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Özet: Bu makalede AA 6061-T6 alüminyum alaşımının sürtünme 
karıştırma kaynağının Comsol Multiphysics 3.5a ile yapılan üç 
boyutlu modellemesi anlatılmıştır. Simülasyon kaynak edilecek iki 
alüminyum levhasını,  kaynak takımını ve kaynak takımının omuz 
kısmını içermektedir. Isı transferi ve Newtonyen olmayan akış 
denklemleri aynı anda çözülmüştür. Kaynak edilen plakaların 
altındaki taşınım ısı transfer katsayısı ve kaynak takımının omuz kısmı 
tarafından sisteme verilen ısı miktarı basit ve pratik bir ısıl doğrulama 
yöntemiyle belirlenmiştir. Kaynak edilen plakalar boyunca oluşan ısı 
akışı değişik kaynak koşulları için gösterilmiştir. Kaynak takımı omzu 
ve ucu etrafında oluşan metal akışı değişik takım dönme hızları için 
gösterilmiştir. Bu çeşit bir pratik doğrulama yöntemi kaynak 
mühendisine neredeyse mümkün olabilecek bütün kaynak koşullarını 
simüle edebilecek imkanı pahalı deneyler yapmadan 
sağlayabilmektedir. Sunumu yapılan doğrulama ve model sayesinde 
mühendislik zamanından tasarruf yapılabilecektir.   
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Abstract: This paper describes the application of the CFD code, 
Comsol Multiphysics 3.5a, to modeling the three-dimensional heat 
and metal flow in friction stir welding (FSW) of AA6061-T6 
aluminum alloy. The simulation consists of two aluminum plates to be 
welded, tool and its shoulder. Heat transfer and non-newtonian flow 
equations were solved simultaneously. The convective heat transfer 
coefficients underneath the welded plates and the heat given to the 
system by the tool shoulder were determined by the help of a simple 
and practical thermal validation. The heat flow along the plates is 
depicted with changing welding conditions. The flow around the tool 
pin and shoulder was shown for several different tool rotation rates. 
This kind of practical validation method helps the welding engineer to 
simulate nearly all the possible welding conditions without performing 
expensive experiments. Information obtained from the presented 
validation and the model can save a lot of engineering hours. 
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1. Introduction 
FSW process was developed and 
patented by The Welding Institute in 
1991 [1]. ‘A rotating pin, attached to a 
shoulder piece, is translated along the 
joint line, causing localized plastic 
deformation, whilst frictional heating 
occurs due to contact between the tool 
and the material. In this process, 
welding zone is completely isolated 
from atmosphere which minimizes the 
formation of voids and large distortion 
in the weld zone. This new welding 
technique is extensively applied to 
aerospace, automobile and shipbuilding 
industries [2]’. 
 
Some authors constructed pure thermal 
models [3-8]. CFD (Computational Fluid 
Dynamics) models were also studied 
[2,9-19] In the CFD models, mostly the 
Eulerian approach was utilized.  
 
There are some FSW experiments found 
in the literature as well [4-6,16,20,21]. 
These experiments were used either for 
validation purposes or for improving 
the numerical analysis. For FSW process 
some authors performed their own 
experiments [4-7,20] and some used the 
experiments from the literature [2,22]. 
This kind of validation is used in most of 
the numerical applications for the 
solutions to have a realistic meaning. In 
other welding methods, also validation 
has been used. One can find numerical 
solutions of the weld pool [23-25] of Gas 
Tungsten Arc Welding (GTAW) and Gas 
Metal Arc Welding (GMAW) in the 
literature. 
 
Roy et al. solved CFD equations by way 
of carreau viscosity model  [2]. Several 
authors utilized inverse hyperbolic sine 
law in their CFD models  [9,11-
13,18,26,27]. Schmidt and Hattel 
utilized power law method in their work 
[16]. Dörfler proposed a completely 

different method to solve CFD equations 
[19]. 
  
There are authors who wrote their own 
code for solving the metal flow problem 
in FSW process [17,18]. The aim of this 
present study is to show the 
applicability of Comsol© Software by 
means of the power law viscosity model. 
The only previous work using the power 
law viscosity model is the one Schmidt 
and Hattel proposed [16]. In their 
model, they solved the FSW process for 
AA7075-T6 aluminum alloy. 
 
In this present study Comsol© 3.5a has 
been utilized for solving the metal flow 
problem occurring in FSW process of 
AA-6061-T6 aluminum alloy via the 
power inverse hyperbolic sine law 
model. 
 
 
2.  Numerical modeling 
 
The model geometry includes three-
dimensional pieces in a Cartesian 
coordinate system; a tool and an 
aluminum plate (250; 150; 8  mm) The 
tool is comprised of a 65 mm long 
shoulder which is 30 mm in diameter. 
The attached tool pin (probe) has a 
diameter of 9 mm and a height of 7 mm 
extending down from the shoulder with 
a screw thread pushing the adjacent 
aluminum downwards. The whole 
model is shown in Figure 1 and the 
enmeshed views of the plates and the 
tool are given in Figure 2. The tool 
material is made of H-13 tool steel. AA 
6061-T6 alloys are taken as the plate 
material.  
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 Figure 1. Computational domain, welded 
plates and welding tool.  
 
  
 
 
 

 
Figure 2. Enmeshed domain 
 
A Eulerian steady-state model was 
constructed. In this modeling approach 
the welding tool was kept fixed and the 
plates were moved in the opposite 
welding direction. The energy equation 
in the present model was solved by 
Thermal Pseudo Mechanical (TPM) 
model approach [16]. In addition to the 
shoulder surface heat generation, tool 
pin surface heat generation was utilized.  
 
In the present study the validation of 
the numerical models was performed by 
way a simple experiment whose 
temperature measurements are 
achieved by an infrared thermometer. 
The applied tool rotation rate is 800 
rpm and the welding speed is 12.5 
mm/min. 
 
In the present model, due to the 
existence of the very low strain-rate 
outside of the Thermo-Mechanically 

Affected Zone (TMAZ) and the high 
strain-rate around the tool pin, the 
power law viscosity model was assigned 
to the model. The model was 
implemented using general Heat 
Transfer & Chemical Engineering (Non-
Newtonian flow) modules in Comsol 
3.5a [28]. 
 
 
The Heat Transfer and metal flow 
equations were fully coupled and solved 
simultaneously. In this present work 
inverse hyperbolic sine law viscosity 
model was chosen.  The viscosity 
equation constants of aluminum alloy 
are given in reference [17].  
 
2.1 Physical properties of aluminum 
alloys  
 
Thermal conductivity (k) for steel 
backing plate and the tool was taken as 
44.5 W/m K, specific heat (Cp) was set 
to 475 J/ kg K. The densities of steel and 
aluminum were taken as 7850 and 2700 
kg/m3, respectively. The thermal 
conductivity and specific heat of 
AA6061-T6 were taken from reference 
[17]. which gave the most realistic 
thermal profile.  
 
 
2.2 Key boundary conditions 
 
2.2.1 Heat transfer: 
 
2.2.1.1 The convective heat transfer 
coefficients over and underneath the 
welded plates  
 
The convective heat transfer coefficient 
beneath the welded plates were 
determined by way of a simple 
calibration with respect to the 
experimental temperatures and taken 
as 200 W/m2 K. The upper heat transfer 
coefficient was taken as 6 W/m2 K. 
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2.2.1.2 The heat generated by the 
shoulder 
 
The heat generated by the shoulder was 
given by the equation (1) [16]. 
Temperature dependent yield stresses 
of AA6061-T6 were taken from 
reference [29] and are slightly modified 
to give comparable temperatures with 
respect to the experiment. 
 
     
          

( ) / 3shoulderq r Tω σ=   (1) 
 
Here,   stands for the rotational speed in 
rad/s, r denotes the radial distance from 
the centre of the tool shoulder in m and  
(T) explains the temperature dependent 
yield stress of aluminum alloy in Pa. 
 
 
2.2.1.3 The heat dissipated from the tool 
shoulder to the machine  
 
The heat dissipation was simulated by 
choosing a convective heat transfer 
coefficient according to the reference 
[30]. The chosen coefficient at the upper 
part of the tool is 10000 W/m2 K. The 
other boundaries of the tool were 
chosen to be insulated. 
 
2.2.1.4 The convective heat transfer 
coefficient from top and bottom of the 
plates to the air 
 
The lower convective heat transfer 
coefficient was taken as 200 W/m2 K 
whereas the upper convective heat 
transfer coefficient was chosen to be 10 
W/m2 K.  
 
2.2.1.5 The room temperature 
 
The room temperature was taken as 
293 K. 
 
2.2.2 Non-Newtonian flow 

 
The velocity boundary conditions for 
the tool and the pin were applied as in 
the model proposed in [2]. 
 
In the present study the tool rotation 
was taken as a clockwise rotation. 
Actually the tool rotation was applied to 
the two semi-circles on top of the two 
plates which were to be welded.  The 
pin rotation was applied to the adjacent 
lateral surfaces of the aluminum plates 
and to the aluminum surface right 
below the pin. The tool shoulder and pin 
movements were not taken into account 
in the Non-Newtonian flow problem.  
 
The translational welding speed of the 
tool and the pin was applied to the 
problem domain as the inverse 
translational speed of the plates which 
was given as -u_weld (longitudinal 
welding speed).  
 
 
     
         

1/
11 exp( /( ))sin .

3 3

nγ Q RTh
γ A

η
α

−
  =  

   



 (2) 
 
The viscosity is calculated according to 
the inverse hyperbolic sine law 
(Equation 2).  This equation represents 
how viscosity changes with temperature 
and motion, and is taken from Ref [18]. 
Here, n is the exponential coefficient 
which is taken as 3.55,  denotes the 
shear rate in units of 1/s. The 
coefficients α  and A are set to 4.5×10-8 
1/Pa and 8.86×108 1/s respectively. Q 
is activation energy and equal to 1.45 
×105 J/mol, R is universal gas constant 
and equal to 8.31451 J/(mol×K). These 
coefficients are also taken from 
reference [17]. Shear thinning behavior 
of the plasticized aluminum is well 
represented by this equation. 
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Inside the Non-Newtonian region (See 
Figure 1) the viscosity is computed 
according to the Eq. (2). Outside this 
region the viscosity is set to 1x108 Pa s. 
 
3. Validation 

Validation of the model was 
performed by a simple experimental 
setup. Over the welded plates 35 nodes 
were marked with a black permanent 
marker in order to make the surface 
emissivity close to unity (Figure 3). 
Experimental measurement and 
welding are performed as shown in 
Figure 4. 
 
 

 
Figure 3. Experimental domain 

 

 
 

Figure 4. Experimental temperature 
measurement 

 

The comparison of the experimental and 
model temperatures are shown in 
Figure 5, 6 and 7 
The temperatures along the lines 20 
mm, 40 mm and 60 mm away from the 
centerline are compared to validate the 
model (Figures 5, 6 and 7). The applied 
tool rotation rate is 800 rpm and the 
welding speed is 12.5 mm/min. 
 
 

 
 

Figure 5. Temperature comparison for the 
line 20 mm away from the CL 

 
 

 
Figure 6. Temperature comparison for the 

line 40 mm away from the CL 
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Figure 7. Temperature comparison for the 
line 60 mm away from the CL 

 
Although the temperature 
measurements are done in 4 minutes 
interval (measuring points are 50 mm 
away from each other on the welding 
advancement direction.) the 
experimental and the model 
temperatures are quite close to each 
other. This kind of validation saves 
considerable time without setting up a 
data collection system. 
  
4. Results and discussion 
 

After the validation has been 
done and good results have been found, 
one can easily investigate the thermal 
and flow behavior of the welded plates 
at different welding conditions. Some of 
the results are presented in this section. 
The temperature rise with increasing 
tool rotation rate can be seen from the 
Figure 5. Every 200 rpm increase in the 
tool rotation rate results in a 10 degrees 
Kelvin rise on the line 20 mm away from 
the centerline.  
 

 
Figure 8. Temperature distribution along 
the line 20 mm away from the centerline 

 
In Figures 9, 10 and 11 one can find the 
results of the metal flow equations. The 
streamlines starting from x=0.03 m, 
y=0.01m and z=0.0075 m are depicted 
for 800, 1000 and 1200 rpm tool 
rotation rates. 
 

 
Figure 9. Metal flow streamline for 800 rpm 

tool rotation rate 
 

 

 
Figure 10. Metal flow streamline for 1000 

rpm tool rotation rate 
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Figure 11. Metal flow streamline for 1200 

rpm tool rotation rate 
 
The influence of the rising tool rotation 
rate can easily be observed from the 
figures. 
After establishing such a model by the 
help of a practical validation method 
explained in this work, the welding 
engineer can analyze the thermal and 
metal flow behavior for different 
welding conditions. 
 
5. Conclusions 
 
A Eulerian thermal and  CFD model was 
constructed to simulate the heat flow 
and the aluminum flow around the tool 
pin and shoulder of FSW apparatus 
using inverse hyperbolic sine viscosity 
model. 
 
The applicability of this simple 
validation procedure helps welding 
engineer to design his weldment in a 
practical way.  
 
Streamlines that represent the metal 
flow can give the welding engineer an 
opportunity to predict the viscous 
behavior of the plasticized aluminum 
without making experiments.   
 
 
The heat flow along the welded plates is 
easily and realistically simulated by 
using the practical validation procedure. 
The heat flow along the plates is 
depicted with changing welding 

conditions. The flow around the tool pin 
and shoulder was shown for three 
different tool rotation rates. This kind of 
practical validation method helps the 
welding engineer to simulate nearly all 
the possible welding conditions without 
making expensive experiments. 
Obtained information from the 
presented validation and the model can 
save substantial engineering hours 
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