Dokuz Eylül Üniversitesi-Mühendislik Fakültesi Fen ve Mühendislik Dergisi Cilt 19, Sayı 56, Mayıs 2017 Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering Volume 19, Issue 56, May 2017

DOI: 10.21205/deufmd.2017195639

Uşak İli Çevresindeki Depremlerin Yapay Sinir Ağları ile Modellenmesi

Elif Çağda KANDEMİR MAZANOĞLU^{*1}

¹Uşak Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, 64200, Uşak

(Alınış / Received: 04.08.2016, Kabul / Accepted: 07.02.2017, Online Yayınlanma / Published Online: 02.05.2017)

Anahtar Kelimeler Özet: Deprem Bölgelerinde Yapılacak Binalar Hakkında Yapay Sinir Ağları, Yönetmelik 2007 (DBYBHY, 2007)'de, Uşak ilinin büyük bir kısmı Maksimum Yer 2. derece deprem bölgesinde olup, Eşme ilçesi 1. derece deprem İvmesi. bölgesinde bulunmaktadır. Ancak il sınırlarına yakın çevrede İleri Beslemeli bulunan Kütahya'ya bağlı Gediz, Simav ve Afyon'a bağlı Dinar Geri-Yayılım ilçelerindeki uzun ve aktif faylarda meydana gelen depremler, Algoritması Uşak il ve ilçelerinde önemli ölçüde hissedilmekte ve etkileri gözlenmektedir. Buna karşın il sınırları içerisinde, biri merkezde diğeri Eşme'de olmak üzere yalnızca 2 adet deprem kayıt istasyonu bulunmaktadır. Çalışmada hedeflenen, çevredeki deprem kayıt istasyonlarında ölçülmüş kayıtlar kullanılarak, yapay sinir ağları (YSA) modelleri oluşturmak ve il sınırları içinde istasyon olmayan bölgelerdeki en büyük yer ivmesi tahmini yapabilmektir. Oluşturulan modeller kullanılarak istasyon olan merkez ilçede meydana gelmiş en yüksek ivme değerleri tahmin edilmiş ve ölçülmüş veriler ile karşılaştırılmış, böylece modellerin doğruluğu irdelenmiştir. Buna ek olarak, tüm ilçeler için elde edilen en büyük yer ivmesi değerleri DBYBHY 2007'de öngörülen değerler ile kıyaslanmıştır.

Artificial Neural Network Modelling of Earthquakes around Usak City

Keywords Artificial Neural Network, Peak Ground Acceleration, Feed Forward Back-Propagation Algorithm **Abstract:** In Turkish Earthquake Code 2007 (TEC, 2007), Usak city is located in the second-degree seismic zone while Esme, a town and district of Usak Province, is in the first-degree seismic zone. However cities in neighbourhood of Usak, such as Gediz, Simav towns of Kütahya city and Dinar district of Afyon city have many active faults which led to severe seismic damages in and around Usak. Despite this, Usak has only 2 active seismic stations which are in Usak city centre and Esme town. This paper aims to constitute artificial neural network (ANN) models by using seismic data of neighbour stations and to estimate peak ground acceleration (PGA) in the districts without stations. The results of models are validated by comparing the predicted and measured seismic data of the Usak central station. In addition, PGAs obtained by models are compared with design values in TEC 2007.

*Sorumlu yazar: elif.kandemir@usak.edu.tr

1. Giriş

Uşak ili, depremin yıkıcı etkisinin fazla yaşanmadığı illerden biridir. İl sınırları, nüfus açısından büyükten küçüğe merkez, Banaz, Eşme, Sivaslı, Ulubey ve Karahallı ilçelerinden oluşmaktadır. DBYBHY 2007'de [1] etkin ver ivmesi katsayıları (A₀) deprem bölgelerine göre belirlenmekte olup, 1996 yılında Türkiye yürürlüğe giren Deprem Bölgeleri Haritası'na [2] göre Uşak ilinde Eşme ilçesi 1. derece deprem bölgesi olup diğer tüm ilçeler 2. derece deprem bölgesi olarak tayin edilmiştir. Ayrıca ilde, biri merkezde biri Eşme'de olmak üzere 2 adet aktif deprem kayıt istasvonu bulunmaktadır. Gecmiste Uşak, il sınırları içerisindeki favlardan meydana gelmiş şiddetli depremlere maruz kalmamış olsa bile, Kütahya'ya bağlı Gediz, Simav ve Afyon'a bağlı Dinar ilçelerinde bulunan uzun ve aktif faylarda meydana gelen depremler, Uşak il ve ilçelerinde önemli ölçüde hissedilmiş ve etkileri gözlenmiştir. Bu nedenle bu çalışmada, sismik aktivitesi daha fazla olan yakın çevrenin deprem kavıt istasyonlarından elde edilen veriler kullanılarak. Usak'ta istasyon olmayan bölgelerde maksimum ver ivmelerinin (MYİ) tahmin edilmesi amaçlanmaktadır.

Belirli bir bölgeye ait deprem kayıtları, o bölgenin sismik aktivitesini değerlendirmek ve yapıların tasarım standartlarını belirlemek için gerek duyulan önemli verilerdir. Bir depremin maksimum yer ivmesi (MYİ) (peak ground acceleration-PGA) depremi tanımlayan en önemli parametrelerden biridir. Literatürde MYİ tahminine yönelik pek çok çalışma bulunmaktadır [3-9].

Sismik parametreler gibi, parametreleri arasında doğrudan formülize edilebilecek bağıntının tanımlanamadığı problemlerde, yapay sinir ağları yaklaşımı ile rahatlıkla çözüm

üretilebilmektedir. Yapay sinir ağları, yapay zekânın alt birimi olan makine öğrenmesi kapsamında geliştirilmiştir. Olayın örnekleri, bilgisayara girdi ve çıktı olarak sunulur ve makine, aralarındaki ilişkiyi öğrenerek eğitilir. model zaman icerisinde Bövlece oluşacak yeni örneklerin girdilerine göre çıktılar üretebilmekte, öngörülerde bulunabilmektedir. Özellikle, problemin parametreleri arasında bağıntının tanımlanamadığı durumlarda, tüm bilgininin bilgisavara tanıtılması şartıyla, yapay sinir ağları yaklaşımı çözüm üretilebilmektedir. Bu yaklaşım analizinde sismik veri sıklıkla kullanılmaktadır [10-19]. Kerh ve Ting çalışmasında, Tayvan'daki bir hızlı tren hattı etrafında mevdana gelmis depremlerin verilerini kullanarak yapay sinir ağları modeli oluşturmuş ve modelin doğruluğunu saha ölçümleriyle kanıtlayarak, hızlı tren hattında gözlenebilecek sismik ivme tahminleri [20]. Gandomi yapmıştır vd., (simulated benzetilmiş tavlama annealing) ile yapay sinir ağları metodunu birlestirerek MYİ'ni cesitli parametreleri deprem ile ilişkilendirmişlerdir [21]. Lee ve Hal, depremler ve davranıs yapay spektrumu üretmek amacıyla beş farklı yapay sinir ağları modeli geliştirmiştir [22]. Ayrıca yine yapay sinir ağları metodu kullanılarak, MYİ tahmini yapılması pek çok çalışmanın konusunu olşturmaktadır [23-25].

Bu çalışmada, yapay sinir ağları modelinin fonksiyonu olarak depremin büyüklüğü, derinliği ve istasyon ile episantr arasındaki mesafe ele alınmış ve kuzey-güney (KG), doğu-batı (DB) ve düşey yönlerinde meydana gelen MYİ değerleri hesaplanmıştır. Uygulama alanı olarak, biri merkezde diğeri Eşme ilçesinde olmak üzere toplam 2 adet deprem kayıt istasyonuna sahip ve şimdiye kadar deprem veri analizi yapılmamış olan Uşak ili seçilmiştir. Ayrıca ilin, deprem faaliyetlerinin yoğun olduğu bölgelere yakın olması da bu çalışmayı gerçekleştirmede teşvik edici unsur oluşturmuştur.

2. Yapay Sinir Ağları

Yapay sinir ağları (YSA), beyinde bulunan sinir hücrelerinden esinlenilerek önerilmiş bir yöntemdir. Bir sinir hücresi, diğer adıyla nöron, Şekil 1'de verildiği gibi [26], bilgiyi alan dendrid, gelen bilginin diğer nöronlara aktarımını sağlayan sinaps, bilginin geçiş yolu aksondan oluşmaktadır. Böylelikle, nörona verilen bir sinyal, birçok biyolojik nöronun bir araya gelmesiyle bilgiye dönüşmektedir.

Şekil 1. Bir sinir hücresi

Yapay sinir ağları, yapay zekânın alt birimi olan makine öğrenmesi kapsamında geliştirilmiştir. Olayın örnekleri, bilgisayara girdi ve çıktı olarak sunulur ve makine, aralarındaki ilişkiyi öğrenerek eğitilir. Böylece model icerisinde olusacak zaman veni örneklerin girdilerine göre çıktılar öngörülerde üretebilmekte, bulunabilmektedir. Sözü edilen biyolojik sistem, yapay olarak düşünüldüğünde Sekil 2'deki yapı ortaya çıkmaktadır.

Şekil 2. Yapay nöron modeli

Sekil 2'de, girdiler $(x_1, x_2 \dots x_n)$ $w_{1i}, w_{2i} \dots w_{ni}$ ile ağırlıklandırılarak net girdi ($\Sigma = net_i$) oluşturulur ve net girdi aktivasyon fonksiyonu (φ) aracılığıyla eşik değerden ($\theta_i = 1$) yüksek değere sahip olan çıktı değere (0_i) dönüsmektedir. Eğer esik değeri asacak büyüklükte çıktı elde edilemezse, ağırlıklar güncellenerek yeni bir net elde edilerek girdi aktivasvon fonksiyonuna dahil edilir ve çıktı eşik değerinden büyük olana kadar iterasyon tekrar edilir. Bu süreç ağın eğitimi olarak adlandırılır. Verilen bu model, YSA'nın en temel modelidir. Modelin eğitilmesi için birkaç adım denemek gerekli olup, her adımda ağırlık değerleri değiştirilerek yeni bir çıktı değeri oluşturulur. Burada önemli olan tahmin ile hedef değeri arasındaki vakınlıktır. En yakın sonucu veren model en ivi model olarak kabul edilir. Çalışmamızda YSA'nın ileri-beslemeli geri vavılım algoritmasına değinilmektedir.

Yapay sinir ağları modellemesinde kullanılan tek katmanlı modellerin doğrusal olmayan problemler için yetersiz olması nedeniyle, çok katmanlı ağların kullanılması önerilmektedir [27]. Şekil 3'de çok katmanlı ileribeslemeli modelin yapısı gösterilmektedir.

Şekil 3. Çok katmanlı ileri beslemeli YSA modeli

Katmanlar sırasıyla, girdilerden $(x_1, x_2 \dots x_n)$ oluşan girdi katmanı, girdilerin önemli özelliklerini ayıran gizli katman, çıktıların oluştuğu çıktı katmanı (y) olarak adlandırılmaktadır. Ağın eğitimi aşamasında girdi verileri üzerinde ağın hatası oluştuğunda, ağırlıkların değişimi zorlaşmaktadır. Bu sorunu ortadan kaldırmak için geri yayılım algoritması kullanılmaktadır.

İleri-beslemeli geri yayılım algoritması p. girdi nöronu için aşağıdaki gibi verilmektedir.

1. p. girdinin i. düğümü verisi $x_{p,i}$ olsun.

2. Gizli katmandaki j. düğümün NET girdisi $net_j^{(1)} = \sum_{i=0}^n w_{j,i}^{(1,0)} x_{p,i}$ olup $w_{j,i}^{(1,0)}$ i. girdi katmanı ile j. gizli katman arasındaki ağırlık değeri olsun.

3. Gizli katmanın j. düğümüne ait çıktı

$$x_{p,j}^{(1)} = \delta\left(\sum_{i=0}^{n} w_{j,i}^{(1,0)} x_{p,j}^{(1)}\right)$$
, burada δ

aktivasyon fonksiyonudur.

4. Çıktı katmanındaki k. düğümün NET girdisi $net_k^{(2)} = \sum_j \left(w_{k,j}^{(2,1)} x_{p,j}^{(1)} \right)$ olarak ifade edilir. Burada $w_{k,j}^{(2,1)}$ j. gizli katman düğümü ile k. çıktı katmanı düğümü arasındaki ağırlıktır.

5. Çıktı katmanının k. düğümünün çıktısı

$$y_{p,k} = \delta \left(\sum_{j} w_{k,j}^{(2,1)} x_{p,j}^{(1)} \right)$$
 olarak belirtilir.

Burada δ aktivasyon fonksiyonunu ifade eder.

6. Son olarak, hata karesi, $\varepsilon_{p,k}^2 = |d_{p,k} - y_{p,k}|^2$ olarak hesaplanır. Burada $d_{p,k}$ ve $y_{p,k}$ sırasıyla beklenen ve hesaplanan çıktı değeridir. Bu algoritmanın temel amacı, (1) nolu eşitlikte verilen Eşitlik 1'de verilen E_p hatasını en küçüklemek için en uygun ağırlıkları hesaplamaktır.

$$E_p = \sum_{k} \left(\varepsilon_{p,k} \right)^2 \tag{1}$$

Gradient descend algoritması ile, girdi ve gizli katman arasındaki ağırlıklar,

$$\Delta w_{j,i}^{(1,0)} \propto \left(\frac{-\partial E}{\partial w_{j,i}^{(1,0)}}\right)$$
(2)

ile ve gizli ve çıktı katmanları arasındaki ağırlıklar ise,

$$\Delta w_{k,j}^{(2,1)} \propto \left(\frac{-\partial E}{\partial w_{k,j}^{(2,1)}}\right)$$
(3)

ile güncellenmektedir [28].

3. Çalışmanın Bulguları

Bu çalışmada, Uşak ili merkez olmak üzere ortalama 110 km yarıçap içerisinde bulunan toplam 13 adet istasyonundan, günümüze deprem kadar kaydedilen depremlerin verileri üzerinde çalışılmıştır. Veriler, Türkiye Ulusal Kuvvetli Yer Hareketi veri tabanından çekilmiştir [29]. Tablo 1'de, ele alınan istasyonların kodları, bulunduğu il-ilçeler, kaydedilen toplam deprem sayısı ve kayıt tarihi aralığı, MYİ ve en büyük depremin moment gösterilmektedir. büyüklüğü (M_w) İstasyon kodlarının ilk iki hanesi bulunduğu plaka kodunu ilin göstermekte olup, diğer iki hane sırasını belirtmektedir. İstasyonlardan elde edilen kayıtlar, her bir depremin ivme zaman serilerini, episantr ve istasyon koordinatlarını, derinliğini, büyüklüğünü ve KG, DB ve düşey yönlerdeki MYİ değerlerini göstermektedir.

E.Ç. Kandemir Mazanoğlu / Uşak İli Çevresindeki Depremlerin Yapay Sinir Ağları ile Modellenmesi

İstanı				Deprem	Kayıt	MYİ		
Kodu	İl	İlçe	Koordinatlar	kaydı	tarih	(gal:	$M_{\rm w}$	
Kouu				sayısı	aralığı	cm/s ²)		
0202	African	Dinar	38.05990K-	16	1995-	329.72	65	
0302	Alyon	Dillai	30.15373D	40	2015	(DB)	0.5	
0211	African	Subut	38.53290K-	7	2014-	2.57	65	
0311	Alyon	Şunut	30.54367D	/	2015	(DB)	0.5	
0012	Audun	Pubarkont	37.97385K-	25	2013-	38.59	65	
0912	Ayum	Dunai Kent	28.74603D	23	2015	(KG)	0.5	
1000	Palikocir	Durcuphov	39.57798K-	120	2006-	8.38	ΕO	
1009	Dalikesii	Duisundey	28.63232D	150	2016	(KG)	5.8	
2600	Ealricobin	Sovitaori	39.44626K-	21	2013-	2.09	6 5	
2609	Eskişenir	Seyitgazi	30.69658D	21	2016	(KG)	6.5	
4204	Vätahua	Cadia	38.99478K-	151	2006-	65.21	гo	
4304	Kutaliya	Geuiz	29.40040D	151	2016	(DB)	5.8	
4200	Kütahva	Cimor	39.09282K-	F1	2014-	95.57	6 5	
4309	Kutaliya	Sillav	28.97848D	51	2016	(KG)	0.5	
4210	Kütahva	Taycanlı	39.53844K-	11	2014-	1.26	12	
4310	Kutaliya	Tavşannı	29.49387D	11	2015	(KG)	4.5	
4211	Kütahva	Dumlununan	38.85241K-	25	2014-	2.41	12	
4311	Kutaliya	Dumupmar	29.98118D	25	2016	(KG)	4.5	
4502	Manica	Alacahin	38.35546K-	15	2011-	5.73	ΓO	
4505	Manisa	Alaşelili	28.51425D	15	2016	(DB)	5.0	
4504	Manica	Dominai	39.03503K-	120	2006-	789.75	6.6	
4504	Manisa	Dennici	28.64812D	130	2016	(DB)	0.0	
6401	Healt	Morkoz	38.67128K-	F2	1998-	47.87	6.1	
0401	Uşak	Merkez	29.40401D	52	2016	(KG)	0.1	
6402	Heelt	Famo	38.40761K-	25	2014-	0.96	F 2	
0402	Uşak	Eşine	28.97656D	25	2016	(KG)	5.2	
			Toplam	697				

Tablo 1. Çalışılan istasyonlar ve özellikleri

Şekil 4 Deprem istasyonlarının harita üzerindeki yerleri

Modellemeyi güçleştirecek verileri elimine etmek amacıyla, deprem verilerine üst ve alt sınırlar getirilmiştir. Böylelikle derinlik ≤ 20 km, $M_w \geq 4$, episantr uzaklığı ≤ 300 km olan veriler, model oluşturmak amacıyla kullanılmıştır. Veri dosyalarında deprem büyüklükleri yerel büyüklük (M_L) veya moment büyüklüğü (M_w) cinsinden belirtilmiştir. Tüm veriler moment büyüklüğüne (M_w) dönüştürülmüş olup, bu işlem için aşağıdaki formül kullanılmıştır [30]:

$$M_w = 0.97M_L + 0.58 \ (4.5 \le M_L \le 6) \tag{4}$$

Çalışmada, YSA modellerinin giriş katmanı depremin derinliği, moment büyüklüğü ve istasyonun episantra uzaklığından oluşurken, çıkış katmanı da MYİ'den oluşmaktadır. Her bir istasyon ve deprem bileşeni için (KG, DB, düşey) YSA modelleri oluşturulmuştur. Bu durumda her bir istasyon için 3 YSA modeli olup, tüm çalışmada 39 model oluşturulmuştur. Verilerin, Eşitlik 5' te verilen ifade ile normalize edilerek 0 ile 1 arasında değerler alması sağlanmıştır [27].

$$x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$
(5)

x ele alınan parametre olup (depremin derinliği, büyüklüğü ve istasyonun episantra uzaklığı), x_{min} ve x_{max} sırayla, bu parametrelerin kendi içinde en küçük ve en büyük değerlerini ifade etmektedir.

Olusturulan modellerde girdi katmanı 3. gizli katman 2 ve çıktı katmanı da 1 tabakadan oluşmakta olup, gizli katmandaki nöron sayısı 10 olarak İleri-beslemeli tanımlanmıştır. Levenberg-Marquardt geri vayılım öğrenme algoritması [31] kullanılarak, girdi katmanının %70'i eğitim verisi, %15'i geçerlilik, %15'i de test verisi olarak rassal olarak belirlenmiştir. Gizli katmanlar ile girdi ve çıktı katmanları arasındaki aktivasyon fonksiyonları tanjant sigmoid olarak belirlenmiştir.

3.1. YSA Model Bulguları

Çalışmada, YSA analizleri Matlab fonksiyonu olan nntool komutu ile gerçekleştirilmiştir. İlk aşamada her bir istasyon kendi içinde modellenmiştir. Elimine edildikten sonra kalan veri sayısı az olduğundan Afyon Şuhut istasvonu icin model oluşturulamamıştır. Tablo 2'de, ağın daha iyi sonuç verebilmesi için ağın eğitiminde kullanılan geçerlilik verilerinin yüksek regresyon katsayısına sahip olduğu görülmektedir. Bu sonuç eğitim iterasyonları boyunca ağın çıkışı ile istenilen sonuç arasındaki farkın karesinin en fazla minimize edildiği durumu göstermektedir. Girdi katmanındaki tabakalarda değişiklik yaparak, aynı modellerden sonuç elde edilmek istendiğinde ise, girdi katmanı ile gizli katmanlar arasındaki ağırlık (weight) ve eşik (bias) değerleri sabit tutulmak kaydı ile model yeniden çalıştırılır. Bu çalışmada, 11 istasyonun her bir deprem bileseni icin kurulan modeller kullanılarak Usak Merkez istasyonunun hâlihazırda ölçülmüş olan verileri tahmin edilmiştir. Bu modellerde, 3 tabakadan oluşan girdi katmanındaki büyüklük ve derinlik parametreleri aynı tutularak, diğer tabakaya depremin ölçüldüğü episantr koordinatlarının Uşak Merkez istasyona olan uzaklığı girilmiştir. Tahmin edilen ve ölcülmüs olan (hedef) veriler arasındaki doğrusal regresvon katsayıları (r²) Tablo 3'te gösterilmiştir.

Tablo	YSA modellerini	n eğitimi sıra	sında geçerlilik [,]	verilerinin o	rtalama regresyon	katsayıları

İstanı Vadu	iı.	ilaa	r ²		
istasyon Kodu	11	liçe	KG	DB	Düşey
0302	Afyon	Dinar	0.927	0.979	0.982
0311	Afyon	Şuhut	-	-	-
0912	Aydın	Buharkent	0.998	0.919	0.968
1009	Balıkesir	Dursunbey	0.966	0.981	0.925
2609	Eskişehir	Seyitgazi	0.917	0.885	0.894
4304	Kütahya	Gediz	0.954	0.915	0.979
4309	Kütahya	Simav	0.943	0.927	0.916
4310	Kütahya	Tavşanlı	0.956	0.914	0.923
4311	Kütahya	Dumlupınar	0.968	0.957	0.934
4503	Manisa	Alaşehir	0.975	0.958	0.935
4504	Manisa	Demirci	0.965	0.977	0.937
6401	Uşak	Merkez	0.933	0.913	0.975
6402	Uşak	Eșme	0.964	0.910	0.899

E.C. Kandemir Mazanoğlu / Uşak İli Çevresindeki Depremlerin Yapay Sinir Ağları ile Modellenmesi

 Tablo 3. YSA modelleri kullanılarak tahmin edilen Uşak Merkez istasyonu verilerinin regresyon katsayıları

VSA Modeli	Tahmin Variai	r ²		
I SA Modell	KG		DB	Düşey
Afyon-Dinar	Uşak-Merkez	0.912	0.875	0.847
Aydın-Buharkent	Uşak-Merkez	0.945	0.897	0.901
Balıkesir-Dursunbey	Uşak-Merkez	0.924	0.904	0.912
Eskişehir-Seyitgazi	Uşak-Merkez	0.936	0.842	0.875
Kütahya-Gediz	Uşak-Merkez	0.914	0.839	0.938
Kütahya-Simav	Uşak-Merkez	0.911	0.867	0.855
Kütahya-Tavşanlı	Uşak-Merkez	0.898	0.881	0.864
Kütahya-Dumlupınar	Uşak-Merkez	0.920	0.903	0.875
Manisa-Alaşehir	Uşak-Merkez	0.915	0.887	0.908
Manisa-Demirci	Uşak-Merkez	0.897	0.928	0.832
Uşak-Eşme	Uşak-Merkez	0.944	0.891	0.847

Şekil 5, Afyon Dinar istasyon modeli kullanılarak elde edilen tahmin ve hedef değerler arasına çizilmiş doğrusal regresyon eğrilerini göstermektedir. Yüksek regresyon katsayıları

Şekil 5. Doğrusal regresyon eğrileri

göstermektedir ki, Uşak çevresinde meydana gelmiş depremlerin YSA modelleri, Uşak'taki ya da istasyon olmayan herhangi bir koordinattaki MYİ değerlerini tahmin edebilecektir.

3.2. 2007 Deprem Yönetmeliği ile Karşılaştırma

Maksimum yer ivmesi (MYİ) değerinin, etkin yer ivmesi katsayısı (A_0) şeklinde ifade edildiği DBYBHY 2007'de yer alan tasarım deprem spektrumunda; 2. derece deprem bölgeleri için etkin yer ivmesi katsayısı 0.3 iken, 1. derece deprem bölgeleri için bu değer 0.4'tür [1]. A_0 ile MYİ arasındaki ilişki (6) no'lu eşitlikte verilmektedir.

$$MYI = A_0g \tag{6}$$

Burada *g*, yerçekimi ivmesidir. Tüm ilçelerdeki YSA tahminleri Şekil 6(a)'da gösterilmiştir. En yüksek MYİ değerleri Manisa-Demirci modeli ile elde edilmiştir. Şekil 6(b)'de ise tahmin değerlerinin ortalaması ve standart sapması gösterilmiş olup, DBYBHY 2007'de öngörülen ve UDAP-Ç-13-06 proje çıktılarına [32] göre oluşturulan haritadan elde edilen ivme değerleri ile karsılastırma yapılmıştır. UDAP-C-13-06 projesi, özetle, güncel deprem haritaları oluşturmak amacıyla hazırlanmıştır. AFAD İnteraktif Türkiye Deprem

E.Ç. Kandemir Mazanoğlu / Uşak İli Çevresindeki Depremlerin Yapay Sinir Ağları ile Modellenmesi

Şekil 6. (a) İlçelerin MYİ değerleri (b) YSA ortalama değerleri, DBYBHY 2007 ve UDAP-Ç-13-06 proje çıktılarına göre MYİ'nin karşılaştırması

Tehlike Haritaları internet uygulamasından [33], bu makalenin çalışma alanı olan Uşak ili incelenmiş ve MYİ değerleri okunmuştur. Grafiksel gösterime ek olarak Tablo 4'de güncel haritadan (UDAP-Ç-13-06 proje çıktısı), yürürlükteki yönetmelikten (DBYBHY 2007) ve calışma sonucunda elde edilen YSA modellerinden elde edilen MYİ değerleri karşılaştırılmıştır. Sonuçlar, DBYBHY 2007'deki, deprem bölgelerine göre belirlenen etkin yer ivmesi katsayıları (A₀) için öngörülen 50 yılda aşılma olasılığı %10 (tekrarlanma perivodu 475 vil) olan depremler icindir.

Tablo 4. UDAP-Ç-13-06 proje çıktıları, DBYBHY ve YSA modellerinin MYİ bakımından karsılastırılması

	MYİ (g)				
İlçeler	UDAP-Ç- 13-06, 2016	DBYBHY, 2007	YSA (Ort.)		
Merkez	0.469	0.300	0.441		
Banaz	0.472	0.300	0.442		
Eșme	0.417	0.400	0.406		
Sivaslı	0.316	0.300	0.351		
Ulubey	0.307	0.300	0.329		
Karahallı	0.301	0.300	0.350		

MYİ sonuçları, yürürlükteki yönetmelikten daha büyük değerlerde

çıkmış olmasına karşın, güncellenmiş Türkiye Deprem Tehlike Haritası'ndan elde edilen elde edilen sonuçlar ile yakın benzerlik göstermektedir.

3. Tartışma ve Sonuç

Deprem kayıt istasyonlarında verilerin kesintisiz bir şekilde toplanması ve olası bir kesinti durumunda hızlıca müdahale edilmesi teknik bilgi ve eleman ihtiyacı gerektirmektedir. Bu koşulların yeterli ölçüde sağlandığı noktalarda istasyonlar kurulmaktadır. Ancak maliyetli bir işlem de olduğundan, Türkiye genelini göz önünde tuttuğumuzda, istasyon bulunmayan bölgelerin sayısının oldukca fazla olduğunu sövlevebiliriz. Yapay sinir ağları yöntemi kullanılarak, ölçüm yapılmış istasyonların verileri modellenmekte gereken ve veri koordinatlarda başarılı tahminler yapılabilmektedir.

Bu çalışmada, Uşak ili ve yakın çevresindeki her bir deprem istasyonu YSA ile modellenmiştir. Girdi katmanına, depremlerin derinliği, büyüklüğü ve istasyona olan uzaklıkları tanımlanarak, çıktı katmanından maksimum ivme verileri elde edilmiştir. Modellerin doğruluğunu tayin etmek amacıyla, istasyonun bulunduğu Uşak merkezde ölcülmüs deprem ivmeleri, 11 istasyondan 3 deprem bileşeni için oluşturulmuş YSA modelleri

tahmin edilmis kullanılarak MYİ değerleri ile kıyaslanmıştır. Doğrusal regresyon katsayılarının istatistiksel anlamda yüksek olması modellerin doğru çalıştığını gösteren önemli bir parametre olarak ele alınmıştır. Daha sonra, Uşak dışında bulunan 10 adet modelleri kullanılarak, istasyonun istasyon olmayan ilçelerdeki MYİ tahminleri de yapılmıştır. Tüm ilçeler için en yüksek MYİ tahmin değerleri Manisa Demirci modeli kullanılarak 0.6g civarında elde edilmistir. Elde edilen sonuçlar ve ortalama değerleri, DBYBHY 2007'de deprem bölgelerine göre öngörülen etkin yer ivmeleri ve güncel Türkiye Deprem Tehlike Haritaları'ndan ölçülen değerler ile kıyaslanmıştır. Ortalama sonuçların, 2007'de öngörülen etkin yer ivmelerinden daha yüksek çıktığı ve güncel harita değerleri ile uyum içinde olduğu görülmektedir. Bu da çalışmadan elde edilen sonuçların ve bu sonuçlara ulaşmak için kullanılan göstermek vöntemin doğruluğunu açısından önemli bir sonuçtur.

Çalışma, sismik veri analizinde YSA yaklaşımı ve deprem şartnamelerindeki tasarım ivme değerlerinin güncellenmesi konularını içeren çalışmalara kaynak olarak gösterilebilecektir.

Kaynakça

- [1] DBYBHY (2007). Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Resmi Gazete Tarihi: 06.03.2007, Resmi Gazete Sayısı: 26454, Ankara, Türkiye.
- [2] Türkiye Deprem Bölgeleri Haritası (1996). Bayındırlık ve İskan Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi Başkanlığı, Ankara, Türkiye.
- [3] Atkinson, G.M., Boore, D.M. 2006. Earthquake ground-motion prediction equations for eastern

North America, Bulletin of the Seismological Society of America, Cilt 96, Sayı 6, s.2181–2205.

- [4] Boore, D.M., Joyner, W.B., Fumal, T.E. 1997. Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work, Seismological Research Letters, Cilt 68, Sayı 1, s.128–153.
- [5] Campbell, K.W. 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra, Seismological Research Letters, Cilt 68, Sayı 1, s.54–179.
- [6] Spudich, P., Fletcher, J.B., Hellweg, M. 1997. SEA96—a new predictive relation for earthquake ground motions in extensional tectonic regimes, Seismological Research Letters, Cilt 68, Sayı 1, s.190–198.
- [7] Ambraseys, N.N., Simpson, K.A., Bommer, J.J. 1996. Prediction of horizontal response spectra in Europe, Earthquake Engineering and Structural Dynamics, Cilt 25, Sayı 4, s.371–400.
- [8] Alavi, A.H., Gandomi, A.H. 2011. Prediction of principal groundmotion parameters using a hybrid method coupling artificial neural networks and simulated annealing, Computers and Structures Cilt 89 (23-24), s.2176-2194.
- [9] Gandomi, A.H., Alavi, A.H., Mousavi, M., Tabatabaei, S.M. 2011. A hybrid computational approach to derive new ground-motion attenuation models, Engineering Applications of Artificial Intelligence, Cilt 24 (4), s.717-732.
- [10] Gullu, H., Ercelebi, E. 2007. A neural network approach for attenuation relationships: an application using

E.Ç. Kandemir Mazanoğlu / Uşak İli Çevresindeki Depremlerin Yapay Sinir Ağları ile Modellenmesi

strongegroundemotion data from Turkey, Engineering Geology, Cilt 93, s.65-81.

- [11] Bojorquez, E., Bojorquez, J., Ruiz, S.E., Reyes-Salazar, A. 2012. Prediction of inelastic response spectra using artificial neural Networks, Mathematical Problems in Engineering, Cilt 2012, Article ID 937480, 15 pages, DOİ:10.1155/2012/937480.
- [12] Panakkat, A., Adeli. 2007. Neural Network Models for Earthquake Magnitude Prediction Using Multiple Seismicity Indicators, International Journal of Neural Systems, Cilt 17, Sayı 1. DOI: http://dx.doi.org/10.1142/S01290 65707000890.
- [13] Yuen, K.V., Mu, H.Q. 2011. Peak Ground Acceleration Estimation by Linear and Nonlinear Models with Reduced Order Monte Carlo Simulation, Computer-Aided Civil and Infrastructure Engineering, Cilt 26, s.30–47.
- [14] Kamatchi, P., Rajasankar, J., Ramana, G.V., Nagpal, A.K. 2010. A neural network based methodology to predict sitespecific spectral acceleration values, Earthquake Engineering and Engineering Vibration, Cilt 9, Sayı 4, s.459-472.
- [15] Derras, B., Bard, P.Y., Cotton, F., Bekkouche, A. 2012. Adapting the neural network approach to PGA prediction: an example based on the KiK-net data, Bulletin of the Seismological Society of America, Cilt 102, Sayı 4, s. 1446-146. DOİ: 10.1785/0120110088.
- [16] Pozos-Estrada, A., Gomez, R., Hong, H.P. 2014. Use of Neural Network to Predict the Peak Ground Accelerations and Pseudo Spectral Accelerations for Mexican Inslab and Interplate Earthquakes, Geofisica Internacional, Cilt 53, s.39-57.

- [17] Gandomi, M., Soltanpour, M., Zolfaghari, M., Gandomi, A.H. 2016. Prediction of Peak Ground Acceleration of Iran's Tectonic Regions using a Hybrid Soft Computing Technique, Geoscience Frontiers, Cilt 7, s.75-82.
- [18] Kia, A., Sensoy, S. 2014. Assessment the Effective Ground Motion Parameters on Seismic Performance of R/C Buildings Using Artificial Neural Network, Indian Journal of Science and Technology, Cilt 7, s.2076-2082.
- [19] Thomas, S., Pillai G.N., Pal, K. 2016. Prediction of peak ground acceleration using ϵ -SVR, ν -SVR and Ls-SVR algorithm, Geomatics, Natural Hazards and Risk, DOI: 10.1080/19475705.2016.1176604.
- [20] Kerh, T., Ting, S.B. 2005. Neural network estimation of ground peak acceleration at stations along Taiwan high-speed rail system, Engineering Applications of Artificial Intelligence, Cilt 18, s.857-866.
- [21] Gandomi, M., Soltanpour, M., Zolfaghari, M.R., Gandomi, A.H. 2016. Prediction of peak ground acceleration of Iran's tectonic regions using a hybrid soft computing technique, Geoscience Frontiers, Cilt 7, s.75-82.
- [22] Lee, S.C., Han, S.W. 2002. Neuralnetwork-based models for generating artificial earthquakes and response spectra, Computers & Structures, Cilt 80, Sayı 20–21, s.1627–1638.
- [23] Garcia, S.R., Romo, M.P., Mayoral, J.M. 2007. Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks, Geofisica Internacional, Cilt 46, Sayı 1, s.51– 63.
- [24] Günaydın, K., Günaydın, A. 2008. Peak ground acceleration prediction by artificial neural

networks for northwestern Turkey, Mathematical Problems in Engineering, Cilt 2008, Article ID 919420, 20 pages.

- [25] Arjun, C.R., Kumar, A. 2009. Artificial neural network-based estimation of peak ground acceleration, Journal of Earthquake Technology, Cilt 46, s.19–28.
- [26] http://www.bilgiustam.com/beyni n-sirlari/ (Erişim Tarihi: 20.08.2015).
- [27] Şen, Z. 2004. Yapay Sinir Ağları İlkeleri, İstanbul Su Vakfı
- [28] Mehrotra, K., Mohan, C.K., Ranka S. 2000. Elements of Artificial Neural Network, USA MIT Press.
- [29] Türkiye Ulusal Kuvvetli Yer Hareketi Veri Tabanı. http://kyhdata.deprem.gov.tr/2K/ kyhdata_v4.php
- [30] Papazachos, B. C., Kiratzi, A. A., Karakostas, B. G. 1997. Towards a Homogeneous Moment-magnitude Determination for Earthquakes in Greece and the Surrounding Area, Bulletin of the Seismological Society of America, Cilt 87, s.474– 483.
- [31] Ma, L., Xu, F., Wang, X., Tang, L. 2010. Earthquake Prediction Based Levenberg-Marquardt on Algorithm Constrained Back-Propagation Neural Network Using DEMETER Data, Knowledge Science, Engineering and Management, 4th International Conference, KSEM 2010, Belfast, Northern Ireland, UK, September 2010. Proceedings. 1-3. DOI: 10.1007/978-3-642-15280-1_57.
- [32] Ulusal Deprem Araştırma Programı, UDAP-Ç-13-06 Türkiye Sismik Tehlike Haritasının Güncellenmesi, Aralık 2014, Ankara.
- [33] Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması. https://testtdth.afad.gov.tr/