

Fatty Acid Analysis and Biological Activity of Jordanian Propolis

Ashok K. SHAKYA^{1*}, Shankar KATEKHAYE^{2,3}, Ghaleb A. ORIQUAT¹, Rajashri R. NAIK¹, Anant PARADKAR^{2,4}, Hugo FEARNLEY^{3,4}, James FEARNLEY^{3,4}

¹ Faculty of Pharmacy and Medical Sciences, Al-Ahliyya Amman University, Amman-19328, Jordan.
²Centre for Pharmaceutical Engineering Science, School of Pharmacy, University of Bradford, Bradford, BD7 1DP, UK.
³Nature's Laboratory, Unit 3b, Enterprise Way, Whitby, North Yorkshire, YO22 4NH, UK
⁴Apiceutical Research Centre, Unit 3b, Enterprise Way, Whitby, North Yorkshire, YO22 4NH, UK
*ashokshakya@hotmail.com

Received/Geliş Tarihi: 08/10/2018, Accepted/ Kabul Tarihi: 19/10/2018 *Corresponding author /Yazışılan yazar

Abstract

Propolis is a resinous natural product collected by bees (*Apis mellifera*) from tree exudates which is widely used in folk medicine¹. Reports on Jordanian Propolis reveal the presence of new chemical compound 4(Z)-1-3-dihydroxyeupha-7,24-dien-26-oic acid² along with other compounds like pinobanksin-3-O-acetate, pinocemberin, chrysin³ and lignoceric acid². The present study was carried out to investigate the fatty acid composition, antioxidant and xanthine oxidase inhibition activity of Jordanian Propolis, collected from Al-Ghour region. The hexane extract of Jordanian Propolis contains different fatty acids, which are reported first time, using GC-FID. The major fatty acid identified were palmitic acid (44.5%), Oleic acid (18:1 Δ^9 cis, 24.6%), Arachidic acid (7.4%), Stearic acid (5.4%), linoleic acid (18:2 Δ^{9-12} cis, 3.1%), caprylic acid (2.9%), lignoceric acid (2.6%), *cis*-11,14-eicosadienoic acid (20:2 Δ^{11-14} cis, 2.4%), palmitoleic acid (1.5%), cis-11-eicosenoic acid (1.2%), α –linolenic acid (18:3 $\Delta^{9-12-15}$ cis, 1.1%), cis-13,16-docosadienoic acid (22:2 Δ^{13-16} cis, 1.0%), along with minor constituents like saturated fatty acids. Antioxidant properties of the hexane extract were determined via DPPH radical scavenging, β -carotene bleaching assay and NO scavenging assay. The extract produced significant antioxidant activity *in-vitro*.

References:

1. Toreti, V.C., Sato, H.H., Pastore, G.M. and Park, Y.K., 2013. Recent progress of propolis for its biological and chemical compositions and its botanical origin. *Evidence-based complementary and alternative medicine*, 2013. http://dx.doi.org/10.1155/2013/697390

2. Shaheen, S.A., Zarga, M.H.A., Nazer, I.K., Darwish, R.M. and Al-Jaber, H.I., 2011. Chemical constituents of Jordanian propolis. *Natural product research*, 25(14), 1312-1318.

3. Darwish, R.M., Ra'ed, J., Zarga, M.H.A. and Nazer, I.K., 2010. Antibacterial effect of Jordanian propolis and isolated flavonoids against human pathogenic bacteria. *African Journal of Biotechnology*, *9*(36). 5966-5974