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1. INTRODUCTION

The following definitions are well known in the literature.
Definition 1.1

A function f: 1 < R— R issaid to be convex if f (Ax+(1—-2)y) <A (X)+(@—A)f(y) holds for all
x,yel and A€[0,1].

Definition 1.2 [1]

Let Se (O, 1] be a real number. A function f :R, — R is said to be s-convex (in the second sense) if
f(AX+@Q-A)y)<AF(X)+(@—A)° f(y) holds forall X,y and A [0,1].

In recent years, the following Hermite--Hadamard inequalities for s-convex functions have been proved.

Theorem 1.1 [2]

Let f:1 <R, — R be differentiable on I°and a,b e | with a<b. If |f'(x)| %is s-convex on [a, b] for
some fixed s €(0.1] and g >1, then
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Theorem 1.2 [3]

Let f :1 =R, —>R be differentiable on 1°, a,be |l with a<b,and f'eL,([ab]). If | f'(x)|"is
s-convex on [a, b] for some fixed s e(O,l] and g >1, then
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Theorem 1.3 [4]

Let f:1 <R, —R bedifferentiable on I°, a,be I with a<b,and ' eL([a,b]). If |f'(x)| is

s-convex on [a,b], then

‘ {f(a) 4f(a+bj f(b)}—— f (x)dx

(s—4) 6" +2x5"2 —2x3"2 42
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for some s e(0,1].

There have been more Hermite-Hadamard type inequalities in, for example, [5, 6, 7, 8, 9, 10] and closely
related references therein.

In this paper, by virtue of an integral identity and the Holder inequality for integrals, we will establish
some new integral inequalities of the Hermite-Hadamard type for s-convex functions, derive some new
inequalities for common convex functions,and apply these new inequalities to construct some inequalities
for special means.

2. ALEMMA

Before stating our main results, we need a lemma.

Lemma 2.1
Let f : 1 = R— R be a differentiable function on 7°, and a,be | with a<b.If f'e Li([a, b]) then
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- [f(a) 8f(a+bj f(b)}—j F (x)dx

=b%4a :Kg—t) (ta+(1 t)aLbj (%—tjf (taT”’+(1 t)bﬂ dt.

Proof. By integration by parts, we have
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Lemma 2.1 is thus proved.

3. INEQUALITIES OF THE HERMITE-HADAMARD TYPE FOR S-CONVEX FUNCTIONS

Now we are in a position to establish some new inequalities of the Hermite-Hadmard type for s-convex
functions.
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Theorem 3.4

Let f:1 R, — R be differentiable on 1°, a,be l with a<b, and f'eL,([a,b]). If |f'(x)|is an
s-convex functions on [a, b] for some fixed S e(O,l] and =1, then

a+b b—a(17)}™ 1 v
‘_[f() Sf( 2 j f(b)}—J i )dx{ (50) {55*2(s+1)(s+2)}
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f(a—;bj +(2-45+2+55+1(s—3))|f’(b)|q} }

Proof. Since |f'(X)| %is an s-convex function on [a, b], from Lemma 2.1 and Hoélder’s integral inequality,
we have
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The proof is completed.
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Corollary 3.1

Under the assumptions of Theorem 3.4, if S=1, then

_{f( )+ Bf(a;bj f(b)}—— (0 X{_l?(zboga)(%jvq
x{{26|f'(a)|q+59 f’(a_;bj ‘T/‘M{w f’(a%bj q+26|ff(b)|q}l/q} .

Corollary 3.2
Under the assumptions of Theorem 3.4, if =S =1, then

‘_{f() 8f(a+bj f(b)}——_[ f()d><4 {13|f()|+59

(%)
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Theorem 3.5

Let f:1 R, — R be differentiable on 1°, a,be l with a<b, and f'eL,([a,b]). If |f'(x)|®is an

s-convex functions on [a, b] for some fixed s €(0.1] and q>1, then

1 a+b b—al (q-1)(a@ @D 1)
‘1 {f(a) Sf( . j f(b)} .[f()x‘ { }

5(2q -1)/(9-1) (2q 1)
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Proof. Since | '(x)|*is an s-convex function on [a,b], from Lemma 2.1 and Hélder’s integral inequality,
we have

‘—{f() 8f(a+bj f(b)}bflaj:f(X)dX‘
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The proof is completed.
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Corollary 3.3

Under the assumptions of Theorem 3.5, if S=1, then

(2g-1)/(a-D) a
w12 o] 2o T

B qva 1 b Ve
£/(a)|° +|f ‘f (a+ j +|f'(b))°
2 2

4. APPLICATIONS TO SPECIAL MEANS

Now we apply some new inequalities of the Hermite--Hadamard type for s-convex functions to construct
some inequalities for special means.

For positive numbers b>a >0, define

bs+1 _ as+1 Vs
(s+1)(b- a)}

a+b

Aa,b) = and L. (a, b){

where s=0,-1.

s+l

Now let f(x)= X
s+1

for x>0 and 0<s<1,then f'(X)=x°.So

[Xx+@-2)y]° < x5 +@-2)°y*

for X, y>0 and /16[0, 1]. This means that f'(x) for x>0 is an s-convex function on R, and

f@+fk) Al b)) 8 f(a+b)_4A5*1(a,b) R _LSiab)
10  5(s+1) '10 \ 2 ) 5(s+1) 'b-a- s+1

By Theorem 3.4, we obtain Theorem 4.6 below.
Theorem 4.6

Let b>a>0,0<s<1, and g>1. Then

/q
1 pos . . 5(b 176+ 1™ 1
Ala, b )+ 4A% (3, b)~5L % (a,b) | < [ - 5572
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<{[ (242 +5(s-3))a +( 5" (45 +3) +2) A%(a,b) | "

+[(5(4s+3)+2) A (a b)+(2-477 + 5 (s-3) o] V|
By Theorem 3.5, we can obtain Theorem 4.7 below.
Theorem 4.7

Let b>a>0,0<s<1, and g>1. Then

‘A(asﬂ' bs+1)+ 4AS*1(a, b)—5LS*1(a, b) ‘

S+l

< 5(b-a) {(s +1) (-2 (4(2q71)/ (@) 4

1) e /g 1/q
4 5@/ @D (29-1) } {[ a*+ A%(a, b)] + [Asq (a,b) +b5q] } .

5. CONCLUSIONS

In this paper, by virtue of an integral identity in Lemma 2.1 and the famous Holder integral inequality, we
establish some new inequalities of the Hermite-Hadamard type for s-convex functions in Theorems 3.4
and 3.5, derive some new inequalities for common convex functions in Corollaries 3.1 to 3.3, and apply
these new inequalities to construct some inequalities for special means in Theorems 4.6 and 4.7.
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