n-copure submodules of modules

Faranak Farshadifar
Department of Mathematics, Farhangian University
Tehran, Iran
e-mail: f.farshadifar@cfu.ac.ir

Abstract

Let R be a commutative ring, M an R-module, and $n \geq 1$ an integer. In this paper, we will introduce the concept of n-copure submodules of M as a generalization of copure submodules and obtain some related results.

Keywords: Copure submodule, n-pure submodule, n-copure submodule, strong comultiplication module

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers. Further, n will denote a positive integer.

Let M be an R-module. M is said to be a multiplication module if for every submodule N of M, there exists an ideal I of R such that $N=I M$ [8].

Cohn [9] defined a submodule N of M a pure submodule if the sequence $0 \rightarrow N \otimes E \rightarrow M \otimes E$ is exact for every R-module E. Anderson and Fuller [3] called the submodule N a pure submodule of M if $I N=N \cap I M$ for every ideal I of R. Ribenboim [14] called N to be pure in M if $r M \cap N=$ $r N$ for each $r \in R$. Although the first condition implies the second [13, p.158], and the second obviously implies the third, these definitions are not equivalent in general, see [13, p.158] for an example. The three definitions of purity given above are equivalent if M is flat. In particular, if M is a faithful multiplication module [1].

In this paper, our definition of purity will be that of Anderson and Fuller [3].
In [6], H. Ansari-Toroghy and F. Farshadifar introduced the dual notion of pure submodules (that is copure submodules) and investigated the first properties of this class of modules. A submodule N of M is said to be copure if $\left(N:_{M} I\right)=N+\left(0:_{M} I\right)$ for every ideal I of R [6].

The concept of n-pure submodules of an R-module M as a generalization of pure submodules was introduced in [10]. A submodule N of an R-module M is said to be a n-pure submodule of M if
$I_{1} I_{2} \ldots I_{n} N=I_{1} N \cap I_{2} N \cap \ldots I_{n} N \cap\left(I_{1} I_{2} \ldots I_{n}\right) M$ for all proper ideals $I_{1}, I_{2}, \ldots I_{n}$ of R. Also, an ideal I of R is said to be a n-pure ideal of R if I is a n-pure submodule of R.

The main purpose of this paper is to introduce the concepts of n-copure submodules of an R module M as a generalization of copure submodules and investigate some results concerning this notion.

2. Main results

Definition 2.1. Let n be a positive integer. We say that a submodule N of an R-module M is a n-copure submodule of M if

$$
\left(N:_{M} I_{1} I_{2} \ldots I_{n}\right)=\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)
$$

for all proper ideals $I_{1}, I_{2}, \ldots, I_{n}$ of R. This can be regarded as a dual notion of the n-pure submodule of M.

Remark 2.2. Let n be a positive integer. Clearly every $(n-1)$-copure submodule of an R-module M is a n-copure submodule of M. But we see in the Example 2.3 that the converse is not true in general.

Example 2.3. Let n be a positive integer. The submodule $\overline{Z_{2}{ }^{n}}$ of the $\mathbb{Z}_{2^{n}}$-module $\mathbb{Z}_{2^{n}}$ is a n-copure submodule of $\mathbb{Z}_{2^{n}}$ but it is not a $(n-1)$-copure submodule of $\mathbb{Z}_{2^{n}}$.

Example 2.4. Let $n>1$ be an integer. Since $1 / 2^{n} \in(\mathbb{Z}: \mathbb{Q} \underbrace{(2 \mathbb{Z})(2 \mathbb{Z}) \ldots(2 \mathbb{Z})}_{n \text { times }})$ but

$$
1 / 2^{n} \notin \underbrace{(\mathbb{Z}: \mathbb{Q} 2 \mathbb{Z})+(\mathbb{Z}: \mathbb{Q} 2 \mathbb{Z})+\ldots+(\mathbb{Z}: \mathbb{Q} 2 \mathbb{Z})}_{n \text { times }}+(0: \mathbb{Q} \underbrace{(2 \mathbb{Z})(2 \mathbb{Z}) \ldots(2 \mathbb{Z})}_{n \text { times }}) .
$$

The submodule \mathbb{Z} of the \mathbb{Z}-module \mathbb{Q} is not n-copure.

Proposition 2.5. Let M be an R-module and n be a positive integer. Then we have the following.
(a) If N is a submodule of M such that

$$
\left(N:_{M} I_{1} I_{2} \ldots I_{n}\right)=\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)
$$

for all proper ideals $I_{1}, I_{2}, \ldots, I_{n}$ of R, then N is a n-copure submodule of M.
(b) If R is a Noetherian ring and N is a n-copure submodule of M, then for each prime ideal P of R, N_{P} is a n-copure submodule of M_{P} as an R_{P}-module.
(c) If R is a Noetherian ring and N_{P} is a n-copure submodule of an R_{P}-module M_{P} for each maximal ideal P of R, then N is a n-copure submodule of M.

Proof. (a) Let $I_{1}, I_{2}, \ldots, I_{n}$ be proper ideals of R. Then

$$
\left(N:_{M} I_{1} I_{2} \ldots I_{n}\right)=\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)
$$

by assumption. Thus

$$
\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right) \subseteq\left(N:_{M} I_{1} I_{2} \ldots I_{n}\right)=\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)
$$

This implies that

$$
\begin{gathered}
\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)+\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)= \\
\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right) .
\end{gathered}
$$

Therefore,

$$
\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)+\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)=\left(N:_{M} I_{1} I_{2} \ldots I_{n}\right)
$$

as required.
(b) This follows from the fact that by [15, 9.13], if I is a finitely generated ideal of R, then $\left(N:_{M}\right.$ $I)_{P}=\left(N_{P}:_{M_{P}} I_{P}\right)$.
(c) Suppose that $I_{1}, I_{2}, \ldots, I_{n}$ are proper ideals of R. Since R is Noetherian, $I_{1}, I_{2}, \ldots, I_{n}$ are finitely generated. Hence by [15, 9.13], for each maximal ideal P of $R,\left(N:_{M} I_{1} I_{2} \ldots I_{n}\right)_{P}=\left(N_{P}:_{M_{P}}\right.$ $\left.\left(I_{1}\right)_{P}\left(I_{2}\right)_{P} \ldots\left(I_{n}\right)_{P}\right)$. Thus by assumption,

$$
\begin{aligned}
\left(N:_{M} I_{1} I_{2} \ldots I_{n}\right)_{P} & =\left(N:_{M} I_{1}\right)_{P}+\left(N:_{M} I_{2}\right)_{P}+\ldots+\left(N:_{M} I_{n}\right)_{P}+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)_{P} \\
& =\left(\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)\right)_{P} .
\end{aligned}
$$

Therefore

$$
\left(N:_{M} I_{1} I_{2} \ldots I_{n}\right)=\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)
$$

as desired.

Recall that an R-module M is said to be fully copure if every submodule of M is copure [7].
Definition 2.6. Let n be a positive integer. We say that an R-module M is fully n-copure if every submodule of M is n-copure.

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$ [4]. It is easy to see that M is a comultiplication module if and only if $N=\left(0:_{M} A n n_{R}(N)\right)$ for each submodule N of M.

Let N and K be two submodules of M. The coproduct of N and K is defined by $\left(0:_{M} A n n_{R}(N) A n n_{R}(K)\right)$ and denoted by $C(N K)$ [5].

Theorem 2.7. Let M be a comultiplication R-module and n be a positive integer. Then the following statements are equivalent.
(a) For submodules $N_{1}, N_{2}, \ldots, N_{n}$ of M, we have

$$
C\left(N_{1} N_{2} \ldots N_{n}\right)=C\left(N_{1} N_{2}\right)+C\left(N_{1} N_{3}\right)+\ldots+C\left(N_{1} N_{n}\right)+C\left(N_{2} N_{3} \ldots N_{n}\right)
$$

(b) M is a fully n-copure R-module.

Proof. $(a) \Rightarrow(b)$. Let N be a submodule of M and $I_{1}, I_{2}, \ldots, I_{n}$ be proper ideals of R. Then as M is a comultiplication R-module, for each $i(1 \leq i \leq n)$

$$
\begin{aligned}
C\left(N\left(0:_{M} I_{i}\right)\right) & =\left(0:_{M} \operatorname{Ann}_{R}(N) A n n_{R}\left(\left(0:_{M} I_{i}\right)\right)\right) \\
& =\left(\left(0:_{M} \operatorname{Ann}_{R}\left(\left(0:_{M} I_{i}\right)\right)\right):_{M} A n n_{R}(N)\right) \\
& =\left(\left(0:_{M} I_{i}\right): \operatorname{Ann}_{R}(N)\right)=\left(N:_{M} I_{i}\right) .
\end{aligned}
$$

Now by part (a) and the fact that M is a comultiplication R-module,

$$
\begin{aligned}
& \left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right) \\
& =C\left(N\left(0:_{M} I_{1}\right)\right)+C\left(N\left(0:_{M} I_{2}\right)\right)+\ldots+C\left(N\left(0:_{M} I_{n}\right)\right)+C\left(\left(0:_{M} I_{1}\right)\left(0:_{M} I_{2}\right) \ldots\left(0:_{M} I_{n}\right)\right) \\
& =C\left(N\left(0:_{M} I_{1}\right)\left(0:_{M} I_{2}\right) \ldots\left(0:_{M} I_{n}\right)\right) \\
& =\left(N:_{R} I_{1} I_{2} \ldots I_{n}\right) .
\end{aligned}
$$

$(b) \Rightarrow(a)$. As M is a comultiplication R-module, we have $C\left(N_{1} N_{i}\right)=\left(N_{1}:_{M} A n n_{R}\left(N_{i}\right)\right)$ for all $2 \leq i \leq n$. Now since by part (b), N_{1} is a n-copure submodule of M,

$$
\begin{aligned}
& C\left(N_{1} N_{2}\right)+C\left(N_{1} N_{3}\right)+\ldots+C\left(N_{1} N_{n}\right)+C\left(N_{2} N_{3} \ldots N_{n}\right)= \\
& \left(N_{1}:_{M} \operatorname{Ann}_{R}\left(N_{2}\right)\right)+\ldots+\left(N_{1}:_{M} \operatorname{Ann}_{R}\left(N_{n}\right)\right)+ \\
& \left(0:_{M} \operatorname{Ann}_{R}\left(N_{2}\right) \operatorname{Ann}_{R}\left(N_{3}\right) \ldots \operatorname{Ann}_{R}\left(N_{n}\right)\right) \\
& \left(N_{1}:_{M} \operatorname{Ann}_{R}\left(N_{2}\right) \operatorname{Ann}_{R}\left(N_{3}\right) \ldots \operatorname{Ann}_{R}\left(N_{n}\right)\right)=C\left(N_{1} N_{2} \ldots N_{n}\right)
\end{aligned}
$$

Let R be a be a principal ideal domain and M be an R-module. By [6, 2.12], every submodule of M is pure if and only if it is copure. But the following examples shows that it is not true for n-pure and n-copure submodules.

Example 2.8. Let $n>1$ be an integer. Consider the submodule $G_{1}:=\langle 1 / p+\mathbb{Z}\rangle$ of the \mathbb{Z}-module $\mathbb{Z}_{p^{\infty}}$. Then the submodule G_{1} of the \mathbb{Z}-module $\mathbb{Z}_{p^{\infty}}$ is a n-pure submodule but it is not n-copure.

Example 2.9. Let $n>1$ be an integer. The submodule $2 \mathbb{Z}$ of the \mathbb{Z}-module \mathbb{Z} is a n-copure submodule but it is not n-pure.

A proper submodule N of an R-module M is said to be completely irreducible if $N=\bigcap_{i \in I} N_{i}$, where $\left\{N_{i}\right\}_{i \in I}$ is a family of submodules of M, implies that $N=N_{i}$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [12].

Remark 2.10. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$.

An R-module M satisfies the double annihilator conditions (DAC for short) if for each ideal I of R, we have $I=A n n_{R}\left(\left(0:_{M} I\right)\right) . M$ is said to be a strong comultiplication module if M is a comultiplication R-module which satisfies the double annihilator conditions [6].

A family $\left\{N_{i}\right\}_{i \in I}$ of submodules of an R-module M is said to be an inverse family of submodules of M if the intersection of two of its submodules again contains a module in $\left\{N_{i}\right\}_{i \in I}$. Also M satisfies the property $A B 5^{*}$ if for every submodule K of M and every inverse family $\left\{N_{i}\right\}_{i \in I}$ of submodules of $M, K+\cap_{i \in I} N_{i}=\cap_{i \in I}\left(K+N_{i}\right)$ [16]. For example, every strong comultiplication R-module satisfies the property $A B 5^{*}$ by using Lemma [11, 2.2] and [2, 2.9].

Theorem 2.11. Let M be an R-module which satisfies the property $A B 5^{*}$ and let n be a positive integer. Then we have the following.
(a) If $\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ is a chain of n-copure submodules of M, then $\cap_{\lambda \in \Lambda} N_{\lambda}$ is a n-copure submodule of M.
(b) If $\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ is a chain of submodules of M and K is a n-copure submodule of N_{λ} for each $\lambda \in \Lambda$, then K is a n-copure submodule of $\cap_{\lambda \in \Lambda} N_{\lambda}$.

Proof. (a) Let $I_{1}, I_{2}, \ldots, I_{n}$ be proper ideals of R. Clearly,

$$
\begin{aligned}
& \left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{1}\right)+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{2}\right)+\ldots+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right) \subseteq \\
& \left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{1} I_{2} \ldots I_{n}\right) .
\end{aligned}
$$

Let L be a completely irreducible submodule of M such that

$$
\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{1}\right)+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{2}\right)+\ldots+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right) \subseteq L
$$

Then we have

$$
\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{1}\right)+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{2}\right)+\ldots+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)+L=L
$$

Since M satisfies the property $A B 5^{*}$, we have

$$
\cap_{\lambda \in \Lambda}\left(\left(N_{\lambda}:_{M} I_{1}\right)+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{2}\right)+\ldots+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)+L\right)=L
$$

Now as L is a completely irreducible submodule of M, there exists $\alpha_{1} \in \Lambda$ such that

$$
\left(N_{\alpha}:_{M} I_{1}\right)+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{2}\right)+\ldots+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)+L=L
$$

Since M satisfies the property $A B 5^{*}$,

$$
\cap_{\lambda \in \Lambda}\left(\left(N_{\alpha}:_{M} I_{1}\right)+\left(N_{\lambda}:_{M} I_{2}\right)+\ldots+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)+L\right)=L
$$

Now again as L is a completely irreducible submodule of M, there exists $\alpha_{2} \in \Lambda$ such that

$$
\left(N_{\alpha_{1}}:_{M} I_{1}\right)+\left(N_{\alpha_{2}}:_{M} I_{2}\right)+\ldots+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)+L=L
$$

By continuing in this way, we have there exist $\alpha_{3}, \ldots \alpha_{n} \in \Lambda$ such that

$$
\left(N_{\alpha_{1}}:_{M} I_{1}\right)+\left(N_{\alpha_{2}}:_{M} I_{2}\right)+\ldots+\left(N_{\alpha n}:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)+L=L
$$

We can assume that $N_{\alpha 1} \subseteq N_{\alpha 2} \subseteq \ldots \subseteq N_{\alpha n}$. Therefore,

$$
\left(N_{\alpha_{1}}:_{M} I_{1}\right)+\left(N_{\alpha_{1}}:_{M} I_{2}\right)+\ldots+\left(N_{\alpha 1}:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)+L \subseteq L
$$

It follows that $\left(N_{\alpha 1}:_{M} I_{1} I_{2} \ldots I_{n}\right) \subseteq L$ since $N_{\alpha 1}$ is a n-copure submodule of M. Hence, $\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M}\right.$ $\left.I_{1} I_{2} \ldots I_{n}\right) \subseteq L$. This implies that

$$
\begin{aligned}
& \left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{1} I_{2} \ldots I_{n}\right) \subseteq \\
& \left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{1}\right)+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{2}\right)+\ldots+\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right) .
\end{aligned}
$$

by Remark 2.10 .
(b) Let $I_{1}, I_{2}, \ldots, I_{n}$ be proper ideals of R. Clearly,

$$
\begin{aligned}
& \left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1}\right)+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{2}\right)+\ldots+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{n}\right)+\left(0:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1} I_{2} \ldots I_{n}\right) \subseteq . \\
& \left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1} I_{2} \ldots I_{n}\right) .
\end{aligned}
$$

To see the reverse inclusion, let L be a completely irreducible submodule of M such that

$$
\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1}\right)+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{2}\right)+\ldots+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{n}\right)+\left(0:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1} I_{2} \ldots I_{n}\right) \subseteq L .
$$

Then

$$
\cap_{\lambda \in \Lambda}\left(K:_{N_{\lambda}} I_{1}\right)+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{2}\right)+\ldots+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{n}\right)+\left(0:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1} I_{2} \ldots I_{n}\right)+L=L
$$

Since M satisfies the property $A B 5^{*}$, we have

$$
\left.\cap_{\lambda \in \Lambda}\left(\left(K:_{N_{\lambda}} I_{1}\right)+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{2}\right)+\ldots+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{n}\right)+\left(0:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1} I_{2} \ldots I_{n}\right)\right)+L\right)=L
$$

Now as L is a completely irreducible submodule of M, there exists $\alpha_{1} \in \Lambda$ such that

$$
\left(K:_{N_{\alpha 1}} I_{1}\right)+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{2}\right)+\ldots+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{n}\right)+\left(0:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1} I_{2} \ldots I_{n}\right)+L=L
$$

By similar argument, since M satisfies the property $A B 5^{*}$ and L is a completely irreducible submodule of M, there exist $\alpha_{2}, \alpha_{3}, \ldots \alpha_{n} \in \Lambda$ such that,

$$
\left(K:_{N_{\alpha 1}} I_{1}\right)+\left(K:_{N_{\alpha 2}} I_{2}\right)+\ldots+\left(K:_{N_{\alpha n}} I_{n}\right)+\left(0:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1} I_{2} \ldots I_{n}\right)+L=L
$$

Since $\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ is a chain, we can assume that $N_{\alpha 1} \subseteq N_{\alpha 2} \subseteq \ldots \subseteq N_{\alpha n}$. Therefore,

$$
\left(K:_{N_{\alpha 1}} I_{1}\right)+\left(K:_{N_{\alpha 1}} I_{2}\right)+\ldots+\left(K:_{N_{\alpha 1}} I_{n}\right)+\left(0:_{N_{\alpha 1}} I_{1} I_{2} \ldots I_{n}\right)+L=L .
$$

It follows that $\left(K:_{N_{\alpha 1}} I_{1} I_{2} \ldots I_{n}\right) \subseteq L$ since K is a n-copure submodule of N_{α}. Therefore, $\left(K: \cap_{\lambda \in \Lambda} N_{\lambda}\right.$ $\left.I_{1} I_{2} \ldots I_{n}\right) \subseteq L$. This implies that

$$
\begin{aligned}
& \left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1} I_{2} \ldots I_{n}\right) \subseteq \\
& \left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1}\right)+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{2}\right)+\ldots+\left(K:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{n}\right)+\left(0:_{\cap_{\lambda \in \Lambda} N_{\lambda}} I_{1} I_{2} \ldots I_{n}\right)
\end{aligned}
$$

by Remark 2.10.

Theorem 2.12. Let M be an R-module which satisfies the property $A B 5^{*}, N$ a submodule of M, and let n be a positive integer. Then there is a submodule K of M minimal with respect to $N \subseteq K$ and K is a n-copure submodule of M.

Proof. Let

$$
\Sigma=\{N \leq H \mid H \text { is a } n \text {-copure submodule of } M\}
$$

Then $M \in \Sigma$ and so $\Sigma \neq \emptyset$. Let $\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ be a totally ordered subset of Σ. Then $N \leq \cap_{\lambda \in \Lambda} N_{\lambda}$ and by Theorem 2.11 (a), $\cap_{\lambda \in \Lambda} N_{\lambda}$ is a n-copure submodule of M. Therefore by using Zorn's Lemma, one can see that Σ has a minimal element, K say as disired.

Theorem 2.13. Let M be a strong comultiplication R-module, N a submodule of M, and let n be a positive integer. Then N is a n-copure submodule of M if and only if $A n n_{R}(N)$ is a n-pure ideal of R.

Proof. Since M is a comultiplication R-module, $N=\left(0:_{M} A n n_{R}(N)\right)$. Let N be a n-copure submodule of M and let $I_{1}, I_{2}, \ldots, I_{n}$ be proper ideals of R. Then

$$
\left(N:_{M} I_{1} I_{2} \ldots I_{n}\right)=\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)
$$

implies that

$$
\begin{aligned}
& \left(\left(0:_{M} \operatorname{Ann}_{R}(N)\right):_{M} I_{1} I_{2} \ldots I_{n}\right)= \\
& \left(\left(0:_{M} \operatorname{Ann}_{R}(N)\right):_{M} I_{1}\right)+\left(\left(0:_{M} \operatorname{Ann}_{R}(N)\right):_{M} I_{2}\right)+\ldots+ \\
& \left(\left(0:_{M} \operatorname{Ann}_{R}(N)\right):_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \left(0:_{M} A n n_{R}(N) I_{1} I_{2} \ldots I_{n}\right)=\left(0:_{M} A n n_{R}(N) I_{1}\right)+\left(0:_{M} A n n_{R}(N) I_{2}\right)+\ldots+ \\
& \left(0:_{M} A n n_{R}(N) I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)
\end{aligned}
$$

Thus by [11, 2.2],

$$
\begin{aligned}
& \left(0:_{M} A n n_{R}(N) I_{1} I_{2} \ldots I_{n}\right)= \\
& \left(0:_{M} A n n_{R}(N) I_{1} \cap A n n_{R}(N) I_{2} \cap \ldots \cap A n n_{R}(N) I_{n} \cap\left(I_{1} I_{2} \ldots I_{n}\right)\right) .
\end{aligned}
$$

This implies that

$$
A n n_{R}(N) I_{1} I_{2} \ldots I_{n}=A n n_{R}(N) I_{1} \cap \operatorname{Ann}_{R}(N) I_{2} \cap \ldots \cap \operatorname{Ann}_{R}(N) I_{n} \cap\left(I_{1} I_{2} \ldots I_{n}\right)
$$

since M is a strong comultiplication R-module. Hence $A n n_{R}(N)$ is a n-pure ideal of R. Conversely, let $A n n_{R}(N)$ be a n-pure ideal of R and let $I_{1}, I_{2}, \ldots, I_{n}$ be proper ideals of R. Then

$$
\operatorname{Ann}_{R}(N) I_{1} I_{2} \ldots I_{n}=\operatorname{Ann}_{R}(N) I_{1} \cap \operatorname{Ann}_{R}(N) I_{2} \cap \ldots \cap A n n_{R}(N) I_{n} \cap I_{1} I_{2} \ldots I_{n}
$$

Hence by using [11, 2.2],

$$
\begin{aligned}
& \left(0:_{M} \operatorname{Ann}_{R}(N) I_{1} I_{2} \ldots I_{n}\right)=\left(0:_{M} \operatorname{Ann}_{R}(N) I_{1}\right)+\left(0:_{M} \operatorname{Ann}_{R}(N) I_{2}\right)+\ldots+ \\
& \left(0:_{M} A n n_{R}(N) I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right) .
\end{aligned}
$$

Therefore, as M is a comultiplication R-module,

$$
\left(N:_{M} I_{1} I_{2} \ldots I_{n}\right)=\left(N:_{M} I_{1}\right)+\left(N:_{M} I_{2}\right)+\ldots+\left(N:_{M} I_{n}\right)+\left(0:_{M} I_{1} I_{2} \ldots I_{n}\right)
$$ as desired.

Acknowledgments. The author would like to thank Prof. Habibollah Ansari-Toroghy for his helpful suggestions and useful comments.

References

1. M.M. Ali and D.J. Smith, Pure submodules of multiplication modules, Beiträge Algebra Geom. 45 (1) (2004) 61-74.
2. Y. Al-Shaniafi and P. F. Smith, Comultiplication modules over commutative rings, J. Commut. Algebra, 3 (1) (2011), 1-29.
3. W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974.
4. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math. 11 (4) (2007) 1189-1201.
5. H. Ansari-Toroghy and F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci., 25 (3) (2007), 447-455.
6. H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci. 8 (1) (2009), 105-113.
7. H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, Bull. Iranian Math. Soc. 38 (4) (2012), 987-1005.
8. A. Barnard, Multiplication modules, J. Algebra, 71 (1981), 174-178.
9. P. M. Cohn, On the free product of associative rings, Math. Z. 71 (1959) 380-398.
10. F. Farshadifar, n-pure submodules, submitted.
11. F. Farshadifar, Copure and 2-absorbing copure submodules, submitted.
12. L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249 (2006), 121-145.
13. T. Y. Lam, Lectures on Modules and Rings. Springer 1999.
14. P. Ribenboim, Algebraic Numbers. Wiley 1972.
15. R. Y. Sharp, Step in commutative algebra, Cambridge University Press, 1990.
16. R. Wisbauer, Foundations of Modules and Rings Theory, Gordon and Breach, Philadelphia, PA, 1991.
