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ABSTRACT 

In fractional calculus, an area of applied mathematics, the differintegral is a 

combined differentiation/integration operator. Differintegral theory is used to solve some 

classes of differential equations and fractional differential equations. One of these equations is 

the confluent hypergeometric equation. In this paper, we intend to solve this equation by 

means of the differintegral theorems. 

 

Keywords: Fractional calculus, Differintegral, Confluent hypergeometric equation, 

Differintegral theorems, Generalized Leibniz rule 

 

ÖZ 

Uygulamalı matematiğin bir alanı olan kesirli hesapta diferintegral, türev/integral 

operatörünün bir birleşimidir. Diferansiyel denklemlerin ve kesirli diferansiyel denklemlerin 

bazı sınıflarını çözmek için diferintegral teorisi kullanılmaktadır. Bu denklemlerden birisi 

konfluent hipergeometrik denklemidir. Bu makalede, diferintegral teoremleri yardımıyla bu 

denklemi çözmeyi hedefleriz. 

 

Anahtar Kelimeler: Kesirli hesap, Diferintegral, Konfluent hipergeometrik denklemi, 

Diferintegral teoremleri, Genelleştirilmiş Leibniz kuralı 
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1. INTRODUCTION 

 

      The widely investigated subject of fractional calculus (that is, calculus of derivatives and 

integrals of any arbitrary real or complex order) has gained considerable importance and 

popularity during the past three decades or so, due chiefly to its demonstrated applications in 

numerous seemingly diverse fields of science and engineering. We can mention that the 

fractional differential equations are playing an important role in fluid dynamics, traffic model 

with fractional derivative, measurement of viscoelastic material properties, modeling of 

viscoplasticity, control theory, relativity theory, economy, nuclear magnetic resonance,  

geometric mechanics, mechanics, optics, signal processing, robot technology, PID control 

systems, Schrödinger equation, heat transfer, filtration and so on. 

 

      Some of most obvious formulations based on the fundamental definitions of Riemann-

Liouville fractional differentiation and fractional integration are, respectively, 

 

     𝐷𝑎 𝑡
𝜇

𝑓(𝑡) =
1

Г(𝑘 − 𝜇)

𝑑𝑘

𝑑𝑡𝑘
∫ 𝑓(𝜏)(𝑡 − 𝜏)𝑘−𝜇−1

𝑡

𝑎

𝑑𝜏     (𝑘 − 1 ≤ 𝜇 < 𝑘), (1) 

 

and, 

 

     𝐷𝑎 𝑡
−𝜇

𝑓(𝑡) =
1

Г(𝜇)
∫ 𝑓(𝜏)(𝑡 − 𝜏)𝜇−1

𝑡

𝑎

𝑑𝜏     (𝑡 > 𝑎, 𝜇 > 0), (2) 

 

where 𝑘 ∈ ℕ, ℕ being the set of positive integers, Γ stands for Euler’s function gamma [1-4]. 

 

      Recently, by applying the Riemann-Liouville definitions of a differintegral (that is, 

fractional derivative and fractional integral) of order 𝜇 ∈ ℝ, many authors have explicity 

obtained particular solutions of  a number of families of homogeneous (as well as non-

homogeneous) linear ordinary and partial differintegral equations (see, for details, [5]; see 

also [6,7]). An important example of Fuchsian differential equations is provided by the 

celebrated hypergeometric equation (or, more precisely, the Gauss hypergeometric equation) 

 

      𝑧(1 − 𝑧)
𝑑2𝑢

𝑑𝑧2
+ [𝛾 − (𝛼 + 𝛽 + 1)𝑧]

𝑑𝑢

𝑑𝑧
− 𝛼𝛽𝑢 = 0, 

 

whose study can be traced back to L. Euler, C.F. Gauss and E.E. Kummer. On the other hand, 

a special limit (confluent) case of the Gauss hypergeometric equation, in the form [8] 

 

      
𝑑2𝑢

𝑑𝑧2
+ (−

1

4
+

𝜘

𝑧
−

ℓ(ℓ + 1)

𝑧2
) 𝑢 = 0     (𝜇 = ℓ +

1

2
), 

 

is refered to as the Whittaker equation whose systematic study was initiated by E.T. 

Whittaker. 

 

      Other classes of non-Fuchsian differential equations which we shall consider in this 

investigation include the so-called Fukuhara equation [9] 
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      𝑧2
𝑑2𝑢

𝑑𝑧2
+ 𝑧

𝑑𝑢

𝑑𝑧
− (1 − 𝑧 + 𝑧2)𝑢 = 0, 

 

the Tricomi equation [10] 

 

      
𝑑2𝑢

𝑑𝑧2
+ (𝛼 +

𝛽

𝑧
)

𝑑𝑢

𝑑𝑧
+ (𝛾 +

𝛿

𝑧
+

𝜀

𝑧2
) 𝑢 = 0, 

 

and the Bessel equation [11] 

 

      𝑧2
𝑑2𝑢

𝑑𝑧2
+ 𝑧

𝑑𝑢

𝑑𝑧
− (𝑧2 − 𝑣2)𝑢 = 0. 

 

      Moreover, in [12], Inc obtained the particular solutions of the confluent hypergeometric 

differential equation by using the nabla fractional calculus operator which is an important 

operator in discrete fractional calculus. Virchenko’s study [13] is devoted to further 

development of important case of Wright’s hypergeometric function and its applications to 

the generalization of Γ −, 𝐵 −, 𝜓 −, 𝜁 −, Volterra functions. In [14], Srivastava and Saxena 

expressed some Volterra-type fractional integro-differential equations with a multivariable 

confluent hypergeometric function as their kernel. And, Campos solved the extended 

confluent hypergeometric differential equation in [15]. 

       

      In this paper, we also obtained the fractional solutions of the confluent hypergeometric 

equation by using the differintegral theorems. The most important advantage of these 

theorems is applicaple to the singular equations. 

 

2. MATERIALS AND METHODS 

 

2.1. Definition If the function 𝑓(𝑧) is analytic (regular) inside and on 𝐶, where 𝐶 =
{𝐶−, 𝐶+}, 𝐶− is a contour along the cut joining the points 𝑧 and −∞ + 𝑖Im(𝑧), which starts 

from the point at −∞, encircles the point 𝑧 once counter-clockwise, and returns to the point at 

−∞, and 𝐶+ is a contour along the cut joining the points 𝑧 and ∞ + 𝑖Im(𝑧), which starts from 

the point at ∞, encircles the point 𝑧 once counter-clockwise, and returns to the point at ∞, 

 

     𝑓𝜇(𝑧) = [𝑓(𝑧)]𝜇 =
Г(𝜇 + 1)

2𝜋𝑖
∫

𝑓(𝜏)𝑑𝜏

(𝜏 − 𝑧)𝜇+1

𝐶

     (𝜇 ∉ ℤ−), 

     𝑓−𝑘(𝑧) = lim
𝜇→−𝑘

𝑓𝜇(𝑧)     (𝑘 ∈ ℤ+), 

(3) 

 

where 𝜏 ≠ 𝑧, 

 

     −𝜋 ≤ arg(𝜏 − 𝑧) ≤ 𝜋     for  𝐶−, 
     0 ≤ arg(𝜏 − 𝑧) ≤ 2𝜋     for  𝐶+. 

(4) 

      

      In that case, 𝑓𝜇(𝑧) (𝜇 > 0) is the fractional derivative of 𝑓(𝑧) of order 𝜇 and 𝑓𝜇(𝑧) (𝜇 <

0)  is the fractional integral of 𝑓(𝑧) of order −𝜇, confirmed (in each case) that 

 

     |𝑓𝜇(𝑧)| < ∞     (𝜇 ∈ ℝ). (5) 
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[4]. 

 

2.2. Lemma (Linearity) Let 𝑓(𝑧) and 𝑔(𝑧) be analytic and single-valued functions. If 𝑓𝜇 and 

𝑔𝜇 exist, then 

 

     (𝐢)      [𝑐1𝑓(𝑧)]𝜇 = 𝑐1[𝑓(𝑧)]𝜇, 
(6) 

     (𝐢𝐢)     [𝑐1𝑓(𝑧) + 𝑐2𝑔(𝑧)]𝜇 = 𝑐1[𝑓(𝑧)]𝜇 + 𝑐2[𝑔(𝑧)]𝜇, 

 

where 𝑐1 and 𝑐2 are constants and 𝜇 ∈ ℝ, 𝑧 ∈ ℂ. 

 

2.3. Lemma (Index law) Let 𝑓(𝑧) be an analytic and single-valued function. If (𝑓𝜈)𝜇 and 

(𝑓𝜇)
𝜈
 exist, then 

 

     {[𝑓(𝑧)]𝜈}𝜇 = [𝑓(𝑧)]𝜈+𝜇 = {[𝑓(𝑧)]𝜇}
𝜈

, (7) 

 

where 𝜈, 𝜇 ∈ ℝ, 𝑧 ∈ ℂ and |
Г(𝜈+𝜇+1)

Г(𝜈+1)Г(𝜇+1)
| < ∞. 

 

2.4. Lemma (Generalized Leibniz rule) Let 𝑓(𝑧) and 𝑔(𝑧) be single-valued and analytic 

functions. If 𝑓𝜇  and 𝑔𝜇 exist, then 

 

     (𝑓. 𝑔)𝜇 = ∑
Г(𝜇 + 1)

Г(𝜇 + 1 − 𝑘)Г(𝑘 + 1)

∞

𝑘=0

𝑓𝜇−𝑘. 𝑔𝑘, (8) 

 

where 𝜇 ∈ ℝ, 𝑧 ∈ ℂ  and  |
Г(𝜇+1)

Г(𝜇+1−𝑘)Г(𝑘+1)
| < ∞. 

 

2.5. Property For a constant 𝜆, 

 

     (e𝜆z)
𝜈

= 𝜆𝜈e𝜆𝑧     (𝜆 ≠ 0, 𝜈 ∈ ℝ, z ∈ ℂ). (9) 

 

2.6. Property For a constant 𝜆, 

 

     (e−𝜆𝑧)
𝜈

= e−𝑖𝜋𝜈𝜆𝜈e−𝜆𝑧     (𝜆 ≠ 0, 𝜈 ∈ ℝ, 𝑧 ∈ ℂ). (10) 

 

2.7. Property For a constant 𝜆, 

 

     (𝑧𝜆)
𝜈

= e−𝑖𝜋𝜈𝑧𝜆−𝜈
Γ(𝜈 − 𝜆)

Γ(−𝜆)
     (𝜈 ∈ ℝ, 𝑧 ∈ ℂ, |

Γ(𝜈 − 𝜆)

Γ(−𝜆)
| < ∞). (11) 

 

2.8. Property 

 

     Г(𝑧 + 1) = 𝑧Г(𝑧 + 1) = 𝑧!, (12) 

 

and, 
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     Γ(𝜈 − 𝑘) = (−1)𝑘
Γ(𝜈)Γ(1 − 𝜈)

Γ(𝑘 + 1 − 𝜈)
, (13) 

 

where 𝑘 ∈ ℤ0
+ and 𝜈 ∈ ℝ. 

 

2.9. Theorem Let 𝒫(𝑧; 𝓅) and 𝒬(𝑧; 𝓆) be polynomials in 𝑧 of degrees 𝓅 and 𝓆, respectively, 

defined by 

 

     𝒫(𝑧; 𝓅) = ∑ 𝑎𝑘𝑧𝓅−𝑘

𝓅

𝑘=0

= 𝑎0 ∏(𝑧 − 𝑧𝑗)

𝓅

𝑗=1

     (𝑎0 ≠ 0, 𝓅 ∈ ℕ), (14) 

 

and, 

 

     𝒬(𝑧; 𝓆) = ∑ 𝑏𝑘𝑧𝓆−𝑘

𝓆

𝑘=0

     (𝑏0 ≠ 0, 𝓆 ∈ ℕ). (15) 

 

      Suppose also that 𝑓−𝜇 ≠ 0 exists for a given function 𝑓. 

       

      Then the nonhomogeneous linear ordinary fractional differintegral equation 

 

      𝒫(𝑧; 𝓅)𝜑𝜈(𝑧) + [∑ (
𝜇

𝑘
) 𝒫𝑘(𝑧; 𝓅) + ∑ (

𝜇

𝑘 − 1
) 𝒬𝑘−1(𝑧; 𝓆)

𝓆

𝑘=1

𝓅

𝑘=1

] 𝜑𝜈−𝑘(𝑧) 

 

+ (
𝜇

𝓆
) 𝓆! 𝑏0𝜑𝜈−𝓆−1(𝑧) = 𝑓(𝑧)     (𝓅, 𝓆 ∈ ℕ, 𝜈, 𝜇 ∈ ℝ), (16) 

 

has a particular solution of the form 

 

     𝜑(𝑧) = {[
𝑓−𝜇(𝑧)

𝒫(𝑧; 𝓅)
eℋ(𝑧;𝓅,𝓆)]

−1

e−ℋ(𝑧;𝓅,𝓆)}

𝜇−𝜈+1

     (𝑧 ∈ ℂ ⧵ {𝑧1, … , 𝑧𝓅}), (17) 

 

where for suitable condition, 

 

     ℋ(𝑧; 𝓅, 𝓆) = ∫
𝒬(𝜉; 𝓆)

𝒫(𝜉; 𝓅)
𝑑𝜉

𝑧

            (𝑧 ∈ ℂ ⧵ {𝑧1, … , 𝑧𝓅}), (18) 

 

confirmed that the second component of (17) exists. Moreover, the homogeneous linear 

ordinary fractional differintegral equation 

 

      𝒫(𝑧; 𝓅)𝜑𝜈(𝑧) + [∑ (
𝜇

𝑘
) 𝒫𝑘(𝑧; 𝓅) + ∑ (

𝜇

𝑘 − 1
) 𝒬𝑘−1(𝑧; 𝓆)

𝓆

𝑘=1

𝓅

𝑘=1

] 𝜑𝜈−𝑘(𝑧) 
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+ (
𝜇

𝓆
) 𝑞! 𝑏0𝜑𝜈−𝓆−1(𝑧) = 0     (𝓅, 𝓆 ∈ ℕ, 𝜈, 𝜇 ∈ ℝ), (19) 

 

has solutions of the form 

 

     𝜑(𝑧) = 𝐾[e−ℋ(𝑧;𝓅,𝓆)]
𝜇−𝜈+1

, (20) 

 

where ℋ(𝑧; 𝓅, 𝓆) is given by (18), it being confirmed that the second component of (20) exist 

and 𝐾 is an arbitrary constant [16]. 

 

3. MAIN RESULTS 

 

      The hypergeometric equation 

 

     𝑥(1 − 𝑥)
𝑑2𝜑(𝑥)

𝑑𝑥2
+ [𝑐 − (𝑎 + 𝑏 + 1)𝑥]

𝑑𝜑(𝑥)

𝑑𝑥
− 𝑎𝑏𝜑(𝑥) = 0, (21) 

 

has three regular singular points at 𝑥 = 0,1 and ∞ (𝑎, 𝑏 and 𝑐 are parameters). By setting 𝑥 =
𝑧 𝑏⁄  and taking the limit as 𝑏 → ∞, we can merge the singularities at 𝑏 and infinity. This gives 

us the confluent equation as 

 

     𝑧
𝑑2𝜑

𝑑𝑧2
+ (𝑐 − 𝑧)

𝑑𝜑

𝑑𝑧
− 𝑎𝜑 = 0, (22) 

 

solutions of which are the confluent hypergeometric functions, which are shown as 𝑀(𝑎, 𝑐; 𝑧).  

    

      The confluent hypergeometric equation has a regular singular point at 𝑧 = 0 and an 

essential singularity at infinity. Bessel functions, 𝐽𝑛(𝑧), and the Laguerre polynomials, 𝐿𝑛(𝑧), 

can be written in terms of the solutions of the confluent hypergeometric equation as 

 

      𝐽𝑛(𝑧) =
e−𝑖𝑧

𝑛!
(

𝑧

2
)

𝑛

𝑀 (𝑛 +
1

2
, 2𝑛 + 1; 2𝑖𝑧), 

      𝐿𝑛(𝑧) = 𝑀(−𝑛, 1; 𝑧). 
       

      Linearly independent solutions of Eq. (22) are given as 

 

      𝜑1(𝑧) = 𝑀(𝑎, 𝑐; 𝑧) = 1 +
𝑎

𝑐

𝑧

1!
+

𝑎(𝑎 + 1)

𝑐(𝑐 + 1)

𝑧2

2!
+

𝑎(𝑎 + 1)(𝑎 + 2)

𝑐(𝑐 + 1)(𝑐 + 2)

𝑧3

3!
+ ⋯, 

      (𝑐 ≠ 0, −1, −2, … ), 
 

and, 

 

      𝜑2(𝑧) = 𝑧1−𝑐𝑀(𝑎 + 1 − 𝑐, 2 − 𝑐; 𝑧)     (𝑐 ≠ 2,3,4, … ). 
       

      Integral representation of the confluent hypergeometric functions, which are also shown 

as 𝐹1 1(𝑎, 𝑏; 𝑧), can be given as 
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      𝑀(𝑎, 𝑐; 𝑧) =
Г(𝑐)

Г(𝑎)Г(𝑐 − 𝑎)
∫ e𝑧𝑡𝑡𝑎−1(1 − 𝑡)𝑐−𝑎−1𝑑𝑡

1

0

     (𝑎, 𝑐 ∈ ℝ, 𝑐 > 𝑎 > 0). 

[17]. 

 

      Now, for Eq. (22), we use the transformation as 

 

     𝜑(𝑧) = 𝑧−𝑐 2⁄ e𝑧 2⁄ 𝑢(𝑧)     [𝑢(𝑧) = 𝑧𝑐 2⁄ e−𝑧 2⁄ 𝜑(𝑧)]. (23) 

       

      So, we can write 

 

     
𝑑𝜑

𝑑𝑧
= 𝑧−

𝑐
2

−1e𝑧 2⁄ [𝑧
𝑑𝑢

𝑑𝑧
+

1

2
(𝑧 − 𝑐)𝑢], (24) 

 

and, 

 

     
𝑑2𝜑

𝑑𝑧2
= 𝑧−

𝑐
2

−2e𝑧 2⁄ {𝑧2
𝑑2𝑢

𝑑𝑧2
+ 𝑧(𝑧 − 𝑐)

𝑑𝑢

𝑑𝑧
+

1

4
[(𝑧 − 𝑐)2 + 2𝑐]𝑢}. (25) 

       

      By substituting (23), (24) and (25) into (22), we have 

 

     
𝑑2𝑢

𝑑𝑧2
+ (−

1

4
+

𝑐
2 − 𝑎

𝑧
+

2𝑐 − 𝑐2

4𝑧2
) 𝑢 = 0. (26) 

       

      After, we can write Eq. (26) as follows 

 

     
𝑑2𝑢

𝑑𝑧2
+ [−

1

4
+

𝑐
2 − 𝑎

𝑧
+

1
4 − (

𝑐 − 1
2 )

2

𝑧2
] 𝑢 = 0. (27) 

       

      By using Theorem (2.9), we have [18] 

 

     𝜇 = 2,     𝓅 = 𝓆 = 1,     𝑎0 = ℎ ≠ 0,     𝑎1 = 0,     𝑏0 = 𝑠 ≠ 0,     𝑏1 = 𝑡, (28) 

 

so that 

 

     𝒫(𝑧; 1) = ℎ𝑧,     𝒫1(𝑧; 1) = ℎ, (29) 

 

and,  

 

     𝒬(𝑧; 1) = 𝑠𝑧 + 𝑡,     𝒬1(𝑧; 1) = 𝑠. (30) 

       

      After, by using Eq. (18), we obtain 
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     ℋ(𝑧; 1,1) = ∫
𝒬(𝜉; 1)

𝒫(𝜉; 1)
𝑑𝜉

𝑧

= ln[(ℎ𝑧)𝑡 ℎ⁄ e𝑠𝑧 ℎ⁄ ]. (31) 

 

3.1. Theorem Let |𝑓𝜇(𝑧)| < ∞ and 𝑓−𝜇 ≠ 0. The nonhomogeneous second order linear 

ordinary differential equation as  

 

     ℎ𝑧
𝑑2𝜑

𝑑𝑧2
+ (𝑠𝑧 + 𝜇ℎ + 𝑡)

𝑑𝜑

𝑑𝑧
+ 𝜇𝑠𝜑(𝑧) = 𝑓(𝑧)     (ℎ ≠ 0, 𝜇 ∈ ℝ), (32) 

 

has a solution as follows  

 

     𝜑(𝑧) = {[𝑓−𝜇(𝑧)(ℎ𝑧)(𝑡−ℎ) ℎ⁄ e𝑠𝑧 ℎ⁄ ]
−1

(ℎ𝑧)−𝑡 ℎ⁄ e−𝑠𝑧 ℎ⁄ }
𝜇−1

. (33) 

       

      Furthermore, the homogeneous second order linear ordinary differential equation as 

 

     ℎ𝑧
𝑑2𝜑

𝑑𝑧2
+ (𝑠𝑧 + 𝜇ℎ + 𝑡)

𝑑𝜑

𝑑𝑧
+ 𝜇𝑠𝜑(𝑧) = 0     (ℎ ≠ 0, 𝜇 ∈ ℝ), (34) 

 

has a solution as follows 

 

     𝜑(𝑧) = 𝐾[(ℎ𝑧)−𝑡 ℎ⁄ e−𝑠𝑧 ℎ⁄ ]
𝜇−1

, (35) 

 

where 𝐾 is an arbitrary constant [18]. 

 

      Now, by using Theorem (3.1),  we set 

 

     ℎ = 1,     𝑠 = −1,     𝑡 = 𝑐 − 𝑎,     𝜇 = 𝑎. (36) 

       

      So, we obtain the equation as 

 

     𝑧
𝑑2𝜑

𝑑𝑧2
+ (𝑐 − 𝑧)

𝑑𝜑

𝑑𝑧
− 𝑎𝜑(𝑧) = 0. (37) 

       

      After, we find the solution of Eq. (37) as follows 

 

     𝜑(𝑧) = 𝐾[𝑧𝑎−𝑐e𝑧]𝑎−1. (38) 

       

      Finally, we have the solution of Eq. (27) as 

 

     𝑢(𝑧) = 𝐾𝑧𝑐 2⁄ e−𝑧 2⁄ [𝑧𝑎−𝑐e𝑧]𝑎−1. (39) 

 

3.2. Example Let 𝑎 = 3 and 𝑐 = 1 for Eq. (38) and Eq. (39). So, we obtain 

 

     𝜑(𝑧) = 𝐾(𝑧2e𝑧)2, (40) 

 

and, 
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     𝑢(𝑧) = 𝐾𝑧1 2⁄ e−𝑧 2⁄ (𝑧2e𝑧)2. (41) 

       

      By using Eq. (1), we have  

 

     (𝑧2e𝑧)2 =
1

Г(1)

𝑑3

𝑑𝑧3
∫ 𝜏2e𝜏

𝑧

0

𝑑𝜏 = e𝑧(𝑧2 + 4𝑧 + 2). (42) 

       

      After, by substituting (42) into (40) and (41), we find the solutions as 

 

     𝜑(𝑧) = 𝐾e𝑧(𝑧2 + 4𝑧 + 2), (43) 

 

and, 

 

     𝑢(𝑧) = 𝐾𝑧1 2⁄ e𝑧 2⁄ (𝑧2 + 4𝑧 + 2). (44) 

 

3.3. Theorem Let |(𝑧𝑎−𝑐)𝑘| < ∞ (𝑘 ∈ ℤ+ ∪ {0}), 𝑧 ≠ 0, and |
1

𝑧
| < 1. The solution of (38) 

can be written as follows 

 

     𝜑(𝑧) = 𝐾𝑧𝑎−𝑐e𝑧 𝐹02 [1 − 𝑎, 𝑐 − 𝑎;
1

𝑧
] , (45) 

 

where 𝐹02  is the Gauss hypergeometric function. 

 

Proof. By means of (8), we have 

 

     𝜑(𝑧) = 𝐾 ∑
Γ(𝑎)

Γ(𝑎 − 𝑘)Γ(𝑘 + 1)

∞

𝑘=0

(𝑧𝑎−𝑐)𝑘(e𝑧)𝑎−1−𝑘. (46) 

       

      By using (9), (11), (12) and (13), we can rewrite the Eq. (46) as follows 

 

      𝜑(𝑧) = 𝐾 ∑
Γ(𝑘 + 1 − 𝑎)

(−1)𝑘Γ(1 − 𝑎)

1

𝑘!

∞

𝑘=0

(−1)𝑘𝑧𝑎−𝑐−𝑘
Γ(𝑘 + 𝑐 − 𝑎)

Γ(𝑐 − 𝑎)
e𝑧, 

 

                = 𝐾𝑧𝑎−𝑐e𝑧 ∑[1 − 𝑎]𝑘

∞

𝑘=0

[𝑐 − 𝑎]𝑘

1

𝑘!
(

1

𝑧
)

𝑘

, 

 

   = 𝐾𝑧𝑎−𝑐e𝑧 𝐹02 [1 − 𝑎, 𝑐 − 𝑎;
1

𝑧
]. (47) 

 

4. CONCLUSION 
 

      In this paper, we used the differintegral theorems for the confluent hypergeometric 

equation. We also obtained hypergeometric forms of the fractional solutions. Solutions of the 

singular equations can be obtained by means of these theorems. 
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