. Since p.q.r.s $=0$ we obtain the result.
e) Subracting x_{n-3} from the left and right-hand sides of equation (1) we obtain

$$
x_{n+1}-x_{n-3}=\frac{1}{1+x_{n} x_{n-1} x_{n-2}}\left(x_{n}-x_{n-4}\right)
$$

and the following formula

$$
\begin{equation*}
n \geq 1 \text { for }\left\{x_{n}-x_{n-4}=\left(x_{1}-x_{-3}\right) \prod_{i=1}^{n-1} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right. \tag{2}
\end{equation*}
$$

holds. Replacing n by $4 j$ in (2) and summing from $j=0$ to $j=n$ we obtain

$$
\begin{equation*}
x_{4 n+1}-x_{-3}=\left(x_{1}-x_{-3}\right) \sum_{j=0}^{n} \prod_{i=1}^{4 j} \frac{1}{1+x_{i-2} x_{i-1} x_{i}} \quad(n=0,1,2, \ldots) . \tag{3}
\end{equation*}
$$

Also, replacing n by $4 j+1$ in (2) and summing from $j=0$ to $j=n$ we obtain

$$
\begin{equation*}
x_{4 n+2}-x_{-2}=\left(x_{1}-x_{-3}\right) \sum_{j=0}^{n} \prod_{i=1}^{4+1} \frac{1}{1+x_{i-2} x_{i-1} x_{i}} \quad(n=0,1,2, \ldots) . \tag{4}
\end{equation*}
$$

Also, replacing n by $4 j+2$ in (2) and summing from $j=0$ to $j=n$ we obtain

$$
\begin{equation*}
x_{4 n+3}-x_{-1}=\left(x_{1}-x_{-3}\right) \sum_{j=0}^{n} \prod_{i=1}^{4 j+2} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}(n=0,1,2, \ldots) . \tag{5}
\end{equation*}
$$

Also, replacing n by $4 j+2$ in (2) and summing from $j=0$ to $j=n$ we obtain

$$
\begin{equation*}
x_{4 n+4}-x_{0}=\left(x_{1}-x_{-3}\right) \sum_{j=0}^{n} \prod_{i=1}^{4 j+3} \frac{1}{1+x_{i-2} x_{i-1} x_{i}} \quad(n=0,1,2, \ldots) . \tag{6}
\end{equation*}
$$

From the formulas above, we obtain

$$
\begin{align*}
& x_{4 n+1}=x_{-3}\left(1-\frac{x_{0} x_{-1} x_{-2}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{n} \prod_{i=1}^{4 j} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \tag{7}\\
& x_{4 n+2}=x_{-2}\left(1-\frac{x_{0} x_{-1} x_{-3}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{n} \prod_{i=1}^{4 j+1} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \tag{8}\\
& x_{4 n+3}=x_{-1}\left(1-\frac{x_{0} x_{-2} x_{-3}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{n} \prod_{i=1}^{4 j+2} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \tag{9}\\
& x_{4 n+4}=x_{0}\left(1-\frac{x_{-1} x_{-2} x_{-3}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{n} \prod_{i=1}^{4 j+3} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \tag{10}
\end{align*}
$$

f) Suppose that $p=q=r=s=0$. By e) we have

$$
\begin{gather*}
\lim _{n \rightarrow \infty} x_{4 n+1}=\lim _{n \rightarrow \infty} x_{-3}\left(1-\frac{x_{0} x_{-1} x_{-2}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{n} \prod_{i=1}^{4 j} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \\
p=x_{-3}\left(1-\frac{x_{0} x_{-1} x_{-2}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{\infty} \prod_{i=1}^{4 j} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \\
p=0 \Rightarrow \frac{1+x_{0} x_{-1} x_{-2}}{x_{0} x_{-1} x_{-2}}=\sum_{j=0}^{\infty} \prod_{i=1}^{4 j} \frac{1}{1+x_{i-2} x_{i-1} x_{i}} . \tag{11}
\end{gather*}
$$

Similarly,

$$
\left.\begin{array}{rl}
q & =x_{-2}\left(1-\frac{x_{0} x_{-1} x_{-3}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{\infty} \prod_{i=1}^{4 j+1} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right.
\end{array}\right)
$$

Similarly,

$$
\begin{align*}
& r=x_{-1}\left(1-\frac{x_{0} x_{-2} x_{-3}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{\infty} \prod_{i=1}^{4 j+2} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \\
& r=0 \Rightarrow \frac{1+x_{0} x_{-1} x_{-2}}{x_{0} x_{-2} x_{-3}}=\sum_{j=0}^{\infty} \prod_{i=1}^{4 j+2} \frac{1}{1+x_{i-2} x_{i-1} x_{i}} \tag{13}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& s=x_{0}\left(1-\frac{x_{-1} x_{-2} x_{-3}}{1+x_{0} x_{-1} x_{-2}} \sum_{j=0}^{\infty} \prod_{i=1}^{4 j+3} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}\right) \\
& s=0 \Rightarrow \frac{1+x_{0} x_{-1} x_{-2}}{x_{-1} x_{-2} x_{-3}}=\sum_{j=0}^{\infty} \prod_{i=1}^{4 j+3} \frac{1}{1+x_{i-2} x_{i-1} x_{i}} \tag{14}
\end{align*}
$$

From the equations (11) and (12),

$$
\begin{equation*}
\frac{1+x_{0} x_{-1} x_{-2}}{x_{0} x_{-1} x_{-2}}=\sum_{j=0}^{\infty} \prod_{i=1}^{4 j} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}>\frac{1+x_{0} x_{-1} x_{-2}}{x_{0} x_{-1} x_{-3}}=\sum_{j=0}^{\infty} \prod_{i=1}^{4+1} \frac{1}{1+x_{i-2} x_{i-1} x_{i}} \tag{15}
\end{equation*}
$$

thus, $x_{-3}>x_{-2}$.
From the equations (12) and (13),

$$
\begin{equation*}
\frac{1+x_{0} x_{-1} x_{-2}}{x_{0} x_{-1} x_{-3}}=\sum_{j=0}^{\infty} \prod_{i=1}^{4 j+1} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}>\frac{1+x_{0} x_{-1} x_{-2}}{x_{0} x_{-2} x_{-3}}=\sum_{j=0}^{\infty} \prod_{i=1}^{4 j+2} \frac{1}{1+x_{i-2} x_{i-1} x_{i}} \tag{16}
\end{equation*}
$$

thus, $x_{-2}>x_{-1}$.
From the equations (13) and (14),

$$
\begin{equation*}
\frac{1+x_{0} x_{-1} x_{-2}}{x_{0} x_{-2} x_{-3}}=\sum_{j=0}^{\infty} \prod_{i=1}^{4 j+2} \frac{1}{1+x_{i-2} x_{i-1} x_{i}}>\frac{1+x_{0} x_{-1} x_{-2}}{x_{-1} x_{-2} x_{-3}}=\sum_{j=0}^{\infty} \prod_{i=1}^{4 j+3} \frac{1}{1+x_{i-2} x_{i-1} x_{i}} \tag{17}
\end{equation*}
$$

thus, $x_{-1}>x_{0}$.
From here we obtain $x_{-3}>x_{-2}>x_{-1}>x_{0}$. We arrive at a contradiction which completes the proof of theorem.

EXAMPLES

Example 1: If the initial conditions are selected as follows:

$$
x[-3]=2 ; x[-2]=3 ; x[-1]=4 ; x[0]=5 ;
$$

The following solutions are obtained:
$x(n)=\{0.0327869,1.81188,3.08397,4.22581,0.0013321,1.78096,3.05336,4.19542,0.000055937$, $1.77969,3.05208,4.19414,2.35212 \times 10^{-6}, 1.77963,3.05203,4.19409,9.89108 \times 10^{-8}, 1.77963,3.05203$, 4.19409, 4.15939 $\times 10^{-9}, 1.77963,3.05203,4.19409,1.7491 \times 10^{-10}, 1.77963,3.05203,4.19409,7.35532 \times 10^{-}$ $\left.{ }^{12}, 1.77963,3.05203,4.19409,3.09306 \times 10^{-13}, 1.77963,3.05203,4.19409, \ldots\right\}$

The graph of the solutions is given below.

Figure 3.1. $x(n)$ graph of the solutions

Example 2: If the initial conditions are selected as follows:

$$
x[-3]=5 ; x[-2]=4 ; x[-1]=3 ; x[0]=2 ;
$$

The following solutions are obtained:
$x(n)=\{0.2,1.81818,1.73684,1.22581,0.0410596,1.67202,1.60202,1.10435,0.0103735,1.64189$, $1.57245,1.07554,0.00274663,1.63429,1.56489,1.06804,0.000736065,1.63229,1.56289,1.06604$, $0.000197891,1.63175,1.56235,1.0655,0.0000532489,1.6316,1.5622,1.06536,0.0000143316$, $\left.1.63156,1.56217,1.06532,3.85751 \times 10^{-6}, 1.63155,1.56216,1.06531, \ldots\right\}$

The graph of the solutions is given below.

Figure 3.2. $x(n)$ graph of the solutions

Example 3: If the initial conditions are selected as follows:

$$
x[-3]=2 ; x[-2]=0.1 ; x[-1]=0.01 ; x[0]=0.001 ;
$$

The following solutions are obtained:
$x(n)=\{2,0.099998,0.009998,0.000998004,2,0.099996,0.00999601,0.000996013,1.99999,0.099994$, $0.00999401,0.000994027,1.99999,0.099992,0.00999203,0.000992044,1.99999,0.09999$, $0.00999005, ~ 0.000990066,1.99999,0.0999881,0.00998807,0.000988093,1.99999,0.0999861$, $0.0099861,0.000986123,1.99998,0.0999841,0.00998413,0.000984159,1.99998,0.0999822$, $0.00998216,0.000982198, \ldots\}$

The graph of the solutions is given below.

Figure 3.3. $x(n)$ graph of the solutions

REFERENCES

[1] A.M. Amleh, E.A. Grove, G. Ladas and D.A. Georgiou, " On the recursive sequence $x_{n+1}=\alpha+\frac{x_{n-1}}{x_{n}}$ ", J. Math. Anal. Appl., 233, no. 2, 790-798, 1999.
[2] C. Cinar, " On the positive solutions of the difference equation $x_{n+1}=\frac{x_{n-1}}{1+a x_{n} x_{n-1}}$ ", Appl. Math. Comp., 158 (3), 809-812, 2004.
[3] C. Cinar, " On the positive solutions of the difference equation $x_{n+1}=\frac{x_{n-1}}{-1+a x_{n} x_{n-1}}$ ", Appl. Math. Comp., 158 (3), 793-797, 2004.
[4] C. Cinar, " On the positive solutions of the difference equation $x_{n+1}=\frac{a x_{n-1}}{1+b x_{n} x_{n-1}}$ ", Appl. Math. Comp., 156 (3), 587-590, 2004.
[5] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed,"On the difference equation $x_{n+1}=a x_{n}-\frac{b x_{n}}{c x_{n}-d x_{n-1}}$ ", Advances in Difference Equation, Volume 2006,Article ID 82579, 1-10, 2006.
[6] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, "Qualitative behavior of higher order difference equation", Soochow Journal of Mathematics, 33(4), 861-873, 2007.
[7] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, "Global attractivity and periodic character of a fractional difference equation of order three", Yokohama Mathematical Journal, 53, 89-100, 2007.
[8] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed,"On the difference equation $x_{n+1}=\frac{\alpha x_{n-k}}{\beta+\gamma \prod_{i=0}^{k} x_{n-i}}$ ', J. Conc. Appl. Math., 5(2), 101-113, 2007.
[9] E. M. Elabbasy and E. M. Elsayed, "On the Global Attractivity of Difference Equation of Higher Order", Carpathian Journal of Mathematics, 24 (2), 45-53, 2008.
[10] E. M. Elsayed, "On the Solution of Recursive Sequence of Order Two", Fasciculi Mathematici, 40, 5-13, 2008.
[11] E. M. Elsayed, "Dynamics of a Recursive Sequence of Higher Order", Communications on Applied Nonlinear Analysis, 16 (2), 37-50, 2009.
[12] E. M. Elsayed, "Solution and atractivity for a rational recursive sequence", Discrete Dynamics in Nature and Society, Volume 2011, Article ID 982309, 17 pages, 2011.
[13] E. M. Elsayed, "On the solution of some difference equation", Europan Journal of Pure and Applied Mathematics, 4 (3), 287-303, 2011.
[14] E. M. Elsayed, "On the Dynamics of a higher order rational recursive sequence", Communications in Mathematical Analysis, 12 (1), 117-133, 2012.
[15] E. M. Elsayed, "Solution of rational difference system of order two", Mathematical and Computer Modelling, 55, 378-384, 2012.
[16] C. H. Gibbons, M. R. S. Kulenović and G. Ladas, "On the recursive sequence $x_{n+1}=\frac{\alpha+\beta x_{n-1}}{\chi+x_{n}}$ ", Math. Sci. Res. Hot-Line, 4, no. 2, 1-11, 2000.
[17] M.R.S. Kulenović, G. Ladas and W.S. Sizer, "On the recursive sequence $x_{n+1}=\frac{\alpha x_{n}+\beta x_{n-1}}{\chi x_{n}+\delta x_{n-1}}$, Math. Sci. Res. Hot-Line, Vol. 2, No. 5, 1-16, 1998.
[18] S. Stevic, "On the recursive sequence $x_{n+1}=\frac{x_{n-1}}{g\left(x_{n}\right)}$ ", Taiwanese J. Math., Vol.6, No. 3, 405-414, 2002.
[19] D. Şimşek, C. Çınar and I. Yalçınkaya, "On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$ ", Int. J. Contemp. Math. Sci., 1, no. 9-12, 475-480, 2006.
[20] D. Şimşek, C. Çınar, R. Karataş and I. Yalçınkaya, "On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}}$ ", Int. J. Pure Appl. Math., 27, no. 4, 501-507, 2006.
[21] D. Şimşek, C. Çınar, R. Karataş and İ. Yalçınkaya, "On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-1} x_{n-3}}$ "," Int. J. Pure Appl. Math., 28, no.1, 117-124, 2006.
[22] D. Şimşek, C. Çınar and İ. Yalçınkaya, "On The Recursive Sequence $x(n+1)=x[n-(5 k+9)] /$ $1+x(n-4) x(n-9) \ldots x[n-(5 k+4)]$ ", Taiwanese Journal of Mathematics, Vol. 12, No.5, 1087-1098, 2008.
[23] D. Şimşek and A. Doğan , "On A Class of Recursive Sequence", Manas Journal of Engineering, Vol. 2, No.1, 16-22, 2014.
[24] I. Yalcinkaya, B. D. Iricanin and C. Cinar, "On a max-type difference equation", Discrete Dynamics in Nature and Society, Volume 2007, Article ID 47264, 10 pages, doi: 1155/2007/47264, 2007.
[25] H. D. Voulov, "Periodic solutions to a difference equation with maximum", Proc. Am. Math. Soc., 131 (7), 2155-2160, 2002.

