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ABSTRACT 

 

Plant carotenoid cleavage dioxygenases (CCDs) are a family of enzymes that catalyze the carotenoids oxidative 

cleavage and apocarotenoids and also play a crucial role in plant development and growth. CDD4 is a member 

of CDDs. It has two isoforms as CCD4a and CCD4b and they encode enzymes to catalyze the cleavage of 

carotenoids forming pigment compounds and aroma. In this study, CDD4 genes were mapped for the first 

time in the linkage group of lentil. CsCCD4af was located at 102.3 cM on linkage group 3 (LG3). CCD4-P-r1-1 

and CCD4-P-r1-2 were located at 75.5 cM and 82.9 cM on LG3, respectively. CCD4-P-r1-3 was located at 

151.6 cM on LG5. CsCCD4a/b-r was amplified but could not mapped due to its monomorphic band profile 

between parents. Location of these genes on the linkage map of lentil will help breeders improve strategies in 

order to generating new cultivars with higher carotenoid concentration.  
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INTRODUCTION 

Carotenoids known to be a various group and consist 

of more than 700 carotenoids, which act as antioxidants, 

photoprotectants and photosynthetic accessory pigments 

were synthesized by plants, bacteria and algae (Ruiz-Sola 

and Rodriguez-Concepcion, 2012). On the other hand, 

mammals cannot synthesize these carotenoids and they 

provide these by dietary intake. In mammals, processing 

of carotenoids with provitamin A activity ensures the 

vitamin A essential in order to differentiation of normal 

tissue as well as immune, organ, and visual development 

(Sommer and Vyas, 2012). Although, plants are the 

primary dietary sources of carotenoids, levels of vitamin 

A carotenoid in plants are inadequate to meet minimum 

nutritional requirements. For this reason, deficiency of 

vitamin A remains common in many countries 

(Fitzpatrick et al., 2012). In order to solve this problem, 

improving the crops vitamin A ingredient through 

molecular breeding is a critical strategy.   

Plant carotenoid cleavage dioxygenases (CCDs) play a 

crucial role in plant development and growth (Snowden et 

al., 2005). They are a family of enzymes, which catalyze 

the carotenoids oxidative cleavage and apocarotenoids 

such as retinol (vitamin A), abscisic acid (ABA), 

strigolactones (SL) and other volatile compounds that 

provide to the aroma of flowers and fruits and color for 

attracting pollinators (Rodrigo et al., 2006; Ohmiya, 

2009). Also, apocarotenoids play a significant role in 

various agronomic traits such as responses of biotic and 

abiotic stress (Vallabhaneni et al., 2010) and act as 

hormones (Giuliano et al., 2003).  

The first group of gene defined as encoding a CCD 

was the Vp14 maize gene, which plays a significant role in 

ABA formation (Ahrazem et al., 2010). Apocarotenoids 

are widely common in nature and especially exist in ABA 

metabolism in higher plants. It is derived from oxidative 

cleavage of the 9-cis epoxy carotenoids 11, 12 double 

bond (NCEDs) (violaxanthin or/and neoxanthin) (Tan et 

al., 2003) and plays a significant role in responses to 

environmental stresses related to loss of water and in seed 

development (Nambara and Marion-Poll, 2005). Thus, 

developmental and environmental signals may manage in 

the ABA biosynthesis regulation in plant tissues (Rodrigo 

et al., 2006).  

The second group of CCDs includes CCD1, CCD4, 

CCD7 and CCD8 (Ahrazem et al., 2010). Next to NCEDs, 

CCD1 is the best-studied enzyme due to it contributes to 

synthesis of several important volatile compounds that 

contribute to aroma compounds and flavor (Simkin et al., 

2004b; Auldridge et al., 2006; Mendes-Pinto, 2009). 

Another member of CCDs is CCD4 that encodes enzymes 

to catalyze the cleavage of carotenoids forming pigment 

compounds and aroma (Ohmiya et al., 2006; Huang et al., 

2009). Plants produce two CCD4 isoforms as CCD4a and 

CCD4b that have different chemical and biological 

functions in plants (Ohmiya et al., 2006; Huang et al., 
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2009). The member of the CCD4 subfamily was first 

characterized in chrysantemum (Ohmiya et al., 2006) and 

the enzymatic activity was identified in saffron (Rubio et 

al., 2008), apple, chrysantemum, rose, and Arabidopsis 

(Huang et al., 2009). CCD1 contribute towards volatile 

production, whereas CCD4 control carotenoid breakdown 

because of their different subcellular degradation (Brandi 

et al., 2011). Last member of CCDs are CCD7 and CCD8 

and they encode enzymes to catalyze the cleavage of 

carotenoids to form SL, the hormone involved in the 

inhibition of shoots branching (Domagalska and Leyser, 

2011; Waters et al., 2012).  

Lentil is the third most consumed pulse crop legume 

after pea and chickpea around the world and due to its 

high protein, carbohydrates and micronutrients content, it 

becomes a source of staple daily food for many humans 

(Wang and Daun, 2006). Carotenoids are also crucial 

nutrients for human health but human cannot synthesize 

carotenoids and they must obtain these through diet (EL-

Qudah, 2009). Approximately, fifty distinct carotenoids 

can be metabolized into vitamin A (Krinsky and Johnson, 

2005). On the other hand, about 250 million children are 

vitamin A-deficient around the world. Out of them, 

approximately 400,000 vitamin A-deficient children 

become blind annually and half of them dying within 

twelve months of losing their eyesight (Muller and 

Krawinkel, 2005). Because of these nutritional 

apprehensions of vitamin A deficiency in humans, new 

cultivar development, which has alleviated carotenoid 

concentration, has become a primary purpose of breeding 

strategies in many crop species such as, soybean 

(Zimmermann and Hurrell, 2002), rice (Paine et al., 

2005), wheat (Hidalgo et al., 2006; Lachman et al., 2013) 

and maize (Kimura et al., 2007). Unfortunately, little 

information exists about carotenoids of lentils. 

CCDs contain several highly conserved motifs. 

Conservation of exon-intron structure in orthologous 

genes clades, promote the utilize of gene properties as 

references for phylogenetic derivation (Rokas and 

Holland, 2000) so that the knowledge of the genomic 

structure is very essential for the evolutionary 

relationships discovery and for identify gene families 

(Ahrazem et al., 2010). On the other hand, given the 

carotenoids dietary importance and vitamin A deficiency 

prevalence, a better knowledge of the plant carotenoids, is 

required (Kim et al., 2012; Chandler et al., 2013; 

Gonzalez-Jorge et al., 2013). CCDs have been identified 

in various plant species such as Arabidopsis (Tan et al., 

2003), tomato (Simkin et al., 2004a), petunia (Snowden et 

al., 2005), melon (Ibdah et al., 2006), orange (Rodrigo et 

al., 2006), carrot (Just et al., 2009), saffron (Ahrazem et 

al., 2010), maize (Vallabhaneni et al., 2010), rice 

(Vallabhaneni et al., 2010), sorghum (Vallabhaneni et al., 

2010), chrysanthemum (Yoshioka et al., 2012) and grape 

(Lashbrooke et al., 2013). Identification of such loci will 

be key in order to ensuring synergistic or alternative 

means for changing the CCDs content of specific plant 

tissues. But to date CCDs genes have not been identified 

and mapped in the lentil genome. The aim of current study 

was to identify and map CCD4 genes in lentil 

recombinant inbred line (RIL) population named as LR39.  

MATERIALS and METHODS 

Plant material and DNA extraction 

The cross of “PI 320937” (P1) × “Eston” (P2) was 

utilized in order to generated a population of 96 lentil 

RILs named as LR-39. This population was developed by 

advancing F1 plants from the simple cross, and the RILs 

developed by a single seed descent from the F2 to the F7 

generation at the University of Saskatchewan, Canada 

since 2001. These RILs were kindly provided by Prof 

Albert Vandenberg University of Saskatchewan, Canada. 

The RIL seeds were then amplified at the experimental 

station of the Department of Field Crops at Ege 

University, Izmir, Turkey during 2012-2013 and 2013-

2014 growing seasons. 

Young leaves from individuals of LR-39 RIL 

population and both parents of this population were 

harvested and placed in an aluminum foil, and finally 

labeled with their RIL numbers. Then, the foil was placed 

in liquid nitrogen. The frozen leaves were then stored in a 

deep freezer (-86 °C). A Qiagen (Valencia, CA, USA) 

DNA Isolation Kit was used to extract genomic DNA 

from 96 RIL individuals and the parents. The DNA purity 

was assessed on a 0.8% agarose gel, and a Qubit® 2.0 

fluorometer (Life Technologies, US) was used to quantify 

the purified DNA.  

DArT analysis 

Protocol of Ates et al. (2016) was followed for DArT 

analysis. 

PCR analysis of CCD4 primers 

For PCR analysis, the protocol from Gedik et al. 

(2017) was used and nonoverlapping gene specific 

primers (Ahrazem et al., 2010) were surveyed for 

polymorphisms between parents of LR39 population 

(Table 1). Agarose gel electrophoresis (2%) was used with 

1 x TBE buffer for 2 h in order to analyze PCR products 

then gel visualized via ethidium bromide staining by a G-

BOX gel documentation system (Syngene, USA). Band 

sizes were calculated by comparison with a DNA ladder 

(1000 bp, Thermo Sci. Co.).  

 

Table 1. Names of CDD4 primers, sequences, and references. 

Primer name Sequence Orientation  Annealing  References 

CsCCD4af  5′-CAATCTCAAGTATTAGCATTC-3′ Sense  46 (Ahrazem et 

al., 2010) CsCCD4a/b-r 5′- CTGCTGTGACAGCAGCTCAGC-3′ Antisense 47 

CCD4-P-r1 5′-CTTGTTGATACTGATACTCTTCT-3′ Antisense 47 

https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDcQFjAA&url=http%3A%2F%2Fwww.lifetechnologies.com%2Fqubit&ei=NkoQU8qNJoiy7AagjoCwCg&usg=AFQjCNEbqfrXDgIi7IRaTlkaZCtU2Jql1Q&bvm=bv.61965928,d.ZGU
https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDcQFjAA&url=http%3A%2F%2Fwww.lifetechnologies.com%2Fqubit&ei=NkoQU8qNJoiy7AagjoCwCg&usg=AFQjCNEbqfrXDgIi7IRaTlkaZCtU2Jql1Q&bvm=bv.61965928,d.ZGU
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Scoring of DNA bands from each CCD4 primers were 

recorded manually and exclusively the strong and clear 

bands were scored. The presence of CCD4 primers band 

at a certain locus was scored as “1” and absence of a band 

was scored as “0” in order to build binary matrices. 

Linkage mapping 

The genetic linkage map of LR39 RIL population was 

constructed with MultiPoint software (Mester et al., 2003) 

utilizing 96 individuals, genotyped with SNPs based on 

DArT and CCD4 markers. Linkage analysis was carried 

out utilizing maximum likelihood mapping algorithm with 

RIL population type, utilizing function of Kosambi, RIL 

selfing, a recombination fraction of 0.35 and the odds 

(LOD) logarithm of 3, as parameters of linkage mapping.  

RESULTS and DISCUSSION 

Genomic DNA was isolated from 96 RIL individuals 

and three CCD4 primers (CCD4-P-r1, CsCCD4af, and 

CsCCD4a/b-r) were surveyed for polymorphisms between 

the parents of LR39 population in current study (Table 1). 

Results of PCR analysis were indicated that all primers 

were amplified. While CCD4-P-r1 and CsCCD4af were 

produced reproducible polymorphic DNA bands between 

the two parents, CsCCD4a/b-r was monomorphic. The 

number of polymorphic DNA band for CCD4-P-r1 was 

three and detected at 100 bp, 150 bp and 160 bp. On the 

other hand, CsCCD4af was produced only one 

reproducible polymorphic DNA bands between the two 

parents at 550 bp. Finally, a total of four DNA bands were 

scored and number of each individual bands were equally 

distributed according to the parents. These results 

indicated that, lentil includes CDD4 genes, which have 

play a significant nutritional role as vitamin A precursors 

and high antioxidant features (Thomas, 2016). Support to 

our results, presence of carotenoids in lentil was detected 

in previous studies (EL-Qudah, 2014; Zhang et al., 2014; 

Thomas, 2016; Lee et al., 2017).  

Lentil linkage map was constructed using 1,940 SNPs 

based on DArT and 2 CDD4 primers. The genomic 

location of CsCCD4af and CCD4-P-r1 were mapped in 

current study (Figure 1). On the other hand, CsCCD4a/b-r 

was amplified but could not mapped due to its 

monomorphic band profile between parents. This situation 

showed that these genes actually localized in lentil 

genome but could not mapped in current study. The two 

CDD4 (CsCCD4af and CCD4-P-r1) detected four genetic 

loci on three linkage groups (LGs) (Figure 1). Out of 

these, CsCCD4af was located at 102.3 cM on LG3 (Figure 

1). On the other hand, while CCD4-P-r1-1 and CCD4-P-

r1-2 were located at 75.5 cM and 82.9 cM on LG3, 

respectively, CCD4-P-r1-3 was located at 151.6 cM on 

LG5 (Figure 1). These genes were mapped by linkage 

mapping approaches in lentil genome for the first time in 

current study. In previous study, 143 lentil genotypes were 

utilized in order to detect SNP markers associated with 

carotenoid concentration components by association 

mapping approaches (Thomas, 2016). They reported that 

168 SNPs were significantly related with carotenoid 

concentration components of lentil utilizing the 

generalized linear model (Thomas, 2016). On the other 

hand, in previous studies, CDD4 genes also mapped on 

peach genome utilizing Y locus mapping methods (Adami 

et al., 2013), genome wide association mapping (GWAS) 

approaches (Gonzalez-Jorge et al., 2013) and fine 

mapping of the Y locus approaches (Ma et al., 2014). 

CCD4 gene was co-mapped with the Y locus and it was 

localized between markers pchgms3 and PacA18 in the 

map of peach (Adami et al., 2013) and SSRy was 

associated with CDD4 gene and co-segregated with the Y 

locus of peach genome (Ma et al., 2014). In other peach 

studies, GWAS association with β-carotene was detected 

on chromosome 4 in the map of peach and associated 

marker was identified as SNP147077 that within the 

CDD4 coding region (Gonzalez-Jorge et al., 2013).  

SNP3635501 and CsCCD4af were located together at 

the same position of linkage map (on LG3 at 102.3 cM) in 

current study (Figure 1). Similarly, SNP363448, 

SNP3634337 and CCD4-P-r1 were located at 75.5 cM 

and, SNP3635407 and CCD4-P-r1-2 were located at 82.9 

cM on LG4 (Figure 1). Also, SNP3634766 and CCD4-P-

r1-3 were both located on LG5 at 151.6 cM (Figure 1). 

These SNP markers are thought to be markers derived 

from the same region of CDD4 markers in current study.  

Two isoforms of CCD4 genes (CsCCD4af and CCD4-

P-r1) were mapped at different genome position in the 

lentil linkage map in current study (Figure 1). Plants 

produce two CCD4 isoforms as CCD4a and CCD4b that 

have distinct chemical and biological functions (Ohmiya 

et al., 2006; Huang et al., 2009) and also have different 

genome position in plants (Rubio et al., 2008; Ahrazem et 

al., 2010). Support to our results, Huang et al. (2009) 

reported that CCD4a and CCD4b were presented different 

expression patterns in citrus. Later, these findings were 

confirmed by Pan et al. (2012) demonstrating that 

isoforms of CCD4 genes have distinct substrates and 

consequently distinct biological functions. Appreciating 

the functions of CCD4 genes isoforms, explaining their 

specificities of substrate and examining their patterns of 

expression will shed light on their roles in lentil. 



170 

 
 

Figure 1. LG 3, 4, and 5 of lentil linkage map derived from a cross between “PI 320937” (P1) × “Eston” (P2). Left bar of the LGs is 

cM and the right bar is marker names. CCD4 markers were written with red color. 

   

CCD4 genes contain highly conserved motifs within 

the distinct location of genes (Rokas and Holland, 2000) 

and these genes were also detected existence in other 

plants such as Arabidopsis thaliana (Vidi et al., 2006; 

Ytterberg et al., 2006; Gonzalez-Jorge et al., 2013), 

chrysanthemum (Ohmiya et al., 2006; Huang et al., 2009; 

Yoshioka et al., 2012), saffron (Rubio et al., 2008; 

Ahrazem et al., 2010), apple (Huang et al., 2009), rose 

(Huang et al., 2009), potato (Campbell et al., 2010), rice 

(Ahrazem et al., 2010), peach (Brandi et al., 2011; Adami 

et al., 2013; Ma et al., 2014), citrus (Pan et al., 2012), 

grape (Dockrall, 2012) and Brassica species (Zhang et al., 
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2015). In addition, Ahrazem et al. (2010) reported that 

saffron and rice CCD4 genes promotors grouped together 

and several conserved motifs were identified, even though 

changes in spacing were observed. Presence of the same 

CDD4 gene region in these different plants as well as 

lentil indicated that this region is well conserved during 

evolution (Ahrazem et al., 2010).  

CONCLUSION 

Lentil contains CDD4 genes that have antioxidant 

features and take a significant nutritional role as vitamin 

A precursor. Increasing carotenoids concentration in 

lentils has potential as component of a biofortification 

program. Location of CDD4 genes that detected in current 

study on the linkage map of lentil will help breeders 

improve strategies in order to develop new cultivars with 

higher carotenoid content.  
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