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A METHOD FOR SOLVING GENERAL SINGULAR EQUATIONS
AND ITS APPLICATION

BEYAZ BAŞAK KOCA AND NAZIM SADIK

In memory of Z.I.Khalilov

Abstract. In this paper we present a new method for solving general singular
equations of normal type. As an application of this method, we give a solution
for a class of convolution-type integral equations.

1. Introduction

The fundamentals of the theory of singular integral equations of the type de-
scribed were included in the work of H. Poincaré and D. Hilbert, almost directly
after the development of the classical theory of integral equations by I. Fredholm.
On the other hand many problems of an applied character naturally reduced to
singular equations, e.g. problems of the theory of elasticity, etc.; thus often in prac-
tice these equations were arrived at by "ordinary methods" and this did not always
lead to satisfactory results. However, the theory of singular integral equations has
advanced considerably. This theory appears to be particularly simple and effective,
if the solution of a boundary problem of the theory of functions of a complex vari-
able, to be called as the Riemann problem, is considered. Therefore the theory of
singular equations is here closely linked with the above boundary problem. The
solution of the latter is used for the development of the theory of singular equa-
tions; afterwards this theory is applied to the solution of other more complicated
boundary problems, in particular, to problems encountered in potential theory, the
theory of elasticity and in hydromechanics. Having in mind the implications for
different problems of mathematical physics, some restrictions is imposed upon the
unknown and the given functions appearing in the integral equations under consid-
eration or in the boundary conditions of the problems considered, which is largely
simplify the investigation, but not affect the final theory. A number of important
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872 BEYAZ BAŞAK KOCA AND NAZIM SADIK

properties of singular integral equations were established by F. Noether. Studies
by T. Carleman and I.I. Privalov were of great importance in the development of
the theory of singular integral equations. The most complete results have been
obtained by such Georgian mathematicians as N.I. Muskhelishvili [9], I.N. Vekua
[13], and B.V. Khvedelidze [8].
The first consideration of abstract equations with an operator satisfying some

conditions was undertaken by Z.I. Khalilov [7] with in the framework of normed
rings. The theory developed there was a direct treatment of the theory of singular
integral equations with continuous coeffi cients

a1(t)ϕ(t) +
a2(t)

πi

∫
ϕ(τ)dτ

τ − t +

∫
k(t, τ)ϕ(τ)dτ = f(t) (1.1)

with in the framework of an abstract normed ring. He consider this equation as an
operator equation and defined the general singular equation of the form

Mϕ = A1ϕ+A2Sϕ+ Tϕ = f, (1.2)

under this abstract view. Here ϕ is the solution function, f is the element of a
Banach space, and the operators A1, A2, T, S are mentioned below. He also gave
the regularization and solvability of these equations in view of the known results
for some integral equations. A significant step in the abstract theory was made
by Yu.I. Cherskii [2]. He presented a method of solving general singular equations
with the help of analogous to the Riemann boundary value problem and applied
his method to the general theory to singular integral equations of convolution type,
less extensive cases of which are considered by the author in previous papers (see
[4]). Thus he considered, as an instance of (1.2), operators A of the form

Aϕ = λϕ(x) +
1√
2π

∫ ∞
−∞

a(x− t)ϕ(t)dt (1.3)

where a(x) ∈ L2(−∞,∞), ϕ(x) ∈ L2(−∞,∞), T is a compact operator and
Sϕ = sgnx · ϕ(x). With additional restrictions on a(x), explicit solutions of (1.2)
were obtained. In this paper we consider a different method for solving (1.2). Our
method based on the connection between general singular equations and an anal-
ogous to the Riemann boundary value problem with continuous coeffi cient in view
of Vekua’s method [13] to regularize of (1.1). As an application of our method, we
present an explicit solution for a class of convolution type integral equation con-
taining (1.3). The principal advantages of our method are its simplicity and the
validity for many classes of integral equations.

2. Preliminaries

In this section we recall some basic definitions and results which will be needed for
our method. No proofs or specific details are given– readers can find all necessary
details in [7, 2, 10].
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Let B(X) denote the space of all bounded linear operators on a Banach space
X, and R be a subalgebra of B(X).

Definition 1. A set F ⊂ B(X) is called a regular class if the following conditions
are satisfied:

(i) For each T ∈ F , (I + T ) satisfies Riesz—Schauder’s theorems, where I is
the identity operator (for Riesz—Schauder’s theorems, see [14, p. 283]).

(ii) If A ∈ R and T, T1 ∈ F , then AT, TA, T + T1, TT1 ∈ F .

Definition 2. An operator S ∈ B(X) is called a singular operator if the following
conditions are satisfied:

(i) S2 = I;
(ii) S 6= ∓I;
(iii) If T ∈ F , then ST, TS ∈ F ;
(iv) If A ∈ R, then (SA−AS) ∈ F .

Definition 3. An operator of the form

M = A1 +A2S + T, (2.1)

where A1, A2 ∈ R, S is a singular operator, and T ∈ F , is called a general singular
operator on X.

The operator
M∗ = A∗1 + S∗A∗2 + T ∗, (2.2)

is called an adjoint general singular equation on the adjoint space X∗, where
A∗1, A

∗
2, S
∗, T ∗ are operators on X∗ adjoint respectively to A1, A2, S, T . Remark

that the class F ∗ of all T ∗ where T ∈ F , the operators S∗ and M∗ have the same
properties as F, S,M .
The operator (2.1) is called a normal type if (A1 +A2)−1 and (A1 −A2)−1 exist

and belong to R. It is clear that if the operator (2.1) is of normal type, then so is
the adjoint operator (2.2).

The equation
Mϕ = A1ϕ+A2Sϕ+ Tϕ = f, (2.3)

where ϕ is the solution function and f ∈ X, is called a general singular equation.
If M is an operator of normal type, then (2.3) is also said to be of normal type. An
equation of the form

Moϕ = A1ϕ+A2Sϕ = f (2.4)

is called the characteristic equation of (2.3), and

M∗ψ = f (2.5)

is called the adjoint singular equation of (2.3). Khalilov [7] generalized Noether’s
theorems, which are known for integral equations, to the general singular equations
of normal type:
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(i) The number of linearly independent solutions of Mϕ = 0 and M∗ψ = 0 is
finite.

(ii) In order for solutions of Mϕ = f (respectively, M∗ψ = f) to exist, it is
necessary and suffi cient that ψ0(f) = 0 for every solution ψ0 of M

∗ψ = 0
(respectively, f(ϕ0) = 0 for every solution ϕ0 of Mϕ = 0).

(iii) The number of linearly independent solutions ofMϕ = 0 minus the number
of linearly independent solutions of M∗ψ = 0 depends only on A1, A2, S.

The fundamental example for the general singular equations of normal type is
the singular equation with Cauchy kernel has of the form

Mϕ ≡ a(t)ϕ(t) + b(t)Sϕ(t) + Tϕ(t) = f(t), t ∈ Γ,

where a(t) and b(t) are continuous functions on a closed Lyapunov curve Γ. The
so-called singular integral

Sϕ ≡ 1

πi

∫
Γ

ϕ(τ)

τ − tdτ , t ∈ Γ

is understood in the sense of the Cauchy principle value. The reader is referred to
[3, 9, 10] for the fundamental theory of this type equation.

We now recall the method of Cherskii [2] for a solution of the general singular
equation of normal type:

Let X+, X− be the subspaces of X consisting of the elements ϕ+, ϕ− ∈ X satis-
fying

ϕ+ − Sϕ+ = 0, ϕ− + Sϕ− = 0,

respectively. Similarly, let X∗+, X
∗
− be the subspaces of X

∗ such that the elements
ϕ+, ϕ− satisfying

ϕ+ + S∗ϕ+ = 0, ϕ− − S∗ϕ− = 0,

respectively. It is clear that X+ ∩X− = {0} and X∗+ ∩X∗− = {0}. It is easy to see
that, for all ϕ ∈ X, there exists a unique ϕ+ ∈ X+ and ϕ− ∈ X− such that the
equalities

ϕ = ϕ+ − ϕ−, Sϕ = ϕ+ + ϕ− (2.6)
are satisfied. Let Ψ+ and Ψ− be invertible operators in B(X) with

(i) Ψ+ϕ+ ∈ X+ and Ψ−1
+ ϕ+ ∈ X+;

(ii) Ψ−ϕ− ∈ X− and Ψ−1
− ϕ− ∈ X−.

and let U be an invertible operator in B(X) so that
(i) Uϕ+ ∈ X+ for all ϕ+ ∈ X+;
(ii) U−1ϕ− ∈ X− for all ϕ− ∈ X−;
(iii) There exists a unique h+ ∈ X+ with respect to the scalar multiplication

such that h+ 6= 0 and U−1h+ ∈ X+;
(iv) There exists a unique h− ∈ X∗− with respect to the scalar multiplication

such that h− 6= 0 and U∗h− ∈ X∗+.
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The following theorems are fundamental for both Cherskii’s solution scheme and
our method.

Theorem 1. [2, p.281, Theorem 4] For κ > 1, the elements h+, Uh+, . . . , U
κ−1h+

are linearly independent.

Theorem 2. [2, p.281, Theorem 5] Let ϕ+ be of the form

ϕ+ = Uκϕ− + f−, κ > 0.

Then,

ϕ+ =

κ−1∑
k=0

ckU
kh+,

where the ck’s are arbitrary constants.

Definition 4. If an operator A ∈ B(X) has the representation

A = Ψ+U
κΨ−1
− ,

then the number κ ∈ Z is called the index of A, and is denoted by indA. It is shown
that the index of the adjoint operator A∗ is equal in magnitude and opposite in sign.

In view of this definition and Equation (2.6), the characteristic equation (2.4) is
reduced to analogous to the Riemann boundary value problem:

Ψ−1
+ ϕ+ − g+ = UκΨ−1

− ϕ− − g−, (2.7)

where κ = ind{(A1 + A2)−1(A1 − A2)}, g+ = (1/2)(Ψ−1
+ g + SΨ−1

+ g) and g− =

(1/2)(−Ψ−1
+ g+SΨ−1

+ g). Solving the characteristic equation (2.4) is then equivalent
to solving Equation (2.7). A solution of the characteristic equation (2.4) as follows:

(i) If κ = 0, then since X+∩X− = {0}, Equation (2.4) has the unique solution:
ϕ+ = Ψ+g+, ϕ− = Ψ−g−.

If the equation is homogeneous, i.e., f = 0, then it has the trivial solution
ϕ = 0.

(ii) If κ > 0, then in view of Theorem (2), we can obtain

ϕ+ = Ψ+

(
g+ +

κ−1∑
k=0

ckU
kh+

)
, ϕ− = Ψ−U

−κ

(
g− +

κ−1∑
k=0

ckU
kh+

)
i.e., the equation has κ linearly independent solutions.

(iii) If κ < 0, then the solution is

ϕ+ = Ψ+g+, ϕ− = Ψ−U
−κg−.

However, ϕ− is in X− if and only if Ψ−U
−κg− is in X−. Therefore, a

necessary and suffi cient condition for the characteristic equation (2.4) to
be solvable is that

(I + S)U−κg− = 0.
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Under the this condition, Equation (2.4) has a unique solution. Moreover,
if the equation is homogeneous, then it has the trivial solution ϕ = 0.

Note that the solution of the adjoint of (2.4)

(Mo)∗ϕ = A∗1ϕ+ S∗A∗2ϕ = f (2.8)

was found in a similar fashion in Cherskii’s paper [2].

3. A New Method for Solving General Singular Equations

In this section we present a different method from that of Cherskii for a solution
of the general singular equations of normal type (2.3).
We follow the terminology and notation of Section 1.
We start to construct the following operators via general singular operator of

normal type (2.1) and its adjoint operator (2.2).

M1 =
1

2
[(A1 +A2)−1+ Uκ(A1 −A2)−1] +

1

2
[(A1 +A2)−1− Uκ(A1 −A2)−1]S + T1,

M2 =
1

2
[(A∗1+A∗2)−1+(U−κ)∗(A∗1−A∗2)−1]+

1

2
[(A∗1+A∗2)−1−(U−κ)∗(A∗1−A∗2)−1]S∗+T2,

where κ ∈ Z and U is an operator defined in Section 1.

Definition 5. The number κ ∈ Z is said to be an index of the general singular
operator M of normal type if the homogeneous equations M1ϕ = 0 and M2ψ = 0
have only the trivial solution, i.e., KerM1 = {0} and KerM2 = {0}.

Lemma 1. If KerM1 = {0}, i.e., the homogeneous equation M1ϕ = 0 has only
trivial solution (ϕ = 0), then the equations Mϕ = f and

M1Mϕ =
1

2
(I + S)ϕ+

1

2
Uκ(I − S)ϕ+ T3ϕ = M1f (3.1)

have the same solutions. Similarly, if KerM2 = {0}, i.e., the homogeneous equation
M2ψ = 0 has only the trivial solution (ψ = 0), then the equations M∗ψ = f and

M2M
∗ψ =

1

2
(I + S∗)ψ +

1

2
(U−κ)∗(I − S∗)ψ + T4ψ = M2f (3.2)

have the same solutions.

The proof is simple.

As a result of Lemma (1),Solving Equation (2.3) is then equivalent to solving
(3.1). Using the equalities (2.6), we show that the characteristic equation

(M1M)oϕ =
1

2
(I + S)ϕ+

1

2
Uκ(I − S)ϕ = g, (3.3)

where g = M1f , is equivalent to the equation

ϕ+ = Uκϕ− + g, (3.4)
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which has a solution according to [11]. The following equation is then easily ob-
tained:

ϕ+ − g+ = Uκϕ− − g−, (3.5)

where g+ = 1
2 (g+Sg) and g− = 1

2 (−g+Sg). Three cases are considered, according
to κ < 0, κ = 0, κ > 0

(i) In case of κ = 0, since X+ ∩ X− = {0}, (3.5) implies that (3.3) has the
unique solution:

ϕ+ = g+, ϕ− = g−. (3.6)

Moreover, if the equation is homogeneous, i.e., g = 0, then it has only the
trivial solution.

(ii) In case of κ > 0, Theorem (2) gives us the following solution:

ϕ+ = g+ +

κ−1∑
k=0

ckU
kh+, ϕ− = U−κ

(
g− +

κ−1∑
k=0

ckU
kh+

)
, (3.7)

where ck’s are arbitrary constants. Thus,(3.3) has κ linearly independent
solutions.

(iii) In case of κ < 0, we obtain the solution

ϕ+ = g+, ϕ− = U−κg− (3.8)

from (3.5). It is clear that ϕ− is in X− if and only if U
−κg− is in X−. It

follows that a necessary and suffi cient condition for (3.3) to be solvable is
that there exists some ψ ∈ X such that

U−κg− =
1

2
(−ψ + Sψ).

Under this condition, (3.3) has a unique solution. If the equation is homo-
geneous, it has only the trivial solution.

Similarly, we note that the solution of (M2M
∗)oψ = l is found, where l = M2f .

Finally, the results deduced above are given as the following theorem.

Theorem 3. The general solutions of the characteristic equations
(M1M)oϕ = g and (M2M

∗)oψ = l are as follows:

(i) If κ = 0, then the equations (M1M)oϕ = g and (M2M
∗)oψ = l have a

unique solution. In case of the equations being homogeneous, then they
have only the trivial solution.

(ii) If κ > 0, then the equation (M1M)oϕ = g has exactly κ linearly indepen-
dent solutions. A necessary and suffi cient condition for the solvability of
(M2M

∗)oψ = l is that there exists some ξ ∈ X∗ such that

(U−κ)∗l+ =
1

2
(ξ + S∗ξ).

Under this condition, the equation has a unique solution.
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(iii) If κ < 0, then the equation (M1M)oϕ = g is solvable if and only if there
exists some ψ ∈ X such that

U−κg− =
1

2
(−ψ + Sψ).

Provided this condition is satisfied, the equation has a unique solution. If
the equation is homogeneous, it has only the trivial solution. However, the
equation (M2M

∗)oψ = l has exactly (−κ) linearly independent solutions.

Remark 1. One may ask whether our index is the same as Cherskii’s. It is easily
seen that both definitions are different but the indexes are the same in magnitude
and as a number. In addition, the elements Ψ+,Ψ

−1
+ ,Ψ−,Ψ

−1
− , U, κ, and h+ are

necessary for Cherskii’s solution scheme but for our method, it is only needed U ,
κ, and h+ to solve the general singular equation of normal type. Thus, we can say
that our method is simpler than Cherskii’s method.

4. A Solution for a Class of Convolution-Type Integral Equations

In this section, we apply our method to obtain a solution for a class of convolution-
type singular integral equations. For consistency, let L2 = L2(−∞,+∞) and
L∞ = L∞(−∞,+∞).

Let X (defined in Section 1) be the space L2 and V ϕ ≡ Φ(x) denote the Fourier
transform of a function ϕ ∈ L2. Let R, the subalgebra of X, be a set of operators
A of the form

Aϕ ≡ λϕ(x) +
1√
2π

∫ +∞

−∞
a(x− t)ϕ(t)dt, (4.1)

where a(x) is in L2 and V a = Θ(x) is a continuous and bounded function in L2.
As we indicated in the first section, Cherskii [2] applied his method to this type
of integral equations with V a satisfies the Hölder condition. But our method is
valid for a larger class of convolution-type integral equations-the case of V a is a
continuous and bounded function.

By using well-known properties of the Fourier transforms in L2 (see [6, p.445]),
we obtain the following equality on the Fourier transform of Aϕ ∈ L2.

V (Aϕ) ≡ λV ϕ(x) + V a(x) · V ϕ(x) = λΦ(x) + Θ(x) · Φ(x) (4.2)

In view of this equality, we have a necessary and suffi cient condition for A being
continuous which is that V a is in L∞ from [5, Problem 53]. In addition, since V is
a unitary operator, we obtain

||A|| ≤ |λ|+ ||V a||∞. (4.3)

Let the regular class F be a collection of all compact operators T on L2 and the
singular operator S be

Sϕ ≡ sgnx · ϕ(x).



GENERAL SINGULAR EQUATIONS 879

Let us first show that S is a singular operator:

(i) S2ϕ ≡ (sgnx)2 · ϕ(x) = ϕ(x);
(ii) S 6= ±I;
(iii) TS ∈ F , ST ∈ F for all T ∈ F ;
(iv) Suppose A ∈ R. Then

(SA−AS)ϕ ≡ sgnx
[
λϕ(x) +

1√
2π

∫ +∞

−∞
a(x− t)ϕ(t)dt

]
−
[
λϕ(x) +

1√
2π

∫ +∞

−∞
a(x− t)sgntϕ(t)dt

]
From [12, p.120], we have that

V (sgnxϕ(x)) ≡ 1

πi

∫ +∞

−∞

V ϕ

t− xdt,

and then we find that

(SA−AS)ϕ = V −1TV ϕ,

where

Tϕ ≡ 1

πi

∫ +∞

−∞
[Θ(t)−Θ(x)]

ϕ(t)

t− xdt.

If we take the operators

Aiϕ ≡ λiϕ(x) +
1√
2π

∫ +∞

−∞
ai(x− t)ϕ(t)dt (i = 1, 2)

as the coeffi cients of the operator (2.1), then the general singular equation (2.3)
becomes the following convolution-type integral equation of the form

Mϕ ≡ (λ1 + λ2sgnx)ϕ(x) +
1√
2π

∫ +∞

−∞
a1(x− t)ϕ(t)dt (4.4)

+
1√
2π

∫ +∞

−∞
a2(x− t)sgntϕ(t)dt+ Tϕ(x) = f(x)

where f(x) is in L2 and T is a compact operator on L2.

From inequality (4.3),

||Ai|| ≤ |λi|+ ||Θi||∞ (i = 1, 2),

where Θi(x) = V ai (i = 1, 2) holds. This leads to the following inequality

||Mo|| ≤ |λ1|+ |λ2|+ ||Θ1||∞ + ||Θ2||∞. (4.5)

To solve Equation (4.4), we need the operators (A1 + A2)−1, (A1 − A2)−1, U ,
the function h+, and the index κ according to our method. First of all, let us find
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(A1)−1 and then it is similarly obtained (A1 +A2)−1 and (A1 −A2)−1. From [12],
we have

V A1A2ϕ ≡ [λ1 + Θ1(x)][λ2 + Θ2(x)]Φ(x).

It follows that a necessary and suffi cient condition for the existence of (A1)−1 in R
is that λ1 + Θ1(x) does not vanish. In fact, in the case of |λ1 + Θ1(x)| > 0, taking
Θ2(x) = −λ−1

1 Θ1(x)[λ1 + Θ1(x)]−1 and λ2 = λ−1
1 , we find that

[λ1 + Θ1(x)][λ2 + Θ2(x)] ≡ 1

and then, by Cherskii’s paper [2], we have

A−1
1 ϕ ≡ ϕ(x)

λ1
+

1√
2π

∫ +∞

−∞
b(x− t)ϕ(t)dt,

where b(x) = V −1{−λ−1
1 Θ1(x)[λ1 + Θ1(x)]−1}. Since Θ2(x) (defined above) is

continuous and bounded in L2, it is easy to see that A−1
1 is in R. Hence, general

singular equation (4.4) is of normal type.

Let X+ and X− be collections of all elements ϕ ∈ L2 such that ϕ(x) = 0 when
x < 0 and x > 0, respectively. As in [2], we choose

Uϕ ≡ ϕ(x)− 2e−x
∫ x

−∞
etϕ(t)dt,

where ϕ ∈ L2, and

h+ = (1 + sgnx)e−x.

The validity of conditions (i)—(iv) in Section 1 is easily verified.

Suppose that ai(x) (i = 1, 2) are functions such that Θi(x) is in the L∞-closure
of the set where its elements satisfy the Hölder condition in L2. Therefore, for any
given ε > 0, there exist functions a′i,ε ∈ L2 (i = 1, 2) corresponding to ai(x) (i =
1, 2) such that Θ′i,ε(x) = V a′i,ε satisfy the Hölder condition, and

||Θi −Θ′i,ε||∞ <
ε

2
(i = 1, 2).

Hence, the following general singular equation is formed via the functions a′i,ε(x):

M ′ϕ ≡ A′1ϕ(x) +A′2Sϕ(x) + T1ϕ(x) = f ′(x), (4.6)

where T1 is a compact operator, and the coeffi cients of the equation have the form

A′iϕ ≡ λiϕ(x) +
1√
2π

∫ +∞

−∞
a′i,ε(x− t)ϕ(t)dt (i = 1, 2).

the Equation (4.6) was solved by Cherskii in [2], and he gave the index of M ′ as
the index of the function 1 + Θ′(x), where Θ′(x) = V a′. Here, a′(x) is a function



GENERAL SINGULAR EQUATIONS 881

corresponding to A′ = (A′1 +A′2)−1(A′1 −A′2) of the form

A′ϕ ≡ λ′ϕ(x) +
1√
2π

∫ +∞

−∞
a′(x− t)ϕ(t)dt.

It follows that Θ′(x) = 2(λ2Θ1(x)−λ1Θ2(x)) holds. Using inequality (4.3), we can
obtain

||Mo − (M ′o|| ≤ ||Θ1 −Θ′1||∞ + ||Θ2 −Θ′2||∞ < ε.

It follows that

indM = indM ′ = ind(1 + Θ′(x))

from [1, Theorem 4] and Remark (1). A more detailed account is given by Helemskii
[6, Chapter 3]. Eventually, by Theorem (3), we have a solution of (4.4) using
U, h+, κ obtained above.
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