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Abstract

In this study firstly, we study with conchoid curves in Euclidean plane E?. We calculate
the curvature of the conchoid curve and give some results. Furthermore, we consider
the surface of revolution given with the conchoid curve in Euclidean 3-space E*. The
Gaussian and mean curvature is calculated of these surfaces. Also we give some
examples and plot their graphics. Finally we study conchoidal surface in Euclidean 3-
space. We give some results for the conchoidal surface to become flat and minimal. We
give an example and plot the garphics of the conchoidal surfaces.
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3-boyutlu Oklid uzaymda Conchoid egri ve ylizeyleri

Ozet

Bu ¢alismada ilk olarak diizlemde conchoid egrileri ¢alisiimistir. Conchoid egrisinin
egriligi hesaplanip bazi sonuglar verilmistir. Ayrica 3-boyutlu Oklid uzayinda conchoid
egrisiyle elde edilen donel yiizeyler ele alinmistir. Bu yiizeylerin Gauss ve ortalama
egrilikleri hesaplanmis, bunlarla ilgili o6rnekler verilip grafikleri ¢izdirilmistir. Son
olarak 3-boyutlu Oklid uzayinda conchoidal yiizeyler iizerinde durulmus ve conchoidal
ylzeylerin flat ve minimal olma sartlarina bakilmistir. Conchoidal yiizey ornekleri de
verilip grafikleri ¢izdirilmistir.
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1. Introduction

The invention of the plane curve conchoid (‘mussel-shell shaped) by the Greek
mathematician Nicomedes, who applied it to the problem of the duplication of the cube
and of trisecting an angle. It was a favorite with the mathematicians of the seventeenth
century [10].

The well-known construction of conchoids is usually applied to curves in the Euclidean
plane E”[1]. The conchoid transformation has been applied to surfaces in Euclidean

three-space E® in ([6], [11], [13], [14], [15]) in order to construct new classes of
surfaces admitting rational parametrizations, and thus, making them accessible to the
algorithms implemented in CAD systems. Algebraic attributes of conchoid curves and
surfaces have been studied in [16], [17]. Also the spacelike conchoid curves in the
Minkowski plane was studied in [3].

In this paper in the Section 2 we give some preliminaries of the curves and surfaces in

E*. Section 3 tells about the planar conchoid curves and their curvatures. In Section 4
we consider surface of revolution whose rotating curve is a conchoid and we obtain
Gaussian and mean curvature. In the final section we consider conchoidal surface in
Euclidean 3-space. We give some results for the conchoidal surfaces to become a flat
and minimal. Finally we give some examples and plot their graphics.

2. Basic concepts

We now recall some basic concepts of the curves and surfaces in E®.

2.1. Curves in E3
Let «:1 = R — E® be a regular curve. For the Frenet frame {T, N,B} of « the Frenet-
Serret formulas hold:;

T'(s) =v(s)x(s)N(s),

N'(s) = v(s)(=x(s)T (s) +7(s)B(S)),
B'(s) =—v(s)z(s)N(s)

where v(s) :|a'(s)|| is the speed function of « and x(s) andz(s)are Frenet curvatures
defined by:
a'(s)xa"(s)
x(s) =u (2.1)
|G
and
(s =<a'(s)xa”(s),a"’(s)> 2.2)

lee' () % a"(s)||2
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respectively (see, [5], [12]).

2.1. Surfaces in E
Let M be a smooth surface in E* given with the patch X (u,v):(u,v)e Dc E®. The
tangent space to M at an arbitrary point p= X(u,v) of M span{Xu,Xv}. Let N be the
unit normal vector field defined by N = ” XV”

X

Then the coefficients of the first and second fundamental forms of the surface M are
defined respectively as

E=(X,,X,),

F=(X,, X,) (2.3)
G=(X,,X,)

and

e=(X,.N),

f=(X,,N), (2.4)
g=(X.,.N)

where <,>is the Euclidean inner product. The surface patch is regular,

i.e.,.W2=EG-F?=%0. Further, the Gaussian curvature and mean curvature of the
surface are given by

eg— f?
:Eg—Fz @9
and
_eG+gE-2fF (2.6)
2(EG-F?) '

respectively.

The surface is called flat and minimal if its Gaussian curvature and mean curvature
vanishes respectively ([5], [12]).

3. Conchoid curves in E2

Given a planar curve c, a fixed point A in the plane, and constant distance d. The
conchoid to ¢ from the focus A at distance d is the set of points Q in the line AP at
distance d of a point P varying in the curve c. The well known two classical conchoids
are the conchoids of Nicomedes (planar curve is a line) and Limagons of Pascal (planar
curve is a circle) [16]. Conchoids are useful in many applications as conic reflection and
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refraction in physics and optics, electrode of static field, fluid processing in mechanics,
etc. (see, [2], [7], [8], [9], [18], [19]).

In this section we consider conchoid curves in Euclidean plane E*. We calculate the
curvature of the curve c and its conchoid curve d. We give some examples and plot their
graphics.

Definition 1. [14] Let c:1 cR—E” be Euclidean plane curve and its polar
representation is c(t) =r(t)(cost,sint). Its conchoid curve D with respect O and

distance d is defined by d(t)=(r(t)td)(cost,sint). We can consider any

parametrization k(t) of the unit circle S*. The curve C and its conchoid curves D are
represented by

c(t) =r(t)k(t) (3.1)
and
c(t) =(r(t) £d)k(t) (3.2)

where [k(t)|=1.

In the following results we give the curvature of the planar curve C and its conchoid
curve D.

Proposition 1. Let ¢c:1 c R — E? be planar curve given with the polar representation
(3.1). Then the curvature x(t) of c(t) becomes

C2r)—rr" 4 r?
(r2+(r!)2)3/2 '

K (t)

Proof. Using the equation (3.1) we obtain the first and second derivatives of the curve c
c'(t) = (r'cost—rsint,r'sint+rcost),.

c"(t) =(r"cost—2r'sint—rcost,r"sint+2r'cost —rsint).

Substituting this derivatives into (2.1) we get the result.

Proposition 2. Let d:l1 cR— E®be conchoid curve of ¢ given with the polar
representation (3.2). Then the curvature «, (t) of d(t) becomes

2(r") 2 —(r=d)r"+(r+d)*
((r+d)® +(r")?)**

Ky (t) =

Corollary 1. Let ¢:1 < R — E”be planar curve given with the polar representation
1

(3.2). If c is a straight line then r(t) = — .
c,sint—c, cost
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Proof. Let ¢c:1 < R— E”be planar curve given with the polar representation (3.1).
Assume that c is a straight line then «(t) = 0. So we get 2(r')> —rr”+r* =0and solving
this differential equation we obtain the result.

Corollary 2. Let ¢:1 < R — E*be planar curve given with the polar representation

. : . : . c,
(3.1). If c is a unit speed curve then c is a circle with center (5132) where c,,c,are

real constant satisfying the condition ¢ +c¢2 =1.

Proof. Let ¢c:1 c R— E®be planar curve given with the polar representation (3.1).
Assume that ¢ is a unit speed curve then the norm of the derivative of the curve

lc'®)|=r?+(r)?>=1. So, solving this differential equation we get

r(t) =c,cost+c,sint where c,,c,are real constant satisfying the condition ¢’ +c? =1.
. : . : c, ¢
Furthermore the polar representation of the curve is a circle with the center (Elfzj

We give a result of [4];
Theorem 1. Pascal's limagon is a conchoid of a circle.

We give the following examples;

Example 1. 1) Let c be a straight line then c(t):_it(cost,sint) and its conchoid
sin

curve c, (t):(_itird)(cost,sint). (the curve c is blue and the curve c, is red)
sin
(conchoid of Nicomedes), (Figure 1a).

2) Let c be a circle then c(t):i(cost+sint)(cost,sint) and its conchoid curve

V2

c,y(t) = (i(cost+sint)idj(cost,sint) (Pascal Limacon), (Figure 1b)

V2

a) d-=1 b) d =1

Figure 1. Line and circle and its conchoids.
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3) Let the function r(t) =sinat, ae R then c(t) =sinat(cost,sint) and its conchoid
curve ¢, (t) =(sinatxtd)(cost,sint) (the curve c is blue and the curve c,is red) (rose
curve and botanical curve), (Figure 2a,b)

a) a=54d= b) a=2,d=2

Figure 2. Botanical curves and conchoid curves.

4. Surface of revolution given with Conchoid curves in E?

In this section we consider surface of revolution with the rotating curve c(t)and its
conchoid curve c,(t). We obtain the Gaussian and mean curvature of the surfaces and
give some examples.

Let M be a surface of revolution generated by curve c(t)given with (3.1). Consequently,
the surface given with the surface patch

X(t,s) =(r(t)cost,r(t)sintcoss,r(t)sintsins) 4.2)

Let M, be a surface of revolution generated by conchoid curve c, (t) given with (3.2).
Consequently, the surface parametrized by

)Z(t, s) = ((r(t) +d)cost,(r(t)£d)sintcoss,(r(t)+d)sintsins) 4.2)

Theorem 2. Let M be a surface of revolution given with the patch (4.1). Then the
Gaussian curvature K of M becomes

_(r'cost—rsint)(rr"—2(r")* -r?)

K
rsint(r®+(r")*)?

(4.3)

Proof. The surface M is spanned by the vector fields

X . . . .
aa_t =(r'cost—rsint,(r'sint+rcost)coss, (r'sint+rcost)sins),

aa_x = (0,~rsintsins,rsintcoss)
S
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Hence the coefficients of the first fundamental form are

The second partial derivatives of X (t,s) are expressed as follows

Xy =((r"—r)cost —2r'sint,((r" —r)sint + 2r'cost) coss, ((r" — r)sint + 2r'cost)sin s),
X = (0,—(r'sint +rcost)sins, (r'sint + r cost) coss),
X =(0,—rsintcoss,—rsintsins),

Further, the unit normal vector of M is

1 . : : .
N =———(r'sint+rcost,(rsint—r'cost)coss, (rsint—r’cost)sins)

(4.4)

(4.5)

(4.6)

Using (2.4), (4.5) and (4.6) we obtain the coefficients of the second fundamental form,

re’—2(r'")? —r?
o (r')

Jre+(r')?
f =0,
_rsint(r'cost —rsint)

/rZ +(rr)2

Further, substituting (4.4) and (4.7) into (2.5) we get (4.3).

4.7)

Theorem 3. Let M be a surface of revolution given with the patch (4.1). Then the mean

curvature of M becomes

Crsint(rr"=2(r')? —r?)+ (r? + (r')?)(r'cost — rsint)

H
2rsint(r? +(r)?)%?

Proof. Using the equations (2.6), (4.4) and (4.7) we get the result.
As a result of Theorem 2 we obtain the following corollaries.

Corollary 3. Let M be a surface of revolution given with the patch (4.1). If

C c
rit)=—= or r)=——=
cost c, sint —c, cost

(4.8)

then M is a flat surface which is a part of plane, cylinder or cone, where c,,c,,c, are

real constants.
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Corollary 4. Let M be a surface of revolution given with the patch (4.1). If r(t) = Clt
cos

then M is a minimal surface which is a part of a plane, where c, is real constant.

Using the similar way one can give these results for surface of revolution given with the
conchoid curves.

Theorem 4. Let M, be a surface of revolution given with the patch (4.2). Then the
Gaussian curvature K, of M, becomes

_(r'cost—(r(t)£d)sint)((r(t) £d)r"—2(r")> - (r(t) £ d)?)
- (r(t) £d)sint((r(t) =d)* +(r")?)?

K, (4.9)

Theorem 5. Let M, be a surface of revolution given with the patch (4.2). Then the
mean curvature of M, becomes

r+d)sint((r+d)r"—2(r')?> = (r £d)?) + ((r £d)?+(r')?)(r'cost — (r + d)sint)

(
Ha = 2(r £d)sint((r £d)? + (r')?)*'?

(4.10)

As a consequence of Theorem 4 we obtain the following results.

Corollary 5. Let M, be a surface of revolution given with the patch (4.2). If

c c
L oor  r(t)=xd+ L

r(t) = +d + _
cost ¢, sint —c, cost

then M is a flat surface, where c,,c,,c,are real constants.

Corollary 6. Let M, be a surface of revolution given with the patch (4.2). If
Cl

cost
We give some examples;

r(t)==+d +

then M, is a minimal surface, where c, is real constant.

Example 2. 1) Let the rotating curve c be a straight line then the surface of revolution M
becomes a flat surface given with the parametrization

X{(t,s) =_it(cost,sintcoss,sintsin s), (Figure 3a). Further for d =-2 the surface of
sin

revolution M, has the form )Z(t,s)=(%—2)(cost,sintcoss,sintsins), (Figure
sin

3b).
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Figure 3. Flat rotational surface and its conchoid.

2) Let the rotating curve c(t) = (sin2tcost,sin 2tsint) so the the surface of revolution
parametrized by X(t,s) = (sin 2tcost,sin 2tsintcoss,sin 2tsintsins), (Figure 4a).
Further  for d=2 the surface of revolution M, has the form

)Z(t,s) = (sin 2t + 2)(cost,sintcoss,sintsins) , (Figure 4b).

Figure 4. Surface of revolution and its conchoid with r(t) =sin 2t.

5. Conchoidal surfaces in E®

The conchoidal surface F, of a given surface F is obtained by increasing the radius

function by d with respect to a given reference point O. Consider F — R® be a regular
surface, distance d € R, with respect to a given fixed point O = (0,0,0) c R®. Let F be
represented by polar representation

f(u,v) =r(u,v)p(u,v) (5.1)
with | p(u,v)| =1.

Taking into account the parametrization p(u,v) = (cosucosv,sinucosv,sinv) of the
unit sphereS?, so p(u,v) is called spherical part of f(u,v) and r(u,v) its radius
function. The conchoidal surface F, of F at distance d parameterized by

fy (u,v) = (r(u,v)+d)p(u,v) (5.2)
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(see,[14]).

Theorem 6. Let F be a regular surface given with the parametrization (5.1). Then the
Gaussian curvature F becomes

1 02
K=- ((rr, cosv—2r,r, cosv +rr, sinv)
r2((r? +r?)cosv+r2)? v ’ (5.3)

—cos?v(2r2 + rr,sinveosv +r? cos? v —rr,, )(2r2 + r? —rr,)

Proof. The tangent space of F is spanned by the vector fields

of : : :
8_ = (ru COSUCOSV—rsSInuCcosv,r, SINUCOSV+ I COSUucCosV, I, Sin V),
u

v (r, cosucosv—rcosusinv,r, sinucosv—rsinusinv,r, sinv+rcosv).

Hence the coefficients of the first fundamental form of the surface are

E=(f,, f,)=r?cos’v+r/,
F=(f, f)=rr, (5.4)

The second partial derivatives of f (u,v) are expressed as follows

f,, = ((r,, —r)cosucosv —2r,sinucosv,(r, —r)sinucosv + 2r, cosucosV,r,, sinv),
f,, = (r,, COSUCOSV — I, COSUSINV — T, SINUCOSV + rsinusiny,
r, SINUCOSV —r, SinuSiNV + I, COSUCOSV — F COSUSINY, I, SiNV + I, COSV), (5.5)

f,, = ((r,, —r)cosucosv—2r,cosusinv,(r, —r)sinucosv—2r,sinusinv,
r,, SiNV+ 2r,cosv —rsinv).

The unit normal vector of f (u,v)is

1

N =
\/(rz +r2)cos’v+r?

(r, COSUCOSVSINV +r cosucos” v +r, sinu,

r,sinucosvsinv+rsinucos®v—r, cosu, (5.6)

—r, cos” v+ rcosvsinv).

Using (2.4), (5.5) and (5.6) we obtain the coefficients of the second fundamental form
as follows:
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cosV(2r2 +rr,sinvcosv+r? cos’v—rr,,)

\/(rz +r2)cos’v+r?

¢ TTy COSV— 2r,r, COSV+ 11, SinVv)

: (5.7)

\/(rz +r2)cos’v+r’

cosv(2r/ +r? —rr,,)

\/(rz +r2)cos’v+r?

Further, substituting (5.4) and (5.7) into (2.5) we get (5.3).

Theorem 7. Let F be a regular surface given with the parametrization (5.1). Then the
mean curvature of F becomes

1 2 H 2 2 2 2
H :_Zrz((rz+r2)coszv+r2)3’2 (cosv(2r; +rr,sinvcosv+rcos v—rr, )(r°+r,’)
v u

+cosv(2r? +r%—rr,,)(r? cos*v+r?)
+2r,r,(rr,, COSV —2r,r, COSV + I, Sinv)).

Proof. Using the equations (2.6), (5.4) and (5.7) we get the result.

Corollary 7. Let F be a regular surface given with the parametrization (5.1).
i) If the radius function r(u,v)be a u-parameter function then the Gaussian and mean
curvature of F

_cos?v(2r +r?cos’v—rr,)-r’sin’v

K
2 2 2\2
(recos“v+r,)

and

2 2 2
:_cosv(3ru +2r°cos“v-rr,)
2(r’cos’v+r?)*?

il) If the radius function r(u,v)be a v-parameter function then the Gaussian and mean
curvature of F

_ (rsinv+ rcosv)(2r? +r?—rr,)

K w
rcosv(r® +r?)?
and
H 2 2 2 2
H :_(rvsmv+rcosv)(r +r,)+rcosv(2r, +r°—rr,)

2rcosv(r? +r?)*?
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Corollary 8. Let F be a regular surface given with the parametrization (5.1). If u-
parameter radius function

ru) = ((202 —1)(-c,c, sin(2y2¢? —1u) +sin?(v2c? —1u)(c —c) +C? Jz(zc-n
4

c
then F is flat and if

ruy==+ e

/ey sin(2cu) —c, cos(2cu)

then F is minimal where ¢ =cosv and c,,c,,c,,c,are real constants.

Corollary 9. Let F be a regular surface given with the parametrization (5.1).

If v-parameter radius function r(v) = 1 then F is flat and also if ¢, =0

c,sinv—c, cosv

then F is minimal.

Using the similar way we obtain the Gaussian and mean curvature of the conchoidal
surface F, with respect to the distance d.

Theorem 8. Let F, be a conchoidal surface of F given with the parametrization (5.2).
Then the Gaussian curvature F, becomes

1
(r+d)?(((r £d)? +r7)cos’v+r7)?

—c0s®v(2r2 +(r+d)r,sinvcosv+(r+d)*cos?v—(r+d)r,,)2r2 +(r+d)? —(r+d)r,))

K=-— (((rid)ru\,cosv—2rur\,cosv+(rid)rusinv)2

Theorem 9. Let F, be a conchoidal surface of F given with the parametrization (5.2).
Then the mean curvature of F, becomes

1
2(r£d)?(((r£d)? + 1) cos® v+ )%
+cosv(2r? +(r+d)? —(r+d)r,, )((r+d)?cos®v+r?)
+2r,r,((r £d)r,, cosv—2r,r, cosv+(r+d)r,sinv))

ﬁ:

(cosv(2r? +(r £d)r, sinvcosv+ (r+d)% cos? v—(r £d)r,, )((r £d)? +r?)

Corollary 10. Let F,be a conchoidal surface of F given with the parametrization (5.2).
i) If the radius function r(u,v)be a u-parameter function then the Gaussian and mean
curvature of F,

cos®v(2r” +(r +d)?cos’v—(r+d)r,)—r?sin’v

k‘ =
((r+d)®cos’v+r?)?
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and

_cosv(3r; +2(r+d)*cos®v—(r+d)r,)

i -
2((r+d)*cos’v+r?)*?

il) If the radius function r(u,v)be a v-parameter function then the Gaussian and mean
curvature of F,

s _ (r,sinv+(r+d)cosv)(2r? +(r+d)*—(r+d)r,)

< (r+d)cosv((r+d)*+r?)?
and
- _(r,sinv+(r£d)cosv)((r+d)® +r’)+ (r£d)cosv(2r} +(r+d)* —(r+djr,)

2(r =d)cosv((r +d)* +r>)*?

Corollary 11. Let F, be a conchoidal surface of F given with the parametrization
(5.2). If u-parameter radius function

(2c? —-1)(-c,c, sin(2v2¢® —1u) +sin®(v2c* —1u)(c? —c2) +c? JZ(ZCZ‘”
C4

r(u) ==+d+

then F, is flat and if

e

r)=+ \/c;sin(2cu) —c, cos(2cu) +d

then F, is minimal where ¢ =cosv and c,,c,,c;,c,are real constants.

Corollary 12. Let F, be a conchoidal surface of F given with the parametrization

(5.2). If v-parameter radius function r(v)=Fd + L then F, is flat and

c,sinv—c, cosv

also if c, =0 then F, is minimal.

Example 3. 1) Let F be a plane then f (u,v) =_i(cosu cosv,sinucosv,sinv) and its
sinv

conchoidal surface f,(u,v) = (_i +d)(cosucosv,sinucosv,sinv), (Figure 5a,b).
sinv
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a)d=-2 b) d =3

Figure 5. Plane and its conchoidal surface.

2) Let the radius function r(u,v) =sinucosv then

f (u,v) = (sinucosu cos® v,sin® ucos®v,sinucosvsinv) which is a surface like a
seashell (Figure 6a) and its conchoidal surface
fy(u,v) =(sinucosvxd)(cosucosv,sinucosv,sinv), (Figure 6b).

Figure 6. Seashell and its conchoidal.
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