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Abstract 
 
In this study firstly, we study with conchoid curves in Euclidean plane E2. We calculate 
the curvature of the conchoid curve and give some results. Furthermore, we consider 
the surface of revolution given with the conchoid curve in Euclidean 3-space E3. The 
Gaussian and mean curvature is calculated of these surfaces. Also we give some 
examples and plot their graphics. Finally we study conchoidal surface in Euclidean 3-
space. We give some results for the conchoidal surface to become flat and minimal. We 
give an example and plot the garphics of the conchoidal surfaces. 
 
Keywords: Conchoid, Limaçons Pascal, Gaussian curvature, mean curvature. 
 
 

3-boyutlu Öklid uzayında Conchoid eğri ve yüzeyleri 
 
 
Özet 
 
Bu çalışmada ilk olarak düzlemde conchoid eğrileri çalışılmıştır. Conchoid eğrisinin 
eğriliği hesaplanıp bazı sonuçlar verilmiştir. Ayrıca 3-boyutlu Öklid uzayında conchoid 
eğrisiyle elde edilen dönel yüzeyler ele alınmıştır. Bu yüzeylerin Gauss ve ortalama 
eğrilikleri hesaplanmış, bunlarla ilgili örnekler verilip grafikleri çizdirilmiştir. Son 
olarak 3-boyutlu Öklid uzayında conchoidal yüzeyler üzerinde durulmuş ve conchoidal 
yüzeylerin flat ve minimal olma şartlarına bakılmıştır. Conchoidal yüzey örnekleri de 
verilip grafikleri çizdirilmiştir. 
 
Anahtar kelimeler: Conchoid, Pascal Limaçonu, Gauss eğrilik, ortalama eğrilik  
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1. Introduction 
 
The invention of the plane curve conchoid (`mussel-shell shaped') by the Greek 
mathematician Nicomedes, who applied it to the problem of the duplication of the cube 
and of trisecting an angle. It was a favorite with the mathematicians of the seventeenth 
century [10]. 
 
The well-known construction of conchoids is usually applied to curves in the Euclidean 
plane 2E [1]. The conchoid transformation has been applied to surfaces in Euclidean 
three-space 3E  in ([6], [11], [13], [14], [15]) in order to construct new classes of 
surfaces admitting rational parametrizations, and thus, making them accessible to the 
algorithms implemented in CAD systems. Algebraic attributes of conchoid curves and 
surfaces have been studied in [16], [17]. Also the spacelike conchoid curves in the 
Minkowski plane was studied in [3]. 
 
In this paper in the Section 2 we give some preliminaries of the curves and surfaces in 

3E . Section 3 tells about the planar conchoid curves and their curvatures. In Section 4 
we consider surface of revolution whose rotating curve is a conchoid and we obtain 
Gaussian and mean curvature. In the final section we consider conchoidal surface in 
Euclidean 3-space. We give some results for the conchoidal surfaces to become a flat 
and minimal. Finally we give some examples and plot their graphics. 
 
 
2.  Basic concepts 
 
We now recall some basic concepts of the curves and surfaces in 3E . 
 
2.1.  Curves in E3 

Let 3: ERI →⊂α  be a regular curve. For the Frenet frame { }BNT ,,  of α the Frenet-
Serret formulas hold; 
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where )()( ssv α′=  is the speed function of α  and )(sκ  and )(sτ are Frenet curvatures 
defined by: 
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respectively (see, [5], [12]). 
 
2.1. Surfaces in E3 

Let M be a smooth surface in 3E  given with the patch 2),(:),( EDvuvuX ⊂∈ . The 
tangent space to M at an arbitrary point ),( vuXp =  of M { }vu XXspan , . Let N be the 

unit normal vector field defined by 
vu

vu

XX
XXN

×
×

= . 

Then the coefficients of the first and second fundamental forms of the surface M are 
defined respectively as 
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where , is the Euclidean inner product. The surface patch is regular, 

i.e., .022 ≠−= FEGW  Further, the Gaussian curvature and mean curvature of the 
surface are given by 
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respectively. 
 
The surface is called flat and minimal if its Gaussian curvature and mean curvature 
vanishes respectively ([5], [12]). 
 
 
3.  Conchoid curves in E² 
 
 Given a planar curve c, a fixed point A in the plane, and constant distance d. The 
conchoid to c from the focus A at distance d is the set of points Q in the line AP at 
distance d of a point P varying in the curve c. The well known two classical conchoids 
are the conchoids of Nicomedes (planar curve is a line) and Limaçons of Pascal (planar 
curve is a circle) [16]. Conchoids are useful in many applications as conic reflection and 
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refraction in physics and optics, electrode of static field, fluid processing in mechanics, 
etc. (see, [2], [7], [8], [9], [18], [19]). 
 
In this section we consider conchoid curves in Euclidean plane 2E . We calculate the 
curvature of the curve c and its conchoid curve d. We give some examples and plot their 
graphics. 
 
Definition 1. [14] Let 2: ERIc →⊂  be Euclidean plane curve and its polar 
representation is )sin,)(cos()( tttrtc = . Its conchoid curve D with respect O and 
distance d is defined by )sin,)(cos)(()( ttdtrtd ±= . We can consider any 
parametrization )(tk  of the unit circle 1S . The curve C and its conchoid curves D are 
represented by 
 

)()()( tktrtc =                                                                                                               (3.1) 
 
and 
 

)())(()( tkdtrtc ±=                                                                                                       (3.2) 
 
where 1)( =tk . 
 
In the following results we give the curvature of the planar curve C and its conchoid 
curve D. 
 
Proposition 1. Let 2: ERIc →⊂  be planar curve given with the polar representation 
(3.1). Then the curvature )(tκ  of )(tc  becomes 
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Proof. Using the equation (3.1) we obtain the first and second derivatives of the curve c 

),cossin,sincos()( trtrtrtrtc +′−′=′ .
)sincos2sin,cossin2cos()( trtrtrtrtrtrtc −′+′′−′−′′=′′ . 

Substituting this derivatives into (2.1) we get the result. 
 
Proposition 2. Let 2: ERId →⊂ be conchoid curve of c given with the polar 
representation (3.2). Then the curvature )(tdκ  of )(td becomes 
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Corollary 1. Let 2: ERIc →⊂ be planar curve given with the polar representation 

(3.1). If c is a straight line then 
tctc

tr
cossin

1)(
21 −

= . 
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Proof. Let 2: ERIc →⊂ be planar curve given with the polar representation (3.1). 
Assume that c is a straight line then 0)( =tκ . So we get 0)(2 22 =+′′−′ rrrr and solving 
this differential equation we obtain the result. 
 
Corollary 2. Let 2: ERIc →⊂ be planar curve given with the polar representation 

(3.1). If c is a unit speed curve then c is a circle with center 







2
,

2
21 cc  where 21,cc are 

real constant satisfying the condition 12
2

2
1 =+ cc . 

 
Proof. Let 2: ERIc →⊂ be planar curve given with the polar representation (3.1). 
Assume that c is a unit speed curve then the norm of the derivative of the curve 

1)()( 22 =′+=′ rrtc . So, solving this differential equation we get 

tctctr sincos)( 21 +=  where 21,cc are real constant satisfying the condition 12
2

2
1 =+ cc . 

Furthermore the polar representation of the curve is a circle with the center 







2
,

2
21 cc . 

We give a result of [4]; 
 
Theorem 1. Pascal's limaçon is a conchoid of a circle. 
 
We give the following examples; 
 

Example 1. 1) Let c be a straight line then )sin,(cos
sin

1)( tt
t

tc =  and its conchoid 

curve )sin,)(cos
sin

1()( ttd
t

tcd ±= . (the curve c is blue and the curve dc  is red) 

(conchoid of Nicomedes), (Figure 1a). 

2) Let c be a circle then ( ) )sin,(cossincos
2

1)( tttttc +=  and its conchoid curve 

)sin,(cos)sin(cos
2

1)( ttdtttcd 







±+=  (Pascal Limaçon), (Figure 1b) 

 
  

        
       a)    1=d                                                 b) 1−=d  
 

Figure 1. Line and circle and its conchoids. 
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3) Let the function attr sin)( = , Ra∈  then )sin,(cossin)( ttattc =  and its conchoid 
curve )sin,)(cos(sin)( ttdattcd ±=  (the curve c is blue and the curve dc is red) (rose 
curve and botanical curve), (Figure 2a,b) 
 

  
                       a)    

2
1,5 == da                               b) 2,2 == da  

 
Figure 2. Botanical curves and conchoid curves. 

 
 
4.  Surface of revolution given with Conchoid curves in E3 

 
In this section we consider surface of revolution with the rotating curve )(tc and its 
conchoid curve )(tcd . We obtain the Gaussian and mean curvature of the surfaces and 
give some examples. 
 
Let M be a surface of revolution generated by curve )(tc given with (3.1). Consequently, 
the surface given with the surface patch 
 

)sinsin)(,cossin)(,cos)((),( sttrsttrttrstX =                                                          (4.1) 
 
Let dM  be a surface of revolution generated by conchoid curve )(tcd given with (3.2). 
Consequently, the surface parametrized by 
 

)sinsin))((,cossin))((,cos))(((),(~ stdtrstdtrtdtrstX ±±±=                                (4.2) 
 
Theorem 2. Let M be a surface of revolution given with the patch (4.1). Then the 
Gaussian curvature K of M becomes 
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Proof. The surface M is spanned by the vector fields 
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Hence the coefficients of the first fundamental form are 
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The second partial derivatives of ),( stX  are expressed as follows 
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 Further, the unit normal vector of M is 
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Using (2.4), (4.5) and (4.6) we obtain the coefficients of the second fundamental form, 
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Further, substituting (4.4) and (4.7) into (2.5) we get (4.3). 
 
Theorem 3. Let M be a surface of revolution given with the patch (4.1). Then the mean 
curvature of M becomes 
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2222
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Proof. Using the equations (2.6), (4.4) and (4.7) we get the result. 
 
As a result of Theorem 2 we obtain the following corollaries. 
 
Corollary 3. Let M be a surface of revolution given with the patch (4.1). If 

t
ctr

cos
)( 1=     or       

tctc
ctr

cossin
)(

32

1

−
=   

then M is a flat surface which is a part of plane, cylinder or cone, where 321 ,, ccc  are 
real constants. 
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Corollary 4. Let M be a surface of revolution given with the patch (4.1). If 
t

ctr
cos

)( 1=  

then M is a minimal surface which is a part of a plane, where 1c  is real constant. 
 
Using the similar way one can give these results for surface of revolution given with the 
conchoid curves. 
 
Theorem 4. Let dM be a surface of revolution given with the patch (4.2). Then the 
Gaussian curvature dK of dM becomes 
 

222
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))())(((sin))((
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Theorem 5. Let dM  be a surface of revolution given with the patch (4.2). Then the 
mean curvature of dM  becomes 
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As a consequence of Theorem 4 we obtain the following results. 
 
Corollary 5. Let dM  be a surface of revolution given with the patch (4.2). If 
 

t
cdtr

cos
)( 1+±=     or       

tctc
cdtr
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)(
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1

−
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then dM is a flat surface, where 321 ,, ccc are real constants. 
 
Corollary 6. Let dM  be a surface of revolution given with the patch (4.2). If 

t
cdtr

cos
)( 1+±=  then dM is a minimal surface, where 1c  is real constant. 

We give some examples; 
 
Example 2. 1) Let the rotating curve c be a straight line then the surface of revolution M 
becomes a flat surface given with the parametrization 

)sinsin,cossin,(cos
sin

1),( ststt
t

stX = , (Figure 3a). Further for 2−=d  the surface of 

revolution dM  has the form )sinsin,cossin,)(cos2
sin

1(),(~ ststt
t

stX −= , (Figure 

3b).  
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a)                                               b) 

 
Figure 3. Flat rotational surface and its conchoid. 

 
2) Let the rotating curve )sin2sin,cos2(sin)( tttttc =  so the the surface of revolution 
parametrized by )sinsin2sin,cossin2sin,cos2(sin),( sttsttttstX = , (Figure 4a). 
Further for  2=d  the surface of revolution dM  has the form 

)sinsin,cossin,)(cos22(sin),(~ ststttstX += , (Figure 4b). 

          
                                         a)                                                b) 
 

Figure 4. Surface of revolution and its conchoid with ttr 2sin)( = . 
 
 
5.  Conchoidal surfaces in E3 

 
The conchoidal surface dF  of a given surface F  is obtained by increasing the radius 
function by d with respect to a given reference point O. Consider 3RF ⊂  be a regular 
surface, distance Rd ∈ , with respect to a given fixed point 3)0,0,0( RO ⊂= . Let F  be 
represented by polar representation  
 

),(),(),( vuvurvuf r=                                                                                                  (5.1) 
 
with 1),( =vuρ .  
 
Taking into account the parametrization )sin,cossin,cos(cos),( vvuvuvu =ρ  of the 
unit sphere 2S , so ),( vuρ  is called spherical part of ),( vuf  and ),( vur  its radius 
function. The conchoidal surface dF  of F  at distance d parameterized by 
 

),()),((),( vudvurvufd r±=                                                                                        (5.2) 
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(see,[14]). 
 
Theorem 6. Let F  be a regular surface given with the parametrization (5.1). Then the 
Gaussian curvature F  becomes 
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Proof. The tangent space of F  is spanned by the vector fields 
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Hence the coefficients of the first fundamental form of the surface are 
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The second partial derivatives of ),( vuf  are expressed as follows 
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The unit normal vector of ),( vuf is 
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Using (2.4), (5.5) and (5.6)  we obtain the coefficients of the second fundamental form 
as follows: 
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Further, substituting (5.4) and (5.7) into (2.5) we get (5.3). 
 
Theorem 7. Let F  be a regular surface given with the parametrization (5.1). Then the 
mean curvature of F  becomes  
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Proof. Using the equations (2.6), (5.4) and (5.7) we get the result. 
 
Corollary 7. Let F  be a regular surface given with the parametrization (5.1).  
i) If the radius function ),( vur be a u-parameter function then the Gaussian and mean 
curvature of F  
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ii) If the radius function ),( vur be a v-parameter function then the Gaussian and mean 
curvature of F  
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Corollary 8. Let F  be a regular surface given with the parametrization (5.1). If u-
parameter radius function 
 

)12(2

4

2
2

2
2
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1
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−
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then F  is flat and if 
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then F  is minimal where vc cos=  and 4321 ,,, cccc are real constants. 
 
Corollary 9. Let F  be a regular surface given with the parametrization (5.1).  

If v-parameter radius function 
vcvc

vr
cossin

1)(
21 −

=  then F  is flat and also if 02 =c  

then F  is minimal. 
 
Using the similar way we obtain the Gaussian and mean curvature of the conchoidal 
surface dF  with respect to the distance d. 
 
Theorem 8. Let dF  be a conchoidal surface of F given with the parametrization (5.2). 
Then the Gaussian curvature dF  becomes 
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Theorem 9. Let dF  be a conchoidal surface of F given with the parametrization (5.2). 
Then the mean curvature of dF  becomes 
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Corollary 10. Let dF be a conchoidal surface of F given with the parametrization (5.2). 
i) If the radius function ),( vur be a u-parameter function then the Gaussian and mean 
curvature of dF  
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and 
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ii) If the radius function ),( vur be a v-parameter function then the Gaussian and mean 
curvature of dF  
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Corollary 11. Let dF  be a conchoidal surface of F given with the parametrization 
(5.2). If u-parameter radius function 
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then dF  is flat and if 
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then dF  is minimal where vc cos=  and 4321 ,,, cccc are real constants. 
 
Corollary 12. Let dF  be a conchoidal surface of F given with the parametrization 

(5.2). If v-parameter radius function 
vcvc

dvr
cossin

1)(
21 −

+=   then dF  is flat and 

also if 02 =c  then dF  is minimal. 
 

Example 3. 1) Let F  be a plane then )sin,cossin,cos(cos
sin

1),( vvuvu
v

vuf =  and its 

conchoidal surface  )sin,cossin,cos)(cos
sin

1(),( vvuvud
v

vufd ±= , (Figure 5a,b).  
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                             a) 2−=d                                              b) 3=d  
 

Figure 5. Plane and its conchoidal surface. 
 

2) Let the radius function vuvur cossin),( =  then 
)sincossin,cossin,coscos(sin),( 222 vvuvuvuuvuf =  which is a surface like a 

seashell (Figure 6a) and its conchoidal surface 
)sin,cossin,cos)(coscos(sin),( vvuvudvuvufd ±= , (Figure 6b). 

 

      
a)                                            b) 

 
Figure 6. Seashell and its conchoidal. 
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