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Ordinary least squares method is usually used for parameter estimation in multiple linear
Received: 26/01/2018 regression models when all regression assumptions are satisfied. One of the problems in
Accepted: 19/07/2018 multiple linear regression analysis is the presence of serially correlated disturbances. Serial

correlation can be formed by autoregressive or moving average models. There are many
studies in the literature including parameter estimation in regression models especially with

Keywords autoregressive disturbances. The motivation of this study is that whether serially correlated
) disturbances are defined by a different type of nonlinear process and how this process is
Autocorrelation analyzed in multiple linear regression. For this purpose, a nonlinear time series process

Nonlinear time series
Self-exciting threshold
autoregressive disturbances

known as self-exciting threshold autoregressive model is used to generate disturbances in
multiple linear regression models. Two-stage least squares method used in the presence of

Linear regression autoregressive disturbances is adapted for dealing with this new situation and comprehensive
Adapted two-stage least experiments are performed in order to compare efficiencies of the proposed method with the
squares others. According to numerical results, the proposed method can outperform under the type

of self-exciting threshold autoregressive autocorrelation problem when compared to ordinary
least squares and two-stage least squares.

1. INTRODUCTION

A multiple linear regression model including two or more independent variables can be defined in matrix
notation as

y=XfB+e¢, Q)

where Y is an n x 1 vector of responses, X is an n x k matrix of observations on k — 1 independent
variables, B is ak x 1 vector of unknown parameters, € is an n x 1 vector of random disturbances. The

random disturbances should have zero mean and constant variance. Also, there should be no near linear
relationships among independent variables for obtaining efficient parameter estimates by using ordinary
least squares (OLS) method

B=(XX)"XY. @)

There is a problem in multiple linear regression analysis when serially correlated disturbances exist.
Generally, the autocorrelation problem among disturbances is defined by using an autoregressive (AR)
model. There are many studies relating to overcoming the problem in different types of models. Cochrane
and Orcutt [1] introduced a method by evaluating the autocorrelation structure in linear regression. Also,
the full maximum likelihood approach was given by Beach and MacKinnon [2] as an alternative to

*Corresponding author, e-mail: baris.asikgil@msgsu.edu.tr


http://dergipark.gov.tr/gujs

1269 Baris ASIKGIL | GU J Sci, 31(4): 1268-1282 (2018)

Cochrane-Orcutt method. Gallant and Goebel [3] defined two-stage least squares (TSLS) method for
obtaining efficient parameter estimates in the presence of AR disturbances in nonlinear regression.
Glasbey [4-6] studied on real different data sets having autocorrelated disturbances and considered
asymptotically efficient estimators. Huang and Huang [7] proposed a parameter elimination method in the
presence of many parameters and autocorrelated disturbances. In recent years, Asikgil and Erar [8]
considered a modification for TSLS in nonlinear regression. Moreover, Asikgil [9] examined some
alternative methods on seemingly unrelated regressions with high-order AR disturbances. All the methods
given in the literature were usually considered for AR disturbances. In this paper, TSLS is adapted for
self-exciting threshold autoregressive (SETAR) disturbances in multiple linear regression models. The
rest of the paper is organized as follows. Sec. 2 presents the theoretical overview of SETAR models and
TSLS is extended to the new situation given as the presence of SETAR disturbances. In Sec. 3, a
comprehensive Monte Carlo simulation study is carried out under different conditions in order to examine
the relative efficiencies. Conclusions are given in the final section.

2. MATERIALS AND METHODS
2.1. Self-Exciting Threshold Autoregressive Model

Nonlinear time series modeling and forecasting have become popular in recent years especially for
financial data. Many nonlinear time series models have been considered in the literature. Some of them
are the bilinear model, the threshold autoregressive model and the Markov switching model. One of the
useful classes of nonlinear models is threshold autoregressive (TAR) given by Tong [10, 11]. This model
deals with several nonlinear characteristics such as asymmetry in declining and rising patterns of a series.
It is based on piecewise linear models which means that the threshold process divides the space into r
regimes (r > 1) with an AR model in each regime [12,13].

A time series Z; is an r-regime self-exciting TAR (SETAR) if it takes the form

. q . .
Z, :@“) +Z¢%(‘)ZH +Ut(‘), Tj152 4 <7j, (3)
=1

where r, d and (ql, Oy e qr) are positive integers and j=1,2 ...,r. The thresholds are
—00=7,<7,<---<7, =00 and (j) is used to denote the regime. q(j) denotes identical independently
distributed sequences with mean zero and variance 01-2 and they are mutually independent for different j.

d is called the delay parameter. Tong [11] suggested denoting (3) as SETAR(d; g, 0, ..., G, ). The

class of SETAR models has been widely used in different areas in the literature such as financial studies
[14], medical studies [15], actuarial studies [16].

In SETAR models, the threshold values are usually unknown and need to be estimated with the other
parameters. Chan and Tong [17] studied on estimating thresholds in SETAR models and Chan [18]
showed that the parameter estimates obtained by using OLS is strongly consistent for a stationary ergodic
SETAR model. Moreover, Chan and Cheung [19] examined the performance of robust generalized-M
(GM) estimates in SETAR models in the presence of additive outliers. On the other hand, Baragona,
Battaglia and Cucina [20] used genetic algorithms for parameter estimation in different SETAR models.
In this paper, grid search approach given in the literature is used to estimate the threshold parameter for
two-regime models. This approach points out that the threshold value is an element of the series.

Therefore, the model given in (3) is estimated to each value of z, by using OLS. Only 70-80% middle of
the series is examined in order to provide the necessary amount of observations in each regime. In each

fitted model sum of squared residuals is obtained for each of the potential threshold. The threshold value
corresponding to the model with the least sum of squared residuals can be preferred [21].
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2.2. Adapted Two-Stage Least Squares Method

TSLS method considered by Gallant and Goebel [3] can give efficient parameter estimates by using
~ AA L[ A A
B=(XPPX) " (XPPy), @)

when the model in (1) includes AR disturbances. In (4), P denotes an n x n transformation matrix defined
by

2P, 0
& g A L
P=l & a. q 1 ) (5)
8 4 - & 1

where If’q isa g x q matrix calculated by using the Cholesky decomposition f’q‘l = ﬁ’(;ISq ,62=7(0) +a'y,
and (él, éq_l, %) are parameter estimates of the AR(q) model formed by disturbances. I q is a

matrix presented as

AN A
- 7(:1) 7(:0) 7(q:—2) | ©)
y@-D) 7(@-2 - 7(0)

where its elements are the estimated variance and covariances obtained by

7(h)=

Sl

n-h
>ééum, h=0,1 .0 (7)
i=1

In this paper, an adapted TSLS (ATSLS) method is proposed for parameter estimation since SETAR
disturbances are considered in (1). Firstly, the residuals are obtained from (1) by using OLS. Then, the
threshold parameters are estimated by using grid search and the regimes are determined. The observations
are classified for each regime in view of residuals. The model can be designed by using partitions

Y1 X &

......

------

B+

......

(8)
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where Y and XJ— denote an n; x 1 vector of responses and an n; x k matrix of observations for jth regime,
respectively. The sample sizes can be different for each regime and

an =n. 9)

ATSLS estimators can be obtained by using transformed system

B=(WW)™*(Wu), (10)
where
I31)(1 |51Y1
If)zxz FA)zYz
W= U= , (11)
_ISrXr_ _Iﬁr yr_

The point to be noted in (11) is that each regime can consist of different types of models. Therefore, it is
clear that the transformation matrix can be separated for each regime.

3. NUMERICAL RESULTS

Some comprehensive Monte Carlo experiments have been conducted under special conditions to evaluate
the performances of OLS, TSLS and ATSLS. The vector of parameters given in (1) is considered as

,Bz[lO 2 —5]’, the independent variables (Xl, XZ) are distributed from independently identically

N(15, 25) and SETAR disturbances used in these experiments are derived in view of the studies of Tong
and Lim [22], Chan and Cheung [19], Gibson and Nur [23]. The results of the Monte Carlo experiments
are implemented by MATLAB R2010a.

In these experiments different scenarios are considered. Five different stationary two-regime SETAR
models are used to generate disturbances. Because of the validity in real life problems only two-regime
models are assessed in this study. Also, there is computational burden when dealing with higher regimes
models. In every model, 500 samples are generated for each different sample size (n = 50, 100, 250, 500)

and each different standard deviation (¢ = 0.5, 1, 3) of v, . Therefore, there are twelve different situations
for each parameter examined by using five different SETAR models. For these SETAR models, the plots
of each series of &, with n =500 and ¢ = 1 are illustrated in Figures 1-5. One important characteristic of
these models used for the generation of disturbances in this study is expressed that E(gt) may not be
zero although they have no constant terms. Therefore, it is strictly recommended to use a constant term
(,) in multiple linear regression models.

The first SETAR model for disturbances is defined by
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056,40y, if &,<0

(12)

08s,+y if g,>0

where y, ~ NlD(O,O'Z), the delay is 1 and the threshold is 0. This model is denoted as SETAR(Z; 1, 1).
Figure 1 shows a series from (12) and the threshold is determined by a horizontal line. The series &, is
geometrically ergodic (i.e. 49 <1, @ <1and gPg? <1) [24] and stationary.
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Figure 1. Plot of a simulated SETAR(Z; 1, 1) series
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The results in the presence of disturbances from (12) are given in Table 1. The means, standard deviations,
mean squared errors (MSE) and efficiencies (Eff = MSEoLs / MSEwetod) Of f1 and £, are obtained by
OLS, TSLS for AR(1) and ATSLS in different conditions. It can be said that all the methods give unbiased
estimations. The standard deviations and MSE for TSLS and ATSLS methods approach when the sample
size increases. However, ATSLS is more efficient than the other methods in view of Eff.

The second SETAR disturbances are given by

0.34¢,,+0.13¢,,+v, if ¢,<1

(13)

0.55¢,+0.18¢,, +v, if g,>1

where 1, ~NID(0,67 ), the delay is 1 and the threshold is 1. A series from SETAR(L; 2, 2) defined by

(13) is presented in Figure 2. Although (13) has similar piecewise models, the first regime contains more
observations than the second regime.
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Figure 2. Plot of a simulated SETAR(1; 2, 2) series

4

450

The results in the presence of these type disturbances are given in Table 2 pointing out the performances
of OLS, TSLS for AR(2) and ATSLS in different conditions. It can be seen that ATSLS has better
performance than the others for all conditions by evaluating especially MSE and Eff.
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Table 1. Simulation results (approximate values) in the presence of SETAR(L; 1, 1) disturbances
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Parameter n o OLS TSLS ATSLS
Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff
p1 50 0.5 2.0139 0.0144 4.00%10* 2.0015 0.0123 1.52*10* 2.63 2.0006 0.0114 1.31*10* 3.05
1.9954 0.0368 13.7*10* 2.0022 0.0224 5.05*10% 2.72 2.0010 0.0220 4.85%10% 2.83
1.9413 0.0880 112*10* 1.9924 0.0605 37.2*10% 3.01 1.9945 0.0588 34.8%10* 3.21
100 0.5 1.9983 0.0123 1.54*104 1 1.9999 0.0076 0.58*10* 2.64 1.9998 0.0075 0.56*10* 2.74
1 2.0080 0.0237 6.27*10* 1 1.9992 0.0152 2.32*10% 2.70 2.0000 0.0144 2.09*10* 3.01
3 1.9694 0.0764 67.8*10* 1 1.9980 0.0424 18.1*10* 3.75 1.9990 0.0409 16.7*10* 4.05
250 0.5 1.9979 0.0062 0.43*10* 1 2.0002 0.0045 0.20*10*  2.15 2.0002 0.0044 0.19*%10* 2.26
1 2.0058 0.0139 2.26*10 1 2.0006 0.0099 0.98*10% 2.30 2.0003 0.0097 0.94*10*  2.40
3 1.9931 0.0437 19.6*10 1 1.9995 0.0289 8.37*10%* 234 1.9991 0.0282 7.95%10* 2.46
500 0.5 2.0024 0.0044 0.25*10* 1 2.0002 0.0033 0.11*10*4 2.33 2.0001 0.0032 0.10*10* 2.52
1 1.9957 0.0106 1.32*104 1 2.0002 0.0067 0.45*104  2.92 2.0004 0.0066 0.44*10* 3.01
3 1.9949 0.0372 14.1*10* 1.9992 0.0200 3.99*10“4 3.53 1.9992 0.0197 3.87*10% 3.64
52 50 0.5 -5.0108 0.0185 4.59*%10* 1 -5.0019 0.0125 1.61*10* 2.86 -5.0010 0.0116 1.36*10* 3.38
1 -5.0171 0.0432 21.6*10* 1 -5.0009 0.0250 6.25*10%  3.45 -5.0006 0.0242 5.84*10* 3.69
3 -5.0494 0.0665 68.7*10* 1 -5.0014 0.0492 24.3*10* 2.83 -5.0017 0.0478 22.9*10% 3.00
100 0.5 -5.0108 0.0109 2.35*10 1 -4.9995 0.0078 0.61*10* 3.85 -4.9992 0.0076 0.58*10* 4.06
1 -4.9969 0.0280 7.93*10* 1 -4.9993 0.0139 1.94*10*  4.09 -4.9995 0.0135 1.83*10“4 4.35
3 -5.0375 0.0592 49.2%10* -5.0043 0.0399 16.1*10*  3.05 -5.0042 0.0386 15.1*10“ 3.26
250 0.5 -4.9950 0.0064 0.66*10* 1 -4.9997 0.0050 0.26*10*  2.60 -4.9997 0.0049 0.24*104 2.74
1 -4.9888 0.0143 3.32*10* 1 -4.9994 0.0098 0.96*10* 3.44 -4.9999 0.0097 0.93*10* 3.56
3 -4.9827 0.0392 18.3*10* 1 -4.9988 0.0274 7.55*%10% 2.43 -4,9993 0.0267 7.11*104 2.58
500 0.5 -5.0008 0.0053 0.29*10 1 -5.0001 0.0033 0.11*10* 2.73 -5.0001 0.0032 0.10*10* 2.89
1 -4.9963 0.0104 1.22*10* 1 -4.9999 0.0065 0.43*10* 2.85 -5.0001 0.0064 0.41*10* 3.00
3 -5.0141 0.0289 10.3*10* 1 -5.0008 0.0187 3.50*10* 2.94 -5.0001 0.0182 3.31*10% 3.11
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Table 2. Simulation results (approximate values) in the presence of SETAR(L; 2, 2) disturbances

Baris ASIKGIL | GU J Sci, 31(4): 1268-1282 (2018)

Parameter n o OLS TSLS ATSLS
Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff
p1 50 0.5 2.0031 0.0161 2.68*10* 2.0003 0.0115 1.32*10* 2.03 2.0003 0.0106 1.12*10* 2.40
1.9856 0.0284 10.1*10* 2.0021 0.0209 4.42*%10* 2.29 2.0011 0.0202 4.08%10* 2.48
2.0506 0.0946 115*%10* 2.0091 0.0605 37.4*10* 3.08 2.0087 0.0594 36.010* 3.20
100 0.5 2.0026 0.0136 1.92*104 1 2.0001 0.0086 0.74*10*  2.58 1.9997 0.0083 0.68*10* 2.81
1 2.0150 0.0174 5.27*10* 1 2.0016 0.0143 2.07*10% 254 2.0010 0.0140 1.98*10* 2.66
3 1.9490 0.0640 67.0*10 1 1.9979 0.0486 23.7*10% 2.83 1.9977 0.0479 23.0%10* 2.91
250 0.5 2.0033 0.0067 0.56*10* 1 2.0001 0.0049 0.24*10* 2.35 2.0001 0.0048 0.23*10* 2.44
1 2.0083 0.0113 1.95*%10 1 2.0002 0.0086 0.74*10*  2.65 2.0002 0.0084 0.70*10* 2.78
3 2.0078 0.0500 25.6*10 1 2.0008 0.0286 8.20*10* 3.12 2.0005 0.0280 7.86*10%* 3.25
500 0.5 1.9968 0.0041 0.27*%10* 1 1.9999 0.0033 0.11*10*4 251 2.0000 0.0032 0.10*10* 2.68
1 2.0045 0.0085 0.92*%10* 1 2.0004 0.0067 0.44*10*4  2.08 2.0003 0.0066 0.43*10* 2.14
3 2.0182 0.0248 9.48*10 2.0004 0.0194 3.75*10% 2.53 2.0001 0.0191 3.64*10* 2.61
B2 50 0.5 -4.9872 0.0173 4.63*10* 1 -4.9990 0.0140 1.97*10* 235 -4.9984 0.0135 1.84*10* 251
1 -5.0287 0.0246 14.3%10* 1 -5.0052 0.0217 4.99%10* 2.87 -5.0054 0.0209 4.66*10* 3.07
3 -5.0913 0.0818 150*10 1 -5.0195 0.0647 45.7%10*  3.29 -5.0178 0.0617 41.3*10% 3.64
100 0.5 -4.9920 0.0115 1.96*10 1 -4.9996 0.0077 0.60*10* 3.29 -4.9997 0.0075 0.56*10* 3.53
1 -4.9817 0.0199 7.29*10* 1 -4.9983 0.0142 2.06*10* 3.54 -4.9988 0.0140 1.96*104 3.71
3 -5.0528 0.0548 57.9*10* -5.0058 0.0427 18.5*10* 3.12 -5.0050 0.0417 17.6*10“4 3.28
250 0.5 -4.9956 0.0060 0.55*10* 1 -4.9998 0.0046 0.21*10* 2.59 -4.9999 0.0045 0.20*10* 2.72
1 -5.0003 0.0139 1.94*104 1 -4.9998 0.0089 0.79%10* 2.44 -4.9996 0.0087 0.75*10* 2.57
3 -4.9666 0.0339 22.7*10* -4.9992 0.0271 7.35%10* 3.08 -5.0002 0.0266 7.09*10* 3.20
500 0.5 -4.9978 0.0045 0.25*10 1 -5.0000 0.0033 0.11*10* 2.38 -5.0001 0.0032 0.11*10* 2.43
1 -4.9930 0.0088 1.27*10* 1 -4.9995 0.0068 0.47*10* 2.70 -4.9997 0.0066 0.44*10* 2.88
3 -5.0329 0.0258 17.5*10* 1 -5.0029 0.0206 4.35%10* 4.03 -5.0026 0.0202 4.14%10% 4.22
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The third SETAR disturbances are derived by increasing the delay and the orders of piecewise models

0.61g,—0.31g ,-0.0655+y, if &,<0
& ,
0.935,, -0.45¢,,+0.19¢, ;+uv,  if £,>0

(14)

where v, is the same as defined before, the delay is 2 and the threshold is 0. A visual representation of

SETAR(2; 3, 3) defined by (14) is demonstrated in Figure 3. Since the piecewise models have high
orders, the sample size should be large enough to implement this analysis. Therefore, n < 50 can be
useless and dramatic for obtaining the results.
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The results in the presence of these type disturbances are given in Table 3. OLS, TSLS for AR(3) and
ATSLS give unbiased estimations in all cases by assessing the means. Although ATSLS is more efficient
than the other methods, the performances of TSLS and ATSLS approach in some cases. The standard

deviations, MSE and Eff of TSLS and ATSLS become closer for some small standard deviations of v,

and some large sample sizes. However, the results of this experiment are similar as before and lead to the
same conclusions.

The fourth SETAR model for disturbances is designed by using different model structures for the first and
second regime

0.85¢, +u if &,<0
& ,

052¢,+0.10¢ ,+u, if §,>0

(15)

where v, is the same as defined before, the delay is 1 and the threshold is 0. This model is represented by

SETAR(1; 1, 2) and a series from (15) is displayed in Figure 4. According to Figure 4, it can be decided
in view of the threshold value that the first regime has more observations than the second regime.
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Table 3. Simulation results (approximate values) in the presence of SETAR(2; 3, 3) disturbances
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Parameter n o OLS TSLS ATSLS
Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff
p1 50 0.5 2.0071 0.0123 2.01*10* 1 2.0018 0.0094 0.91*10* 2.20 2.0017 0.0088 0.80*10* 2.50
2.0133 0.0300 10.8*10* 1 2.0035 0.0205 4.33%10* 2.49 2.0026 0.0199 4.03*10* 2.67
1.9554 0.1346 201*10* 1 1.9836 0.0914 86.2*10* 2.33 1.9921 0.0880 78.010* 2.58
100 0.5 1.9928 0.0114 1.82*104 1 1.9991 0.0087 0.76*10* 2.38 1.9993 0.0085 0.73*10* 2.50
1 1.9929 0.0199 4.49%10* 1 1.9988 0.0145 2.12*10%4 2.12 1.9988 0.0142 2.03*10* 2.21
3 2.0442 0.0595 54.9*10 1 2.0042 0.0443 19.8*10* 2.77 2.0046 0.0427 18.5*10* 2.97
250 0.5 1.9952 0.0065 0.66*10* 1 1.9997 0.0047 0.22*10* 2.93 1.9998 0.0047 0.22*10* 3.00
1 2.0065 0.0151 2.70*10 1 2.0000 0.0104 1.09%10* 2.48 1.9999 0.0103 1.06*10* 2.53
3 2.0160 0.0447 22.5*10* 1 2.0002 0.0292 8.54*10% 2.64 1.9993 0.0283 8.00*10* 2.82
500 0.5 1.9978 0.0054 0.34*%10* 1 1.9999 0.0033 0.11*10“4 3.18 1.9999 0.0032 0.10*10* 3.33
1 2.0056 0.0099 1.29*104 1 2.0002 0.0064 0.41*10* 3.14 2.0001 0.0063 0.40*%10* 3.22
3 1.9694 0.0273 16.8*10* 1 1.9989 0.0197 3.89*10“4 4.33 1.9994 0.0195 3.81*10* 4.41
52 50 0.5 -5.0025 0.0167 2.83*10 1 -5.0012 0.0112 1.28*%10* 2.22 -5.0008 0.0108 1.17*%10* 2.42
1 -5.0212 0.0407 21.1*10 1 -5.0060 0.0253 6.74*10* 3.13 -5.0055 0.0243 6.20%10* 3.40
3 -4.9094 0.0857 155*10 1 -4.9843 0.0642 43.7%10* 3.56 -4.9894 0.0600 37.1*10* 4.19
100 0.5 -5.0072 0.0107 1.67*10* 1 -5.0008 0.0078 0.61*10* 2.72 -5.0006 0.0075 0.57*%10% 2.91
1 -5.0203 0.0224 9.14*10 1 -5.0014 0.0159 2.56*10* 3.57 -5.0017 0.0155 2.43*10% 3.76
3 -5.0711 0.0611 87.8*10* -5.0071 0.0444 20.2*10* 4.34 -5.0086 0.0434 19.6*10% 4.49
250 0.5 -5.0046 0.0094 1.10*10* 1 -5.0000 0.0055 0.30*10* 3.67 -5.0001 0.0053 0.28*10* 3.94
1 -5.0136 0.0143 3.89*10* 1 -5.0007 0.0092 0.86*10* 4.54 -5.0006 0.0091 0.84*10* 4.64
3 -4.9723 0.0387 22.6*10* 1 -4.9956 0.0279 7.95%10% 2.85 -4.9965 0.0274 7.66*10* 2.96
500 0.5 -5.0007 0.0066 0.45*10 1 -5.0004 0.0034 0.12*10* 3.93 -5.0003 0.0033 0.11*10* 4.05
1 -5.0059 0.0090 1.16*10* 1 -4.9994 0.0070 0.49*10* 2.38 -4.9993 0.0069 0.48*10* 2.42
3 -5.0241 0.0350 18.0*10* 1 -5.0011 0.0210 4.42*%10* 4.08 -5.0010 0.0208 4.32*%10* 4.17
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Table 4. Simulation results (approximate values) in the presence of SETAR(Z; 1, 2) disturbances

Parameter n o OLS TSLS-1 TSLS-2 ATSLS
Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff
S1 50 0.5 1.9980 0.0141 2.04*10* 1 1.9999 0.0098 0.96*10* 2.14 2.0001 0.0099 0.98*10%* 2.08 2.0002 0.0091 0.83*10* 2.45
1 2.0125 0.0326 12.2*10* 1 2.0024 0.0209 4.42*%10* 2.76 2.0029 0.0211 4.54*10* 2.68 2.0023 0.0198 3.99*10* 3.06
1.9661 0.1307 182*10%* 1 1.9931 0.0803 65.010% 2.81 1.9927 0.0803 65.0v10% 2.81 1.9991 0.0751 56.4*10* 3.23
100 0.5 2.0053 0.0116 1.63*10* 1 2.0001 0.0073 0.53*10* 3.08 2.0003 0.0072 0.52*10* 3.13 2.0002 0.0069 0.48*10* 3.38
1 1.9908 0.0197 473%10% 1 1.9992 0.0130 1.71*104 2.77 1.9990 0.0128 1.64*10* 2.89 1.9992 0.0121 1.48*10* 3.20
3 1.9770 0.0794 68.3*10%4 1 1.9956 0.0449 20.3*10* 3.36 1.9939 0.0452  20.8*10* 3.28 1.9945 0.0432 19.0*10* 3.60
250 0.5 2.0057 0.0068 0.79*10* 1 2.0000 0.0048 0.23*10* 3.41 2.0000 0.0048 0.23*10% 3.43 1.9999 0.0046 0.21*10“ 3.72
1 2.0107 0.0141 3.13*10% 1 2.0008 0.0087 0.76*10* 4.11 2.0008 0.0086  0.74*10%*  4.22 2.0007 0.0082 0.68*10“  4.60
2.0137 0.0561 33.4*10% 1 1.9999 0.0290 8.43*10* 3.96 1.9994 0.0289 8.38*10% 3.98 1.9994 0.0282 7.95*10“  4.20
500 0.5 2.0022 0.0057 0.37%10* 1 2.0001 0.0031 0.10*10* 3.76 2.0001 0.0031 0.10*10* 3.74 2.0001 0.0030 0.09*10*  4.00
1 1.9936 0.0111 1.63*10* 1 1.9997 0.0071 0.51*10* 3.22 1.9997 0.0070  0.49*%10* 3.35 1.9996 0.0068 0.47*10* 3.50
3 1.9830 0.0315 12.8*10* 1 1.9989 0.0197 3.88*%10* 3.30 1.9991 0.0196  3.85*10* 3.33 1.9994 0.0192 3.68*10* 3.48
B2 50 0.5 -5.0057 0.0168 3.16*10* 1 -5.0006 0.0114 1.30*10* 2.44  -5.0008 0.0113  1.28*10* 2.47 -5.0002 0.0107 1.14*10* 2.77
1 -5.0217 0.0258 11.4*10* 1 -5.0031 0.0207 4.37%10* 2.60 -5.0034 0.0205 4.31*10* 2.64 -5.0024 0.0189 3.63*10* 3.13
3 -5.0164 0.1117 127*104 1 -4.9966 0.0687 47.4*10* 2.69  -4.9967 0.0676  45.8*10* 2.78 -4.9978 0.0655 43.0*10* 2.96
100 0.5 -4.9935 0.0107  1.58*10* 1 -4.9998 0.0077 0.59*10* 2.67 -4.9996 0.0078 0.61*10* 2.57 -4.9996 0.0075 0.56*10* 2.81
1 -4.9849 0.0205  6.49*10* 1 -4.9999 0.0134 1.79*10* 3.62  -5.0002 0.0134 1.79*10* 3.63 -5.0004 0.0128 1.63*10* 3.98
-5.0295 0.0825  76.7*10* 1 -5.0016 0.0444 19.7*10* 3.89 -5.0021 0.0446  19.9*10% 3.85 -5.0012 0.0427 18.2*10* 4.21
250 0.5 -4.9970 0.0085 0.82*10* 1 -4.9999 0.0045 0.21*10* 3.96 -4.9999 0.0046 0.21*10* 3.94  -5.0000 0.0044 0.19*10* 4.26
1 -5.0047 0.0152 2.52*10* 1 -5.0002 0.0092 0.84*10* 2.99 -5.0003 0.0091 0.82*10* 3.07 -5.0001 0.0088 0.78*10*  3.23
-4.9989 0.0561 31.5*%10* 1 -4.9992 0.0285 8.14*10* 3.87 -4.9992 0.0288 8.28*10* 3.80  -4.9994 0.0281 7.89*10*  3.99
500 0.5 -4.9996 0.0062 0.38*10* 1 -4.9999 0.0035 0.12*10* 3.17 -4.9999 0.0035 0.12*10* 3.21  -4.9999 0.0034 0.11*10* 3.34
1 -5.0039 0.0111 1.37*10* 1 -5.0001 0.0066 0.43*10* 3.18 -5.0002 0.0064 0.42*10* 3.31 -5.0001 0.0063 0.40*10* 3.42
-4.9993 0.0302 9.12*10% 1 -4.9985 0.0176 3.12%10* 2.94 -4.9988 0.0176  3.12*10* 2.93  -4.9989 0.0174 3.03*10* 3.01
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The results in the presence of SETAR(1; 1, 2) disturbances are given in Table 4. The means, standard
deviations, MSE and Eff of 5, and $, are obtained by OLS, TSLS for AR(1) denoted as TSLS-1, TSLS
for AR(2) denoted as TSLS-2 and ATSLS in different conditions. According to Table 4, it is seen that
similar results can be obtained by using TSLS-1 and TSLS-2 which are more efficient than OLS.
However, ATSLS is the best one for obtaining efficient parameter estimates when comparing MSE and
Eff of these four approaches.

The last SETAR disturbances are generated by using the model

0.5¢.,+2y, if g,<1
: (16)
08s,+y if g,>1

Y]
I

where v is the same as defined before, the delay is 1 and the threshold is 1. This SETAR(1; 1, 1) model

is designed in a specific form through each regime. &, is stationary and Figure 5 shows a series from

(16). The characteristics of nonlinearity can be seen more clearly in Figure 5. Asymmetry is evident in the
downward-upward jumps and the movement of the series describes the notion of a limit cycle.
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Figure 5. Plot of a simulated SETAR(Z; 1, 1) series with a specific form

=
—
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The results in the presence of these type disturbances are given in Table 5. It can be determined in view of
MSE and Eff that ATSLS has the best efficiency for each different condition. However, the values of
MSE and Eff for TSLS and ATSLS can be closer for large sample sizes.

In order to investigate how ATSLS works on small sample cases, the simulation study is performed for
n =25 and the results are given in Table 6. TSLS used for (15) represents the most efficient one of TSLS-1
and TSLS-2. According to Table 6, it can be seen that ATSLS has better performance than the others also
for the small sample size.
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Parameter n o OLS TSLS ATSLS
Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff
p1 50 0.5 2.0084 0.0200 4.71*%10* 1 2.0008 0.0138 1.91*10* 2.47 2.0005 0.0131 1.71*10* 2.76
1.9584 0.0350 29.6*10* 1 1.9933 0.0307 9.88*10* 2.99 1.9961 0.0299 9.06*10* 3.26
1.9284 0.1711 344*10* 1 1.9896 0.1038 109*10* 3.16 1.9910 0.0995 99.8*10* 3.45
100 0.5 2.0083 0.0186 4.15%10* 1 2.0009 0.0112 1.26*10* 3.31 2.0010 0.0110 1.22*10* 3.41
1 1.9748 0.0268 13.5*10* 1 1.9987 0.0193 3.76*10*  3.59 1.9992 0.0189 3.58*10* 3.77
3 2.0639 0.0996 140*10* 1 2.0102 0.0664 45.1%10* 3.10 2.0061 0.0642 41.6%10* 3.37
250 0.5 2.0057 0.0097 1.27*%10* 1 2.0000 0.0064 0.41*10* 3.07 2.0000 0.0063 0.39*10%* 3.25
1 1.9883 0.0182 4.67*10* 1 1.9994 0.0126 1.60*10* 2.92 1.9996 0.0124 1.55*104 3.02
3 2.0477 0.0586 57.0*10* 1 2.0027 0.0408 16.7%10* 3.42 2.0022 0.0398 15.9%10“ 3.60
500 0.5 2.0048 0.0074 0.78*10* 1 2.0002 0.0046 0.21*10* 3.75 2.0001 0.0045 0.20*10* 3.90
1 2.0035 0.0171 3.05*10* 1 1.9999 0.0091 0.83*10“* 3.66 1.9998 0.0090 0.81*10* 3.76
3 2.0278 0.0402 23.9*10* 1 2.0018 0.0265 7.07*10*4 3.38 2.0013 0.0262 6.88*10* 3.47
52 50 0.5 -5.0138 0.0189 5.49*10 1 -5.0018 0.0132 1.78*10* 3.08 -5.0017 0.0128 1.66*10* 3.30
1 -5.0630 0.0529 67.6*10* 1 -5.0098 0.0417 18.4*10* 3.68 -5.0098 0.0400 17.0*10* 3.99
3 -5.0950 0.1746 395*10* 1 -5.0188 0.1055 115*10* 3.44 -5.0076 0.1001 101*10“ 3.92
100 0.5 -5.0103 0.0172 4.03%10* 1 -5.0010 0.0112 1.27*10*  3.17 -5.0009 0.0108 1.16*10“ 3.46
1 -4.9761 0.0278 13.4*10* 1 -4.9972 0.0206 4.34%10* 3.09 -4.9981 0.0199 3.99%10% 3.37
3 -5.0622 0.0978 134*10 -5.0009 0.0652 42.6%10* 3.15 -5.0004 0.0628 39.5%10% 3.40
250 0.5 -5.0050 0.0106 1.36*10* 1 -5.0002 0.0070 0.48*10* 2.82 -5.0002 0.0068 0.46*10* 2.93
1 -4,9923 0.0191 4.26*10* 1 -4.9993 0.0120 1.45*10* 2.93 -4.9993 0.0117 1.38*10* 3.08
3 -5.0435 0.0519 45.9%10* 1 -5.0025 0.0347 12.1*10* 3.79 -5.0013 0.0342 11.7%10* 3.91
500 0.5 -5.0000 0.0067 0.45*10 -5.0000 0.0043 0.18*10* 2.47 -5.0000 0.0042 0.18*10* 2.53
1 -4.9907 0.0126 2.45%10 -5.0000 0.0093 0.86*10* 2.83 -5.0003 0.0091 0.83*10* 2.93
3 -4.9839 0.0404 18.9*10* -4.9994 0.0281 7.90%10*  2.39 -4.9998 0.0279 7.77*10% 2.43
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Table 6. Simulation results (approximate values) for the small sample size of different SETAR-type autocorrelated disturbances

Equation Parameter n o OLS TSLS ATSLS
Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff Mean Std. Dev. MSE Eff
(12) b1 25 0.5 2.0015 0.0217 4.73*10* 1 1.9975 0.0149 2.28*10* 2.07 1.9987 0.0140  1.99*10* 2.38
2.0209 0.0423 22.3*10* 1 2.0059 0.0288 8.63*10* 2.58 2.0023 0.0273 7.52*10* 2.96
1.8833 0.1231 288*10 1 1.9589 0.0940 105*10%  2.73 1.9678 0.0901  91.6*10* 3.14
(13) b1 25 0.5 2.0153 0.0198 6.27*104 1 2.0053 0.0162 2.92*10* 215 2.0040 0.0152 2.48*10* 253
1 2.0293 0.0536 37.3*10% 1 2.0119 0.0381 16.0*10* 2.34 2.0123 0.0372 15.3*10* 243
3 1.8655 0.1251 337*104 1 1.9359 0.1037 149*104  2.27 1.9484 0.1008 128*104 2.63
(15) p1 25 0.5 1.9959 0.0387 15.1*10* 1 1.9955 0.0255 6.69*10* 2.26 1.9970 0.0231  5.43*10* 279
1 2.0100 0.0605 37.6*10* 1 2.0030 0.0396 15.8*10* 2.38 2.0026 0.0373 14.0*10* 2.69
3 2.0589 0.1280 199*10 1 2.0134 0.0877 78.6*10* 253 2.0120 0.0830  70.4*10* 2.82
(16) b1 25 0.5 2.0032 0.0385 14.9*10* 1 2.0040 0.0246 6.24*10* 2.39 2.0025 0.0231  5.39*10* 2.77
1 1.9624 0.0501 39.2*104 1 1.9906 0.0392 16.3*10* 241 1.9941 0.0363 13.5*10* 2.90
3 21211 0.1280 310*104 1 2.0234 0.1054 117*10%  2.66 2.0171 0.1016 106*104 2.93
(12) S 25 0.5 -4.9876 0.0187 5.01*10* 1 -4.9981 0.0148 2.23*10* 2.25 -4.9987 0.0138 1.93*10* 2.60
1 -4.9573 0.0434 37.1*10* 1 -4.9868 0.0310 11.4*10* 3.26 -4.9875 0.0295  10.3*10* 3.61
3 -4.9290 0.0875 127*104 -4.9868 0.0611 39.1*10* 3.25 -4.9869 0.0602  37.9*10% 3.35
(13) p2 25 0.5 -4.9861 0.0246 8.01*10* -4.9948 0.0180 3.50*10* 2.29 -4.9962 0.0166  2.89*10* 2.77
1 -5.0726 0.0563 84.3*10* -5.0398 0.0472 38.2*10* 2.21 -5.0324 0.0442  30.0*10* 2.81
3 -4.8593 0.1401 394*104 -4.9375 0.1131 167*10“  2.36 -4.9459 0.1111 153*10“  2.58
(15) b2 25 0.5 -4.9960 0.0236 5.73*10* 1 -4.9999 0.0169 2.84*10* 2.01 -4.9995 0.01563  2.35*10% 2.44
1 -4.9962 0.0513 26.4*%10% 1 -4.9986 0.0320 10.3*10% 257 -4.9996 0.0298  8.87*10* 2.98
3 -5.0889 0.1261 238*104 1 -5.0181 0.0882 81.1*10* 2.93 -5.0157 0.0843  73.5*10* 3.24
(16) b2 25 0.5 -5.0041 0.0303 9.36*10* 1 -4.9998 0.0214 457*10* 2.05 -5.0008 0.0196  3.86*10* 2.42
-4.9458 0.0702 78.6*104 1 -4.9843 0.0542 31.8*10* 2.47 -4.9859 0.0515  285*10* 275
-5.1463 0.1482 434*10* 1 -5.0477 0.1261 182*10“  2.39 -5.0332 0.1207 157*10%  2.77
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4. CONCLUSION AND DISCUSSION

This paper is concerned with the multiple linear regression model in which the disturbances are coming
from a class of nonlinear models known as SETAR-type autocorrelation. Five different SETAR models
are used to generate the autocorrelated disturbances in this study. Moreover, the parameter estimations are
examined under different conditions in the presence of SETAR disturbances. An adapted TSLS method
has been proposed for estimating parameters under this new situation.

The main conclusion achieved from the numerical results is emphasized that ATSLS can give more
efficient parameter estimates than the others for multiple linear regression in the presence of SETAR
disturbances. Also, the efficiencies of TSLS and ATSLS can approach to each other in some cases.
However, the results can vary to the experiments performed. Therefore, the efficiencies for TSLS and
ATSLS may or may not generalize to different SETAR models and conditions like some other studies in
the literature. In future studies, the problem of autocorrelated disturbances can be evaluated in view of
multiple-threshold SETAR models with high-dimensional structures on large data sets.
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