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Abstract: Artificial neural networks have emerged as a powerful 
technique for RF/microwave modeling and design. Artificial neural 
network parameters as number of neurons, sampling data, which are 
necessary for training can be utilized through automatic model 
generation without extra effort of user and can provide an efficient 
model with desired accuracy. In this work, an efficient modeling 
strategy combining a prior knowledge with automatic model 
generation technique is proposed. The aim of this combination is to 
decrease the need for time consuming fine model response and to 
increase the performance of automatic model generation algorithm 
using coarse model during the modeling process. Automatic model 
generation  requires less neuron and training data compared to 
former methods via prior knowledge input method.  Spiral inductor 
model is considered to demonstrate both the advantages and the 
validity of this technique in terms of  accuracy and time consumption.  
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Özet: Yapay sinir ağları RF / mikrodalga modelleme ve tasarımı için 
güçlü bir teknik olarak ortaya çıkmıştır. Yapay sinir ağlarının nöron 
sayısı ve örnekleme verileri gibi gerekli eğitim parametrelerini  
kullanıcının ekstra çabası olmadan kullanabilen otomatik model 
üretimi, arzu edilen doğrulukta etkili bir model sağlayabilir. Bu 
çalışmada, ön bilgi ile otomatik model üretim tekniğini birleştiren 
verimli bir modelleme stratejisi önerilmiştir. Bu kombinasyonun amacı, 
zaman alan iyi model cevabına olan ihtiyacı azaltmak ve kaba modeli  
kullanan otomatik model üretim algoritmasının performansını 
modelleme esnasında arttırmaktır. Otomatik model üretimi, ön bilgi 
giriş  yöntemi sayesinde önceki yöntemlere kıyasla daha az nöron ve 
eğitim verisi gerektirmektedir. Sarmal endüktans modeli, bu tekniğin 
doğruluk ve zaman tüketimi açısından hem avantajlarını  hem de 
geçerliliğini  kanıtlamak için hesaba katılmıştır. 

Dokuz Eylul University-Faculty of Engineering 
Journal of Science and Engineering 

Volume 19, Issue 57, September 2017 
 

 

Dokuz Eylül Üniversitesi-Mühendislik Fakültesi 
Fen ve Mühendislik Dergisi 
Cilt 19, Sayı 57, Eylül 2017 

 
 

*Sorumlu  yazar: simsekmu@itu.edu.tr  



 
 
 
 
 
 
 

M. Simsek / Knowledge Embedded Automatic Model Generation in Microwave Design Using Knowledge 
Based Artificial Neural Networks 

 

 

743 

 
1. Introduction 
Modelling of components and devices for 
Radio Frequency (RF) and microwave 
circuits is quite significant part of 
Electromagnetic (EM) design and 
optimization that has caused several 
improvements in Computer-Aided Design 
(CAD) in the recent years [1–4]. Design 
optimization and 3D simulation (fine 
model) of RF/microwave circuits require 
reliable and efficient models of  
components  and  devices. The models are 
generally developed by 3D EM simulators 
which are very complex and time-
consuming as electromagnetic methods. 
Otherwise, simple models (coarse model) 
such as empirical models, equivalent 
circuit models and circuit simulators have 
less validity range and accuracy than EM 
simulation/measurement [5]. These 
models are suitable when fast model 
responses are needed. 
 
In the last decades, Artificial Neural 
Network (ANN) techniques [5–10] have 
been recognized as an alternative way to 
create a model instead of fine model 
where mathematical expressions are not 
available. ANN structure is obtained via 
generating input-output pairs which are 
generated by the fine model. This process 
takes long time and also involves expert 
effort and knowledge. Another issue of 
ANN modeling is choosing structure 
before training process. The number of 
hidden neurons are needed is directly 
related with complexity of the fine model. 
The nonlinear relationship based on 
training set and topology is formed 
through ANN’s variables such as initial 
conditions, weight coefficients and 
nonlinear function definitions etc. [11]. 
This technique is called black box 
optimization and modeling due to its 
vague internal structure. The trained ANN 
can be used as accurate and fast model in 
the design optimization [6,12–15] and 
CAD tools. 

Since ANN gives useful model based on 
training set, sometimes this model  is  not  
satisfactory  enough  in  terms of accuracy. 
In this case, existing knowledge about 
modeling problem can be incorporated 
with ANN structure which is called 
knowledge based neural network 
modeling. In this technique, ANN is 
manipulated using existing knowledge at 
different zones such as input (prior 
knowledge input method) [16,17],  output  
(difference  method)  [16–18]  or internal 
(knowledge based neural network 
method) [17,19,20]. Except them, prior 
knowledge input with difference   method 
is formed by utilizing knowledge both at 
input and output zones [21, 22]. Moreover 
space mapping neural network method 
[23–30] maps input space of fine and 
coarse model. Knowledge based strategy 
involves less training data and number of 
hidden neurons to obtain  more  accurate  
results than conventional ANN 
techniques. Considering extrapolation 
performance of new modeling structures, 
knowledge based strategy increases 
accuracy of extrapolation range. 
Extrapolation range is selected outside of 
training data range. While conventional 
ANN structure is not satisfied in this 
range, knowledge based ANN gives better 
result by the help of general characteristic 
of target responses which are obtained 
from the coarse model. 
 
Until now, training set and number of 
hidden neuron have been two essential 
topics for ANN modeling. Using minimum 
data to get more accuracy has been 
mainly discussed in some papers [7,11]. 
Automatic Model Generation (AMG) 
technique was emerged to apply 
intelligent ANN learning process for 
microwave design automation [31]. In 
this technique, over learning and under 
learning detections provide adjustment of 
neuron and data amount during 
modeling. AMG also has built in 
simulation drivers to realize automatic 
data generation for adaptive data 
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increment during training. To improve 
AMG, knowledge based neural network 
techniques were exploited to add 
available knowledge during AMG training 
process, so this method is called 
Knowledge Based Automatic Model 
Generation (KAMG) [32]. KAMG involves 
ANN model trained with coarse model 
data generator. Trained ANN model 
constitutes available knowledge in KAMG. 
Therefore KAMG needs less fine model 
data to improve accuracy than AMG.  
 
For the first time, Knowledge Embedded 
Automatic Model Generation (KEM-AMG) 
technique that performs coarse model 
data generator and fine model data 
generator together in the same AMG 
algirtihm is proposed. Multi Layer 
Perceptron (MLP) with single hidden 
layer in AMG is trained using prior 
knowledge input method. The aim of 
KEM-AMG technique is to gather fine 
model data and coarse model data to 
reduce necessary data and hidden neuron 
numbers for AMG training process. This 
combination ensures that the model 
rapidly approximates the fine model 
response with less training data and less 
hidden neurons than existing modeling 
techniques including AMG, thus reducing 
the expert effort for  modeling. 
 
2.  The Overview of Automatic Model 
Generation 
AMG technique has been developed to 
reduce expert effort during modeling 
process. To implement this purpose, it 
utilizes efficient training process to 
generate new training data and to add 
new hidden neurons when necessary. 
Training data consist of input and output 
parts. For input part, AMG generates good 
initial vectors from input space. Initial 
vectors includes all de- sign parameters 
(geometric variables) for detailed 
physical/EM simulation model. Also some 
frequency range are extended using 
frequency steps for each geometry, 
generates necessary input for frequency 

response of the specific bandwidth. After 
completion of input data generation, 
corresponding output data are generated 
using EM simulation model. AMG 
automatically generates output data 
through driver software included data 
conversion between AMG and EM 
simulator. It can increase training data via 
this adaptive sampling strategy. AMG uses 
two kind of mechanism such as over 
learning and under learning to develop 
new model structure. If over learning is 
detected during modeling AMG adds new 
training data. Under learning detection is 
involved in order to add new hidden 
neurons in ANN structure. Over learning 
and under learning detection are 
determined with training and validation 
error for each stage. At the end of the 
stage, AMG algorithm decides necessary 
mechanism to improve model accuracy. 
Further information about AMG 
algorithm can be found in [31]. 
 
KAMG technique has been developed to 
improve modeling efficiency by exploiting 
knowledge based modeling strategy. In 
this technique, coarse  model  neural  
network  are trained by coarse model data 
generator. This coarse ANN structure and 
sub-neural model are trained by coarse  
model training data to satisfy initial 
condition for over all KAMG models. 
Finally using adaptive sampling for this 
knowledge based AMG model, over all 
model are trained by  data  obtained from 
fine model data generator. KAMG 
technique needs less fine model response 
than AMG, but it accomplishes more 
complicated process in terms of expert 
effort than AMG. KAMG technique 
contains four knowledge based methods 
such as, prior knowledge input, 
difference, knowledge    based neural 
network and space mapping neural 
network. More details about this 
technique are followed in [32]. 
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3. Proposed Knowledge Embedded 
AutomaticModel Generatıon Approach 
3.1. Proposed modeling structure 
Previous    works    on    automatic   model 
generation are considered, combination 
of simply applicable AMG algorithm and 
knowledge based strategy is realized to 
develop considerably useful new 
modeling techniques. Existing knowledge 
about fine model are embedded in main 
AMG algorithm has been proposed in this 
work, so it is named knowledge 
embedded automatic model generation 
(KEM-AMG). KEM-AMG can use coarse 
and fine model to develop new model for 
RF/microwave design. This property not 
only provides more accurate and less 
complex ANN structure than AMG, but 
also satisfies less complicated expert 
operation and more automatic process 
than KAMG. 
 

 
a. Space mapping via physical parameters 

 
b. Space mapping via frequency 

Figure 1. Coarse model improvement methods 
 
In this approach, driver software for 
coarse model provides coarse model 
response for AMG algorithm. In addition 
AMG generates initial points and obtain 

both coarse and fine model responses for 
these inputs. After all generation process, 
AMG calculates training error and 
validation error for training and 
validation data. Existing knowledge 
facilitates mathematical link between 
input and output of the fine model 
through correlation between fine and 
coarse model responses. 
 
Prior Knowledge Input (PKI) method has 
been chosen to incorporate the coarse 
model and the fine model in AMG 
modeling process. This method uses 
existing knowledge obtained by coarse 
model response as an extra input besides 
geometrical variables and frequency. This 
knowledge facilitates training process in 
order to form mathematical link between 
input and output of the fine model. Less 
complex relationship between input and 
output enables less hidden neuron usage 
and fast approximation for ANN. The 
proposed method provides these 
facilitates to be used by AMG algorithm 
without any extra expert effort. 
 
3.2. Coarse model improvement 
exploiting input mapping 
Coarse model effects the performance of 
knowledge based strategy. If the coarse 
model cannot generate approximate 
response comparable to the fine model, a 
new model cannot provide satisfactory 
performance according to conventional 
ANN. In this case, improvement of coarse 
model responses is necessary for 
knowledge based modeling application. 
Frequency mapping and geometrical 
variable mapping are probably useful way 
to improve coarse model as shown in 
Figure 1. The key idea about the 
improvement is creating new coarse 
model with limited number of fine model 
data.  
 
ANN’s nonlinear structure is most 
suitable mapping to change coarse model 
input space. This input mapping provides 
a new coarse model which is capable of 
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generating more approximate response of 
the fine model than former. However 
these improvements are limited because 
output of the fine model is not totally 
changed using input mapping. Knowledge 
based structures create output mapping 
except space mapping neural network. 
Input mapping for coarse model provides 
input correction and this new coarse 
model with knowledge based structure 
implements output correction for final 
modeling phase. Input mapping is 
compulsory when the dimension of the 
coarse model input space is different from 
the dimension of the fine model input 
space. Therefore mapping performs 
mathematical link between geometric 
variables of the fine model and 
component values of the equivalent 
circuit model. Input mapping is also 
utilized to obtain more approximate 
coarse model responses to the fine model 
responses. 
3.3. The formulations of proposed 
knowledge embedded algorithm 
Knowledge embedded automatic   model 
generation technique involves the fine 

model responses obtained by EM 
simulation and the coarse model 
responses obtained by equivalent circuit 
formulation/simulator. For these 
simulation responses, user is supposed to 
create software to drive simulator, so this 
software tool is called driver. Driver 
performs necessary process in order to 
transform both input and output data 
between AMG and simulator as in Figure 
2. If knowledge based model or ANN is 
used as a coarse model, driver for the 
coarse model is not necessary anymore. 
Because ANN models can be used in AMG 
algorithm without any extra process. Let 
(xf ; Yf )  and  (xc ; Yc)  be  input-output  
vectors  of  fine  and coarse models, 
respectively. The relationship f between 
xf and Yf can be nonlinear and multi-
dimensional. In addition input-output 
relationship of the fine model is much 
more complex, so obtaining fine model 
response takes longer time than coarse 
model (fc) response. Fine and coarse 
model’s relationships can be represented 
by 
 

 
Figure 2. Knowledge embedded automatic model generation (KEM-AMG) structure 
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( )=  ,f f fY f x w  (1) 

 
( )=  ,c c c cY f x w   (2) 

 
where xf   and xc  show input and wf   and 
wc   show frequency for fine and coarse 
model, respectively. In proposed 
technique, prior knowledge input method 
has been chosen to approximate coarse 
model response to the fine model 
response. Coarse model input in (2) 
should be equal to fine model input in (1) 
to obtain necessary coarse model output. 
Input-output relation of prior knowledge 
input method can be represented in (3). 
 

( )≈ = , ,f PKI ANN f f cY Y f x w Y            (3) 
 
where fANN   is nonlinear function formed 
by ANN and Yc is  the coarse  model  
response  for  the fine model  inputs.  If  
coarse model is not accurate enough, 
input mapping is suitable option in order 
to improve the coarse model responses. 
After geometry mapping and frequency 
mapping, the responses of the coarse 
models  are denoted in (4) and (5), 
respectively. 
 

≈ =
 
 
  
 


( ) , 
c

f Cg c ANN f f

x

Y Y f f x w   (4) 

 


≈ =


 
  
 


, ( )

c

f Cw c f ANN f

w

Y Y f x f w   (5) 

 
In (4) and (5), ANN is used to perform 
input mapping for geometry in Figure 1.a 
and frequency in Figure 1.b, respectively. 
In knowledge embedded automatic model 
generation, training set and validation set 
are updated during sampling stage. 
Sampling stage involves data generation 
according to validation error for each 

validation point in the search space. The 
biggest error among all of validation 
errors points from where more data has 
to be obtained in the search space. 
Therefore validation error is essential 
part for direction of data generation. 
KEM-AMG algorithm incorporates the 
coarse model response to be calculated 
validation error  with  the  difference of  
AMG.  Contribution of existing knowledge 
to AMG training process reduces the 
complexity of modeling structure thus the 
number of  over  learning  and  under  
learning  detections  decreases. Less 
detection allows less data and hidden 
neurons usage during KEM-AMG training 
process. The more accurate coarse model 
increases the performance of KEM-AMG 
and decreases necessary number of  data 
and hidden neurons. 
 
AMG algorithm utilizes less number of the 
fine model responses together with the 
coarse model responses in PKI method. 
ANN model structure for  PKI  is  formed 
by  adaptive data generation and adaptive 
hidden neuron numbers mechanism in 
AMG algorithm. Training error (et) and 
validation error (ev) in Figure 2 are 
exploited to decide necessary stage for 
next step during optimization process of 
KEM-AMG. If under learning is detected 
during training process, KEM-AMG adds 
new hidden neurons to ANN structure. In 
case over learning is detected, more data 
are added to training and validation set 
obtained from the fine and the coarse 
model through drivers. KEM-AMG 
algorithm generates new model 
considering model complexity, and uses 
minimum hidden neuron numbers and 
time consuming fine model responses. 
Extra effort different from AMG is not 
necessary for proposed method during 
modeling. As clearly shown in Figure 2, 
drivers provide necessary conversion 
from model variables to simulator 
variables. KEM-AMG algorithm 
automatically utilized the fine and the 
coarse model to generate modeling data 
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via this mechanism,. After data generation 
for each stage, all data use training of PKI 
model to satisfy objectives of each stage. 
PKI model facilitates training process via 
coarse model responses with respect to 
conventional ANN model. Training and 
validation error which is calculated using 
PKI responses and fine model responses 
determine objectives during optimization 
for each stage. Over learning and under 
learning detections cause more data 
generation and hidden neuron 
adjustment, respectively. 
 
4. Microwave Design Application: 
Spiral Inductor Modelling 
Spiral inductor modelling is  utilized to 
show efficiency of proposed knowledge 
embedded automatic model generation 
technique. Spiral inductor application is 
selected to generate more sample and fast 
response to compare modeling 
techniques. Moreover coarse model has 
already developed in previous  work  and  
it  is  suitable  to  embed  in  AMG  
algorithm.  
 
S-parameters are usually preferable for 
the model outputs due to ease of 
measurement. Since S12   and S21   are equal 
for a passive two-port reciprocal network 
like a spiral inductor, only S12   is included 
in the model output. Here in, the S-
parameters are computed using the full-
wave EM simulation tools ADS  
Momentum from Agilent Technologies, 
Palo Alto, CA [33]. The structure of spiral 

inductor is illustrated in Figure 3, where 
Rin is the inner radius, w is the width of the 
microstrip lines, s is the spacing between 
lines, and N is the number of turns. The 
substrate parameters are as follows: The 
Oxide substrate has relative permittivity 
of 3.9 and thickness of 3.97 µm. The Si 
substrate has relative permittivity of 11.9, 
conductivity of 12.5 Siemens/m and 
thickness of 300 µm. The conductor layers 
are copper with thicknesses of 0.42 µm 
and conductivity values of 5.8 × 107  
Siemens/m. 
This  model  has  four  input  geometrical  

variables,  i.e.,  =       in

T
R w sx N   as  

illustrated  in  Figure 3  plus  frequency  as   
an   additional  input  of   EM  simulation.   
 

 
Figure 3.  Physical parameters for  spiral 
inductor design 
 
The model   has   six   outputs   in   the   
frequency   domain,   i.e.,

 =  11 11 12 12 22 22          RS IS RS IS RS ISy  
which are the real and imaginary parts of 

Table 1. Data range of  physical parameters for spiral inductor according to different number of 
data  

Data Set N Rin (mm) w (mm) s  (mm) 
 min. max. min. max. min. max. min. max. 

train 800 1.5 4.5 30 125 5 23 1 10 
train 200 1.5 4.5 30 125 5 23 1 9 
train 50 1.5 4.5 30 120 5 23 1 9 
train 20 1.5 4.5 45 115 13 23 1 8 
test 100 1.5 4.5 35 125 5 23 2 10 
adaptive 1.5 2.5 30 125 5 23 1 10 
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S11 , S12 , and S22 .Two different kind of 
data are generated for spiral inductor 
such as fixed data set and adaptive data 
set. 800 data are firstly generated by 
uniform distribution then other data 
(200, 50, 20) are obtained from 800 data. 
Moreover 100 test data are generated by 
uniform distribution but differently than 
800 data. The whole data ranges for spiral 
inductor are given in Table 1. Some data 
range in Table 1 provide extrapolation 
performance for this modeling. For each 
geometry, the frequency range is from 10 
MHz to 1.99 GHz with a step size of 30 
MHz; thus 67 frequency points are used.  
Figure 4 - Figure 7  depict  the  S-
parameters S11 , S12 (dB)  of  the model 

developed by the proposed KEM-AMG 
method for four different spiral inductor 
geometries #1, #2, #3 and #4 in the 
testing data, and its comparison with EM 
data, coarse model and AMG model. The 
geometrical variables for different 
geometries are represented below: 
 
(#1) N=1.5, Rin=125mm, w=5mm, 
s=10mm; 
(#2) N=2.5, Rin=125mm,  w =5mm,  
s=11mm;   
(#3) N=3.5, Rin=120mm,  w =7mm,  
s=10mm;  
(#4) N=4.5, Rin=70mm,  w=21mm,  
s=4mm; 

 
Figure 4. Comparison of S-parameters ( S11 and  S12 ) for geometry # 1 by this proposed KEM-
AMG model, the EM simulation, the coarse model(SMNN) ,and AMG model  in case of 20 training 
data for fixed data usage 

 

 
Figure 5. Comparison of S-parameters ( S11 and  S12 ) for geometry # 2 by this proposed KEM-
AMG model, the EM simulation, the coarse model(SMNN) ,and AMG model  in case of 20 training 
data for fixed data usage 
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While selection of  geometrical  variables 
for   fix   data   set,   different   kind  of    N 
are chosen to show output performance 
of spiral inductor Therefore different S-
parameters are obtained to evaluate 

proposed method in terms of minimum 
training data usage. In fixed data analysis,  
proposed PKI-AMG and AMG methods 
are used to obtain training and test result 
in Table 2. This comparison contains 

 
Figure 6. Comparison of S-parameters ( S11 and  S12 ) for geometry # 3 by this proposed KEM-
AMG model, the EM simulation, the coarse model(SMNN) ,and AMG model  in case of 20 
training data for fixed data usage 
 

 
Figure 7. Comparison of S-parameters ( S11 and  S12 ) for geometry # 4 by this proposed KEM-
AMG model, the EM simulation, the coarse model(SMNN) ,and AMG model  in case of 20 training 
data for fixed data usage 

Table 2. Results of Spiral inductor for different number of data 
Data Set Number of Neuron Training Error (%) Test Error (%) 

 AMG KEM-AMG AMG KEM-MG AMG KEM-AMG 

800 40 11 0.648 0.674 0.639 0.659 
200 40 10 0.64 0.654 0.755 0.719 
50 32 9 0.673 0.676 1.038 0.821 
20 23 8 0.6402 0.668 10.812 1.192 
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error analysis and hidden neuron        
usage   for    different    training  data   set 
(800, 200, 50, 20). Adaptive hidden 
neuron number mechanism adjusts 
neuron numbers in hidden layer for two 
methods. As shown in Table 2, proposed  
method  has  less  hidden  neuron  and  
better  test error performance than 
classical AMG method. Our technique 
improves test result through using 
knowledge and AMG algorithms together 
as shown in Figure 8.  
The coarse model is obtained by 
combination of space mapping neuro-

model and transfer function model. This 
structure ensures that coarse model 
approximates the fine model. Adaptive 
sampling mechanism is used to generate 
new model structure, hence proposed 
KEM-AMG and AMG methods are 
compared with each other. Average test 
error and corresponding number of 
hidden neurons for each data sampling 
stage are shown in Figure 8. The                      
S-parameters S11 , S12 (dB)  of  the  spiral 
inductor  geometries  #1  and  #2 (same 
as fixed data set) are also depicted in 
Figure 9 and Figure 10, respectively. In 

 
Figure 8. Comparison of average test error and hidden neuron usage in terms of training data 
number by this proposed KEM-AMG model, the EM simulation, the coarse model(SMNN), PKI 
model, MLP model ,and AMG model in case of adaptive model generation 
 

Figure 9. Comparison of S-parameters ( S11 and  S12 )  for geometry # 1 by this proposed KEM-
AMG model, the EM simulation, the coarse model(SMNN) ,and AMG model in case of 8 training 
data for adaptive sampling stage 
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adaptive data analysis, training and test 
result in Table 3 reveal efficiency of the 
proposed method. Considering different 
kind of data number, proposed KEM-AMG 
method performs better test error for the 
less number of data. Because knowledge 
based modeling is efficient way to reduce 
the number of  training data. This 
consequence is obviously realized from 

Table 3. Time consumption analysis in 
Table 4 gives satisfactory information 
about complexity of modeling methods 
and time dependent  performance  of the  
algorithms.  Time  is  one  of  the most 
important part during modeling. Same 
error condition (%0.65) is implemented 
for proposed KEM-AMG and AMG 
methods   and   the   different   number of

  

Table 3. Results of spiral inductor for adaptive sampling  
Average Training Error (%) Average Test Error (%) 

Data 
Set 

MLP AMG PKI KEM-
AMG 

Data 
Set 

MLP AMG PKI KEM-
AMG 

144 0.8039 0.6647 0.7178 0.6767 154 0.7565 0.6762 0.6741 0.6892 
54 1.5835 0.6673 0.8434 0.6661 154 1.8955 0.9047 0.8423 0.8498 
36 0.8298 0.6676 0.7667 0.679 154 1.3587 1.0671 0.8692 0.9022 
24 1.3754 0.6672 0.953 0.6875 154 4.9076 1.5203 1.3958 1.2395 
16 0.9802 0.6776 0.8973 0.6816 154 5.2048 2.6928 2.4554 1.2558 
8 1.8984 1.4099 1.0942 0.6713 154 18.1996 7.8949 4.644 1.7992 

 

 
Figure 10. Comparison of S-parameters ( S11 and  S12 )  for geometry # 2 by this proposed KEM-
AMG model, the EM simulation, the coarse model(SMNN) ,and AMG model in case of 8 training 
data for adaptive sampling stage 
 
 
 

Table 4. Time consumption analysis of adaptive sampling  according to necessary time for 
fine response satisfying %0.65 validation error in spiral inductor 

Method ANN 
Structure 

Number of 
Geometry 

Data Generation 
Time per Geometry 

(second) 

Time 
Consumption 

(hour) 
AMG (5,18,6) 144 270 10.8 

KEM-AMG (11,18,6) 34 270 2.55 
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geometry is obtained. According to total 
time consumption in Table 4, proposed 
method needs less time than AMG 
algorithm to satisfy error condition 
during modeling.  

5. Discussion and Conclusion  
In  this  paper,  a  novel  knowledge  
embedded  automatic model generation 
algorithm has been presented and 
applied to microwave passive 
component design. Knowledge based 
method (prior knowledge input) and 
automatic model generation algorithm 
have been utilized to perform new 
automatic model generation strategy. 
Compared to conventional automatic 
generation method, the proposed 
method has better test performance in 
terms of average test error, hidden 
neuron usage and time consumption. 
The most important advantage of the 
new technique is that fine and coarse 
model are embedded inside the model 
generation process, thus the proposed 
method can generate new data set for 
prior knowledge input structure. 
Therefore  coarse  model  responses  
approximate  fine model responses via 
knowledge based strategy. Knowledge 
embedded model decreases necessity of 
the number of training data. As realized 
in Figure 8, Adaptive sampling stage of 
proposed method  provides more 
accurate results and also involves less 
hidden neurons than conventional 
methods such as SMNN, PKI , MLP  and 
AMG through extra knowledge 
embedding in KEM-AMG. In addition 
other knowledge based methods can be 
applied in this method and different kind 
of advantages can obtain through the 
novel algorithm. 
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