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1. INTRODUCTION AND PRELIMINARIES 

 

Generalized  groups were deduced from a geometrical structure and introduce by Molaei [1]. It is an 

fascinating extension.  Because each element has an identity element for itself in Molaei’s generalized 

groups. So generalized groups is not admitting the unique identity element for each element. If this 

feature is considered, every group is a generalized group. Properties of generalized groups as a new 

structure from algebraic, and topological viewpoints are studied. [1–7].  

As an algebraic structure generalized group has important physical reasons for its definition in the unified 

guage theory. The unified theory has directly important connection with the geometry of space. It 

describes particles and their interactions in a quantum mechanical manner and the geometry of the space-

time through which they are moving. Currently, the most promising is super-string theory in which the so 

called elementary particles are described as vibration of tiny (planck-length) closed loops of strings. In 

this theory the classical law of physics, such as electromagnetism and general relativity, are modified at 

time distances comparable to the length of the string. This notion of ’quantum space-time’ is the goal of 

unified theory of physical forces. 

Therefore the unified theory offers a new insight into the structure, order and measures of the quantum 

world of the entire universe.  It is known that unified theories are based on the geometry of a space and 

the metric can determine the geometry [8]. Because of this physical forces mathematicians and physicists 

have been working on constructing an convenient unified theory  kind of  twistor and isotopies theories. 

Now generalized groups are well known as a structure that used for constructing of unified geometric and 

electroweak theories which is builded on Minkowskian axioms and gravitational theories which is builded  

on Riemannian axioms.  

http://dergipark.gov.tr/gujs
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Furthermore this kind of structure appears in genetic codes. Generalized groups have been  applied to 

DNA analysis by transforming the set of DNA sequences  to  generalized group in [9]. 

 

Another important concept in this present paper are sheaves which were originally introduced by Leray 

[10] in 1946. The modified definition of sheaves now used was given by Lazard, and appeared first in the 

Cartan Sem. [11] 1950-51. Sheaf theory provides a language for the discussion of geometric objects of 

many different kinds. Nowadays it is applied in topology and (more primarily) in modern algebraic 

geometry, where it has been used successfully as a tool for the solution of several problems which are 

existed for a long time.  

 

Yildiz constructed an algebraic sheaf by means of the topological group in [12]. This is our motivation for 

costructing a sheaf by the means of the topological generalized group in this paper. We replace 

topological group with topological generalized group construct an algebraic sheaf by means of the 

topological generalized group introduce in [1]. 

 

In this section we  gave fundamental definitions and notions in connection with the generalized groups, 

topological generalized groups and sheaves. We can start by giving  some basic  notions of generalized 

group that  was first introduce in 1999 [1].  

Definition 1. [1]  Let 𝐺 be generalized group and a non-empty set. An operation is  called multiplication 

subject, if  

 

(i) (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐),  for all 𝑎, 𝑏, 𝑐 ∈ 𝐺 (associative law); 

(ii) There exists a unique 𝑒(𝑎) ∈ 𝐺 for each 𝑎 ∈ 𝐺, such that 𝑎𝑒(𝑎) = 𝑒(𝑎)𝑎 = 𝑎  

(iii) There exists 𝑎−1 ∈ 𝐺 for each 𝑎 ∈ 𝐺, such that 𝑎 𝑎−1 =  𝑎−1 𝑎 = 𝑒(𝑎) are  valid  on 𝐺. 

 

Example 1. [7]  The set 𝐺 = {[
𝑎 𝑏
𝑐 𝑑

] : 𝑎, 𝑏, 𝑐 and 𝑑 are real numbers } with the operation  

 

([
𝑎 𝑏
𝑐 𝑑

] , [
𝑒 𝑓
𝑔 ℎ

]) → [
𝑎 𝑓
𝑔 𝑑

], 

 

is a generalized group. If  

 

𝑒(𝐴) = [
𝑎 𝑓
𝑔 𝑑

] and 𝐴−1 = [
𝑎 𝑓
𝑔 𝑑

], 

 

for all 𝐴 ∈ 𝐺,  where 𝑒(𝐴) and 𝐴−1 are the identity and the inverse of matrix all 𝐴 ∈ 𝐺respectively.  

 

Example 2. [6]  Let  𝐺 = ℝ × {ℝ ∖ {0}}. Then with the multiplication (𝑎, 𝑏)(𝑐, 𝑑) = (𝑏𝑐, 𝑏𝑑) is a 

generalized group. Then, 𝑒(𝑎, 𝑏) = (𝑎 𝑏⁄ , 1) and (𝑎, 𝑏)−1 = (𝑎 𝑏2⁄ , 1 ∕ 𝑏) for all (𝑎, 𝑏) ∈ 𝐺. 
 

Example 3. [13]  If the set of 𝐺 with the multiplication 𝑚  is  generalized group, therefore we can say that 

the set of  𝐺 × 𝐺  is a generalized group. with the multiplication  

 

𝑚1((𝑎, 𝑏), (𝑐, 𝑑))=(𝑚(𝑎, 𝑐), 𝑚(𝑏, 𝑑)). 
 

For this generalized group the identity element and inverse element is defined by 𝑒1(𝑎, 𝑏) = (𝑒(𝑎), 𝑒(𝑏)) 

(𝑎, 𝑏)−1 = (𝑎−1, 𝑏−1) for each  (𝑎, 𝑏) ∈ 𝐺 × 𝐺 respectively. 

 

Theorem 1. [7] Let 𝐺  be a a generalized group. Then  each  𝑎 ∈ 𝐺  has a unique inverse. 

 

Example 4. [7,14] Let 𝑆 = {1,2}. Then 𝑆 with the binary operation: 2.2 = 2, 2.1 = 1.2 = 2, 1.1 = 1 is a 

semigroup. Since the identity of 2 is not unique in 𝑆,  𝑆 is a semigroup, but it is  not a generalized group, 
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One can  easily deduce that every group is a generalized group from Definition 1. But  the next lemma 

shows that the converse of the the definition of the generalized group may not be true.  

 

Lemma 1. [4] If  𝐺 is a generalized group and 𝑎𝑏 = 𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝐺, then 𝐺 is an abelian group. 

 

Definition 2. [6] Let 𝐻 be a non-empty subset of a generalized group 𝐺. Then 𝐻 is a generalized 

subgroup of 𝐺 if and only if for all 𝑎, 𝑏 ∈ 𝐻, 𝑎𝑏−1 ∈ 𝐻.  

Theorem 2. [7] If 𝐺 be a generalized group and   

 

𝐺𝑎 = 𝑒−1{𝑒(𝑎)}={𝑥 ∈ 𝐺: 𝑒(𝑥) = 𝑒(𝑎)} 

 

for  𝑎 ∈  𝐺, then 𝐺𝑎  is a generalized subgroup of  𝐺. Furthermore, 𝐺𝑎 is a group. 

 

Let us enumarate  some elementary features related to the structure of generalized groups with following 

lemma.  

 

Lemma 2. [2]  If 𝐺 is a generalized group, then 

 

(i) 𝑒(𝑎) = 𝑒(𝑎−1) and 𝑒(𝑒(𝑎)) = 𝑒(𝑎) where 𝑎 ∈ 𝐺.  

(ii) (𝑎−1)−1 = 𝑎 where 𝑎 ∈ 𝐺. 

(iii) The set {𝐺𝑎 = 𝑒−1{𝑒(𝑎)}: 𝑎 ∈ 𝐺} is a partitation of groups for 𝐺. 
 

We here state definition of a topological generalized group which was defined by Molaei [1] and give  

simpliest features of  generalized groups from topological view  was introduced  in [1, 7] .  

 

Definition 3. [7] Let 𝐺 is is a set which satisfies the following conditions: 

 

(i) 𝐺 is generalized group; 

(ii) 𝐺 is a Hausdorff topological space; 

(iii) The mappings 

𝑚1: 𝐺 × 𝐺 → 𝐺, ( 𝑎, 𝑏 ) → 𝑎𝑏 
and  

𝑚2: 𝐺 → 𝐺 , 𝑎 → 𝑎−1 
are continuous mappings.  

 

Then 𝐺 is called a topological generalized group. 

 

Let 𝑎 ∈  𝐺 and define the product of 𝐺 topological group on  𝐺𝑎 = 𝑒−1({𝑒(𝑎)}), then 𝐺𝑎  is a topological 

group, and 𝐺 is disjoint union of these topological groups so it can be written in the form   𝐺 = ⋁𝑎∈𝐺𝐺𝑎. 

 

Example 5. [7] Every non-empty Hausdorff topological space 𝐺 with the operation: 

 

𝑚: 𝐺 × 𝐺 → 𝐺 

(𝑎, 𝑏) ↦ 𝑎 
is a topological generalized group.  

 

Example 6. [1] Let  𝐺 = 𝐼𝑅 × (𝐼𝑅 ∖ {0}) is a set and define a  topology induced by a Euclidean metric 

and the multiplication (𝑎, 𝑏). (𝑐, 𝑑) = (𝑏𝑐, 𝑏𝑑) on  𝐺.  Then 𝐺 is a topological generalized group.  

 

Definition 4.  [15]  Let 𝑋, 𝑆 both topological spaces, and 𝜋: 𝑆 → 𝑋 be a locally topological map. Then the 

pair 𝑆 = (𝑆, 𝜋) or shortly 𝑆 is called a sheaf over 𝑋. 
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In the definition of a sheaf, 𝑋 is not assumed to satisfy any separation axioms (see in [16]). 𝑆 is called the 

sheaf space, 𝜋 the projection map, and 𝑋 the base space. Let 𝑥 be an any point in 𝑋 and 𝑉 be an open 

neighborhood of 𝑥.  A section over 𝑉 is a continuous map 𝑠: 𝑉 → 𝑆 such that  𝜋 ∘ 𝑠 = 𝑖𝑑𝑉 .  
 

Let us denote the collection of all sections of 𝑆, by 𝛤(𝑉, 𝑆) and recall the Whitney sum. 

 

Definition 5. [17,18] Let  (𝑆1, 𝜋1), (𝑆2, 𝜋2), … , (𝑆𝑘, 𝜋𝑘) be sheaves on 𝑋. Construct product  𝑀𝑊 =
𝛤(𝑊, 𝑆1) × 𝛤(𝑊, 𝑆2) × … × 𝛤(𝑊, 𝑆𝑘) for  𝑉, 𝑊 ⊂ 𝑋 open sets. Let  𝛤𝑉

𝑊:  𝑀𝑊 →  𝑀𝑉   defined by 

𝛤𝑉
𝑊(s)=(𝑠1|𝑉, 𝑠2|𝑉 , … , 𝑠𝑘|𝑉) for  (𝑠1, 𝑠2, … , 𝑠𝑘) ∈ 𝑀𝑊  and 𝑉 ⊂ 𝑊. Then  {𝑀𝑊, 𝛤𝑉

𝑊} is a presheaf. The 

Whitney sum of 𝑆1, 𝑆2 … , 𝑆𝑘 sheaves is a sheaf defined by this presheaf and denoted by   𝑆∗ = 𝑆1 ⊕
𝑆2 ⊕ … ⊕ 𝑆𝑘. 

 

Now we can say that the Whitney sum of sheaves (𝑆1, 𝜋1), (𝑆2, 𝜋2), … , (𝑆𝑘, 𝜋𝑘): 
 

𝑆∗ = 𝑆1 ⊕ … ⊕ 𝑆𝑘 ≔  {𝜎 = (𝜎1, … , 𝜎𝑘) ∈ 𝑆1 × … × 𝑆𝑘: 𝜋1(𝜎) = ⋯ = 𝜋𝑘(𝜎)} 

= ⋁((𝑆1)𝑥 × … × (𝑆𝑘)𝑥)

𝑥∈𝑋

 

 

is a set over 𝑋 topological spaces. Then the map 𝜋:  𝑆∗ =  𝑆1 ⊕ 𝑆2 ⊕ … ⊕ 𝑆𝑘 → 𝑋,                              
𝜋 (𝜎) = (𝜋𝑖 ∘ 𝑃𝑖)(𝜎)   is a local homeomorphism, hence 𝑆∗ = 𝑆1 ⊕ 𝑆2 ⊕ … ⊕ 𝑆𝑘 is a sheaf  over 𝑋. 
 

Theorem 3. [19] Let (𝑆𝑖, 𝜋𝑖), 𝑖 = 1, . . . , 𝑘 be sheaves and 𝑆∗ = 𝑆1 ⊕ 𝑆2 ⊕ … ⊕ 𝑆𝑘 be Whitney sum of 

𝑆1, 𝑆2 … , 𝑆𝑘. Then there is bijection 𝜋: 𝑆𝑥
∗  → (𝑆1 )𝑥 × (𝑆2 )𝑥 ×. . .× (𝑆𝑘  )𝑥 defined by 

(𝑊, (𝑠1, 𝑠2, … , 𝑠𝑘))𝑥 → (𝑠1(𝑥), 𝑠2(𝑥), … , 𝑠𝑘(𝑥)). 
 

Theorem 4. [19] Let (𝑆𝑖, 𝜋𝑖), 𝑖 = 1, … , 𝑘  be sheaves on 𝑋. Then the canonic projection  

 

𝑃𝑖: 𝑆1 ⊕ 𝑆2 ⊕ … ⊕ 𝑆𝑘 ⟶ 𝑆𝑖,  𝑃𝑖(𝜎1, 𝜎2, … , 𝜎𝑘) = 𝜎𝑖 
 

is a sheaf morphism.  

 

Let 𝑠𝑖 ∈  𝛤(𝑊𝑖 , 𝑆𝑖) for 𝑖 = 1, … , 𝑘. Define 𝑠1 ⊕ … ⊕ 𝑠𝑘: 𝑊 ⟶ 𝑆∗ = 𝑆1 ⊕ 𝑆2 ⊕ … ⊕ 𝑆𝑘, such that(𝑠1 ⊕

… ⊕ 𝑠𝑘)(𝑥) = (𝑠1(𝑥), 𝑠2(𝑥), … , 𝑠𝑘(𝑥)). Clearly (𝑠1, 𝑠2, … , 𝑠𝑘) ∈ 𝑀𝑊 and 𝑟(𝑠1, 𝑠2, … , 𝑠𝑘) =

(𝑊, (𝑠1, 𝑠2, … , 𝑠𝑘))
𝑥

= (𝑠1(𝑥), 𝑠2(𝑥), … , 𝑠𝑘(𝑥)) = (𝑠1 ⊕ … ⊕ 𝑠𝑘)(𝑥).  

Therefore since  𝑠1 ⊕ … ⊕ 𝑠𝑘 = 𝑟(𝑠1, 𝑠2, … , 𝑠𝑘) ∈  𝛤(𝑊, 𝑆1 ⊕ 𝑆2 ⊕ … ⊕ 𝑆𝑘) we have 

 

𝛤(𝑊, 𝑆1 ⊕ 𝑆2 ⊕ … ⊕ 𝑆𝑘) = 𝛤(𝑊, 𝑆1) × 𝛤(𝑊, 𝑆2) × … × 𝛤(𝑊, 𝑆𝑘). 
 

Furthermore since 𝑊 ⊂ 𝑋 is open set and 𝜋   is a local homeomorphism 𝑠(𝑊) is open set in 𝑆, and 𝑆 is 

union of these type of open sets. Also if 𝑠1, 𝑠2 ∈ 𝛤(𝑊, 𝑆) and 𝑠1(𝑥) = 𝑠2(𝑥) for 𝑥 ∈ 𝑋  then 𝑠1 = 𝑠2 in  

𝑊. So we can say that every element of S can be seen as a  substance of sections in S.  

 

 

2. MAIN RESULTS 

 

2.1. The Sheaf of The Groups Formed by Topological Generalized Group Over Topological Spaces 

 

Let 𝒞 be the category of the topological spaces 𝑋 satisfying the property that all pointed 

spaces (𝑋, 𝑥) with 𝑥 ∈ 𝑋 have same homotopy type. This category includes all topological vector spaces. 

 

Let us take 𝑋 ∈ 𝒞 as a base set if (𝑃, 𝑝0) pointed topological space is any topological group with identity 

element 𝑝0 as base point. Then the set of homotopy class of homotop maps preserving the base point 



1206 Hatice ASLAN, Hakan EFE/ GU J Sci, 31(4): 1202-1211 (2018) 

from (𝑋, 𝑥) to (𝑃, 𝑝0)obtained for each 𝑥 ∈ 𝑋, (𝑋, 𝑥) pointed topological spaces i.e. 𝑆(𝑋) =
⋁𝑥∈𝑋[(𝑋, 𝑥), (𝑃, 𝑝0)]. Thus 𝑆(𝑋) is a set over 𝑋.  
 

If (𝑃, 𝑝0) pointed topological space is any topological group with the identity element of the group is 𝑝0, 

we can construct a sheaf over 𝑋 by using following theorem which is given by Yildiz [12].  

 

Theorem 5. [12] Let (𝑃, 𝑝0) be any pointed topological group with the identity element 𝑝0and 𝑋 ∈ 𝒞. If 

𝜋: 𝑆(𝑋) → 𝑋 such that 𝜋(𝜎) = 𝜋([𝑓]𝑥) = 𝑥  for   𝜎 = [𝑓]𝑥 ∈  𝑆(𝑋), 𝑥 ∈ 𝑋 then there is the natural 

topology over 𝑆(𝑋) such that 𝜋 is locally topological with respect to this topology. Thus the pair (𝑆, 𝜋) is 

a sheaf over  𝑋. 

 

In Theorem 5, Yildiz by defining 𝑆(𝑋) = ⋁𝑥∈𝑋[(𝑋, 𝑥), (𝑃, 𝑝0)] and  𝜋: 𝑆(𝑋) → 𝑋  such that 𝜋(𝜎) = 𝑥, 

𝑥 ∈ 𝑋 and a mapping 𝑠: 𝑉 → 𝑆(𝑋) as follows: 

 

If 𝑥0 ∈ 𝑋, then there exists a group [(𝑋, 𝑥0), (𝑃, 𝑝0)] in 𝑆(𝑋).  If 𝑦 is any point in 𝑉, Then 

(𝑋, 𝑥0)and (𝑋, 𝑦) are having same homotopy type where  𝑉 = 𝑉(𝑥0) open neighborhood of 𝑥0 in 𝑋.  
Therefore, there is a homotopy equivalence map Φ: (𝑋, 𝑥0) →  (𝑋, 𝑦).  

Figure 1. Diagram 

 

Hence from the diagram in Figure 1, the map ℎ = 𝑓 ∘ Φ: (𝑋, 𝑦) → (𝑃, 𝑝0)  is continuous and base-point 

preserving.  [ℎ]𝑦 ∈ [(𝑋, 𝑦), (𝑃, 𝑝0)] is a homotopy class of map 𝑓 ∘ Φ = ℎ.  

 

Therefore, we define 𝑠(𝑦) = [ℎ]𝑦. In this way 𝑠 is well defined and  (𝜋 ∘ 𝑠)(𝑦) = 𝜋(𝑠(𝑦)) = 𝑦 for each 

𝑦 ∈ 𝑉. Therefore 𝜋 ∘ 𝑠 = 𝐼𝑉. Thus 𝑠 is called a section of 𝑆(𝑋) over 𝑉. 

 

Let us denote the collection of all sections of 𝑆 (𝑋), by Γ(𝑉, 𝑆). A topology-base is constructed on 𝑆(𝑋) 

by using s(V)=⋁𝑦∈𝑉[ℎ]𝑦,  

 

𝛽 = {𝑠(𝑉) ∶  𝑉 = 𝑉(𝑥) ⊂ 𝑋, 𝑥 ∈ 𝑋, 𝑠 ∈ 𝛤(𝑉, 𝑆)}. 

 

Thus gives a natural topology on 𝑆(𝑋).  Therefore 𝑆(𝑋) is a topological space.  

 

Therefore the  sheaf (𝑆 (𝑋), 𝜋)  given by Theorem 5 is a sheaf of the homotopic groups formed by 

topological group 𝑃 over (𝑋, 𝑥) pointed topological spaces [12]. The stalk of the sheaf (𝑆(𝑋) , 𝜋) over 𝑋 

is the group [(𝑋, 𝑥), (𝑃, 𝑝0)] = 𝜋−1 (x) denoted by 𝑆 (𝑋) 𝑥 for every 𝑥 ∈ 𝑋. 
 

𝛤(𝑉, 𝑆)  is a group with pointwise multiplication  defined by  

 

(𝑠1𝑠2)(𝑦) = 𝑠1(𝑦)𝑠2(𝑦),  𝑠1,𝑠2 ∈  𝛤(𝑉, 𝑆)  and 𝑦 ∈ 𝑉. 

 

And in this group the  identity element is  𝐼: 𝑉 → 𝑆 which is obtained by means of the identity element of 

[(𝑋, 𝑥), (𝑃, 𝑝0)] and the inverse element of 𝑠 ∈  𝛤(𝑉, 𝑆) is 𝑠−1  ∈  𝛤(𝑉, 𝑆) which is obtained by the 

inverse element of [(𝑋, 𝑥), (𝑃, 𝑝0)]. Therefore (𝑆(𝑋) , 𝜋)  is an algebraic sheaf with the operation 
(. ): 𝑆(𝑋) ⊗ 𝑆(𝑋) → 𝑆 (𝑋) (that is,  (𝜎1, 𝜎2) → 𝜎1. 𝜎2 for every 𝜎1, 𝜎2 ∈ 𝑆 (𝑋)   is continuous [12].  

 

(𝑃, 𝑝0)    (𝑋, 𝑥0) 

  

(𝑋, 𝑦) 

𝑓 

ℎ = 𝑓 ∘ 𝛷 
Φ 
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Now let begin to construct the sheaf over 𝑋 by the finite pointed topological generalized group 𝑃.  We 

begin with constructing the Whitney sum of sheaves  𝑆1(𝑋), … , 𝑆𝑘(𝑋)   i. e.    𝑆∗(𝑋) = 𝑆1(𝑋) ⊕ … ⊕
𝑆𝑘(𝑋).  

 

Let us now define the map 𝜋: 𝑆∗(𝑋) → 𝑋, 𝜋(𝜎) = (  𝜋𝑖 ∘ 𝑃𝑖)(𝜎) for where 𝑃𝑖   is a canonic projection for 

𝑖 = 1, … , 𝑘.  

If 𝑥0 ∈ 𝑋, then there exists groups [(𝑋, 𝑥0), (𝑃, 𝑝𝑖)] in 𝑆𝑖(𝑋) for 𝑖 = 1, … , 𝑘. Let            𝜎 =
(𝜎1, 𝜎2, … , 𝜎𝑘) = ([ℎ1]𝑥0

  , [ℎ2]𝑥0
  , … , [ℎ𝑘]𝑥0

) be a homotopy class in the 

group  ∏𝑖=1,…,𝑘 [(𝑋, 𝑥0), (𝑃, 𝑝𝑖)]. If 𝑦 is any point in  𝑉, then (𝑋, 𝑥0) and (𝑋, 𝑦)  are having the same 

homotopy type. Therefore, there is a homotopy equivalence map Φ: (𝑋, 𝑦) ⟶ (𝑋, 𝑥0). Hence from the 

diagram in Figure 2, 

Figure 2. Diagram 

 

the map ℎ𝑖 = 𝑓𝑖 ∘ Φ: (𝑋, 𝑦) ⟶ (𝑃, 𝑝𝑖) is continuous and base point preserving for 𝑖 = 1, … , 𝑘.  [ℎ𝑖]𝑦 ∈
[(𝑋, 𝑦), (𝑃, 𝑝𝑖)] for 𝑖 = 1, … , 𝑘 is a homotopy class of map     𝑓𝑖 ∘ Φ = ℎ𝑖. 

 

If 𝑥0 ∈ 𝑋 is an arbitrarily fixed point, then let us denote  𝑉 = 𝑉(𝑥0) open neighborhood of 𝑥0 in 𝑋. Now, 

we can define a mapping 𝑠 = (𝑠1, … , 𝑠𝑘):  𝑉 → 𝑆∗(𝑋),  as follows: 

 

If 𝑦 is any point in 𝑉, then we define 𝑠(𝑦) = (𝑠1, 𝑠2, … , 𝑠𝑘)(𝑦) = (𝑠1(𝑦), 𝑠2(𝑦), … , 𝑠𝑘(𝑦)) for    𝑠𝑖(𝑦) =
[ℎ𝑖]𝑦, 𝑖 = 1, … , 𝑘. In this way 𝑠 is well defined and 

 

 1.  (𝜋 ∘ 𝑠)(𝑦) = (𝜋𝑖  ∘ 𝑃𝑖 ∘ 𝑠)(𝑦) = 𝜋𝑖 (𝑃𝑖(𝑠1(𝑦), 𝑠2(𝑦), … , 𝑠𝑘(𝑦)) = 𝜋𝑖(𝑠𝑖(𝑦)) = 𝑦 for each 𝑦 ∈ 𝑉. 

Therefore 𝜋 ∘ 𝑠 = 𝐼𝑉. 
 

2. If, 𝑥0 is an arbitrary fixed point in 𝑉,  

𝑠(𝑥0) = (𝑠1, … , 𝑠𝑘)(𝑥0) = (𝑠1(𝑥0), … , 𝑠𝑘(𝑥0)) 

= ( [𝑓1  ∘ 𝐼𝑥]𝑥0
   , … , [𝑓𝑘  ∘ 𝐼𝑥]𝑥0

  ) = ([𝑓1]𝑥0 , … , [𝑓𝑘]𝑥0 ) 

 

for  𝑉 = 𝑉(𝑥0). Hence it can be written as s(V)=∏𝑖=1,…,𝑘 𝑠𝑖(𝑉) = ∏𝑖=1,…,𝑘(⋁𝑦∈𝑉  [ℎ𝑖]𝑦). 

 

If we can define 𝑠(𝑉) as an open set, then it can be easily shown that the family 

 

𝛽 = {𝑠(𝑉) ≔ ∏ 𝑠𝑖(𝑉)

𝑖=1,…,𝑘

∶  𝑉 = 𝑉(𝑥) ⊂ 𝑋, 𝑥 ∈ 𝑋,  𝑠𝑖  ∈ 𝛤(𝑉, 𝑆𝑖)} 

 

is a topology-base on 𝑆∗(𝑋). Thus 𝑆∗(𝑋) is a topological space.  

 

Now we can show that 𝜋: 𝑆∗(𝑋) →X is local topological. 

 

(𝑃, 𝑝𝑖)    (𝑋, 𝑥0) 

  
(𝑋, 𝑦) 

𝑓𝑖 

 

ℎ𝑖 = f𝑖 ∘ 𝛷 
Φ 
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If 𝜎 = [ℎ]𝑦 ∈ 𝑆∗(𝑋) and 𝑦 ∈ 𝑋, then 𝜋(𝜎) = 𝜋([ℎ]𝑦) = 𝑦. Therefore, there is a map 𝑠: 𝑉 → 𝑆∗(𝑋) such 

that 𝑠(𝑦) = 𝜎,   𝑦 ∈ 𝑉. Now, let us assume that 𝑈(𝜎) = 𝑠(𝑉) and   𝜋|𝑈 = 𝜋∗. 

 

1. The map 𝜋∗ = 𝜋|𝑈: 𝑈 → 𝑉 is injective. Because for any 𝜎1, 𝜎2 ∈ 𝑠(𝑉) by using homotopy properties  

(see in [20-23]), one can see that there are points 𝑦1, 𝑦2 respectively in 𝑉 such that  

𝜎1 = 𝑠(𝑦1) = (𝑠1, 𝑠2, … , 𝑠𝑘)(𝑦1) = (𝑠1(𝑦1), 𝑠2(𝑦1), … , 𝑠𝑘(𝑦1)) 

= ([𝑓1 ∘ 𝛷]𝑦1
, [𝑓2 ∘ 𝛷]𝑦1

, … , [𝛷 ∘ 𝑓𝑘]𝑦1
), 

𝜎2 = 𝑠(𝑦2) = (𝑠1, 𝑠2, … , 𝑠𝑘)(𝑦2) = (𝑠1(𝑦2), 𝑠2(𝑦2), … , 𝑠𝑘(𝑦2)) 

= ([ 𝑓1 ∘ 𝛷′]𝑦2
, [ 𝑓2 ∘ 𝛷′]𝑦2

, … , [ 𝑓𝑘 ∘ 𝛷′]𝑦2
). 

 

That is, we have the following diagrams in Figure 3, for 𝑖 = 1, … , 𝑘. 

Figure 3. Diagrams 

 

If 𝜋∗(𝜎1) = 𝜋∗(𝜎2), then 

 

𝜋∗(𝑠(𝑦1)) = 𝜋∗(𝑠(𝑦2)) ⟹ 𝜋∗ (([𝑓1 ∘ 𝛷]𝑦1
, [𝑓2 ∘ 𝛷]𝑦1

, … , [𝑓𝑘 ∘ 𝛷]𝑦1
))    

 

=  𝜋∗([𝑓1 ∘ 𝛷′]𝑦2
, [𝑓2 ∘ 𝛷′]𝑦2

, … , [𝑓𝑘 ∘ 𝛷′]𝑦2
)⟹ 𝑦1 = 𝑦2. 

 

Since for each 𝑖 = 1, … , 𝑘, 

 

Φ ∼ Φ′ ⟹ 𝑓𝑖 ∘ Φ ∼ 𝑓𝑖 ∘ Φ′ ⟹ [𝑓𝑖 ∘ 𝛷]𝑦1
= [𝑓𝑖 ∘ 𝛷′]𝑦2

⟹ 𝜎1 = 𝜎2. 

 

2. The map 𝜋∗ = 𝜋|𝑈: 𝑈 → 𝑉 is continuous. In fact, if 𝜎 ∈ 𝑈 = 𝑠(𝑉)  ⟹ 𝜋∗(𝜎) = 𝑦 ∈ 𝑉 and 𝑊 = 𝑊𝑦 ⊂

𝑉 is neighbourhood of 𝑦, then 𝑠(𝑊) ⊂ 𝑈 = 𝑠(𝑉) is neighborhood of 𝜎 and 𝜋∗(𝑠(𝑊)) = 𝑊 ⊂ 𝑉. So 𝜋∗ 

is continuous.  

 

3.  𝜋∗−1  = (𝜋|𝑈)−1 = 𝑠: 𝑉 → 𝑈 = 𝑠(𝑉) is continuous. In fact, if 𝑦 is any point in 𝑉,   𝑠(𝑦) = 𝜎 ∈ 𝑈 and   

𝑈′ = 𝑈′(𝜎) ⊂ 𝑈 is a neighborhood of 𝑦 in 𝑉 and 𝑠(𝜋|𝑈)(𝑈′) ⊂ 𝑈. So  𝜋∗−1
 is continuous. 

Therefore 𝜋 is locally topological map. Now we can give the following theorem. 

 

Theorem 6.  Let (𝑃, 𝑝𝑖)𝑖=1,…,𝑘  be any pointed finite  topological generalized group with the identity 

elements 𝑝1, 𝑝2, … , 𝑝𝑘 and 𝑋 ∈  𝒞. If 

 

 𝑆∗(𝑋) = 𝑆1(𝑋) ⊕ 𝑆2(𝑋) ⊕ … ⊕ 𝑆𝑘(𝑋)  and 𝜋:  𝑆∗(𝑋) → 𝑋 

such that  

𝜋 (𝜎) = (𝜋𝑖 ∘ 𝑃𝑖)([ℎ1]𝑥 , [ℎ2]𝑥, … , [ℎ𝑘]𝑥) = 𝑥, 𝑖 = 1, … , 𝑘, 

 

(𝑃, 𝑝𝑖)    (𝑋, 𝑥0) 

  (𝑋, 𝑦2) 

𝑓𝑖 

ℎ′𝑖 = 𝑓𝑖 ∘ 𝛷′ 

Φ′ 

(𝑋, 𝑥0) 

 

(𝑃, 𝑝𝑖)    

𝑓𝑖 

ℎ𝑖 = 𝑓𝑖 ∘ 𝛷 

Φ 

  

(𝑋, 𝑦1) 
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for 𝜎 ∈  𝑆∗(𝑋) and 𝑥 ∈ 𝑋, then there is the natural topology based on 𝑆∗(𝑋),  such that   𝜋 is locally 

topological with respect to this natural topology. Thus the pair (𝑆∗(𝑋) , 𝜋)  is a sheaf over 𝑋. 

 

Definition 6.  The sheaf (𝑆∗(𝑋), 𝜋)  given by Theorem 6 is called sheaf of the groups formed by the 

finite pointed topological generalized groups over (𝑋, 𝑥), 𝑥 ∈ 𝑋 pointed topological spaces.  

 

Definition 7. The group ∏𝑖=1,…,𝑘 [(𝑋, 𝑥), (𝑃, 𝑝𝑖)] = 𝜋−1(𝑥) is called the stalk of the sheaf 

(𝑆∗(𝑋) , 𝜋) over 𝑋 and denoted by 𝑆∗(𝑋) 𝑥 for every 𝑥 ∈ 𝑋. 
 

Now, if 𝑥 ∈ 𝑋 is an arbitrarily fixed point and 𝑉 is open neighborhood of 𝑥 in 𝑋, the mapping    𝑠: 𝑉 →
𝑆∗ (𝑋) as defined in the construction of topology of  𝑆∗ (𝑋), is called section of  𝑆∗ (𝑋), over 𝑉. Let us 

denote the collection of all sections of  𝑆∗ (𝑋), by Γ(𝑉,  𝑆∗(𝑋)).  

 

Theorem 7.   𝛤(𝑉,  𝑆∗(𝑋))  is a group with the operation  

 

(𝑠1𝑠2)(𝑦) = 𝑠1(𝑦)𝑠2(𝑦), 𝑠1,𝑠2 ∈  𝛤(𝑉,  𝑆∗(𝑋) )  
 

where  𝑦 ∈ 𝑉. 

 

Proof. If we consider pointwise multiplication 

 

(𝑠1
𝑖 , 𝑠2

𝑖 )(𝑦) = 𝑠1
𝑖 (𝑦)𝑠2

𝑖 (𝑦), 𝑠1
𝑖 , 𝑠2

𝑖 ∈  𝛤(𝑉𝑖, 𝑆𝑖(𝑋) ) 

 

and 𝑦 ∈ 𝑉𝑖 which is defined on∈  𝛤(𝑉𝑖, 𝑆𝑖(𝑋))  for    𝑖 = 1, … , 𝑘.  Proof follows from that the operation of 

production is well-defined and closed. Clearly, the operation of production is associative and the mapping 

 𝐼: 𝑉 → 𝑆∗(𝑋)  is identity element which is obtained by means of the identity element of  

∏𝑖∈𝐼[(𝑋, 𝑥), (𝑃, 𝑝𝑖)]. On the other hand, the any inverse element of 𝑠 ∈  𝛤(𝑉,  𝑆∗(𝑋)) , namely, 𝑠−1 ∈
 𝛤(𝑉,  𝑆∗(𝑋))  which is obtained by means of the homotopy inverses of pointed groups (𝑃, 𝑝𝑖) for 𝑖 =
1, … , 𝑘. Hence 𝛤(𝑉,  𝑆∗ (𝑋))  is a group. 

 

From the  Theorem  6,  (𝑆∗(𝑋), 𝜋)   is an  algebraic sheaf with  the  continuous operation 

 
(. ):  𝑆∗(𝑋) ⊗  𝑆∗(𝑋) →  𝑆∗(𝑋),  

 (𝜎1, 𝜎2) → 𝜎1. 𝜎2 

 

where  𝜎1, 𝜎2 ∈  𝑆∗(𝑋).  
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