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ABSTRACT 

In this study, magnetic alginate beads were successfully synthesized by integrating 

superparamagnetic iron oxide nanoparticles (Fe3O4) in sodium alginate microbeads during the 

synthesis. The as-obtained dried samples were analyzed by means of their water detention 

capacity and drug encapsulation efficiency. Further, an anti-inflammatory drug (Cefazolin), 

mostly used for the treatment of joint inflammations after surgery, was used as a model drug 

in order to evaluate the stimuli-responsive properties of macrocomposites under magnetic 

field for the development of on-site drug delivery system. To do so, their drug release kinetics 

at changing environmental conditions, such as pH, temperature, and magnetic field were 

investigated and compared with bare alginate beads.  

 

Keywords: Magnetic nanocomposites, Stimuli-responsive hydrogels, Alginate hydrogel, 

Drug delivery 

 

ÖZ 
Bu çalışmada, manyetik aljinant taneleri, Süperparamanyetik demir oksit (Fe3O4) 

nanoparçacıkların, sentez sırasında sodyum aljinat mikrotaneleri içerisine entegre edilmesi 

ile sentezlenmiştir. Elde edildiği haliyle kurutulan örnekler, su tutma kapasiteleri ve ilaç 

enkapsülasyon verimliliği açısından analiz edilmiştir. Ayrıca, genellikle ameliyat sonrası 

eklem iltihaplanmalarının tedavisinde kullanılan bir anti inflamatuar ilaç (Sefazol), manyetik 

alan altında mikrokompozitlerin uyaranlara duyarlılık özelliklerinin değerlendirilmesi için 

model ilaç olarak kullanılmıştır. Bunun için, pH, sıcaklık ve manyetik alan gibi değişen ortam 

koşullarındaki ilaç salım kinetikleri incelenmiş ve boş aljinat taneleri ile karşılaştırılmıştır. 

 

Anahtar Kelimeler: Manyetik nanokompozit, Uyaran duyarlı hidrojel, Aljinant hidrojel, İlaç 

taşıma 
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1. INTRODUCTION 

 

 Statistics show that more than 100 million people worldwide suffer from osteoarthritis 

(OA) and in recent years increased number of people with age over 65 years has been 

reported as they were affected by knee OA [1]. Mostly OA patients in their late ages choose 

knee replacement due to the high success rates in restored quality of life after the surgery. 

However, statistics showed that almost 10% of the total knee replacement procedures ends up 

with implant revision due to implant failure. Implant failure due to uncontrollable 

inflammation during the wound healing process is one of the major issues that must be solved. 

Locating biomaterials with the ability to control the release of anti-inflammatory molecules 

during implantation or directly on inflammation site could increase the possibility to achieve 

control over inflammation. However, depending on where the inflammation occurs, 

physicochemical properties of the biomaterial (natural or synthetic) and macrostructure as 

filler influence the therapeutic effectiveness of the anti-inflammatory agent which 

incorporated into the biomaterial [2].  

 

 Alginate as a natural polysaccharide is non-toxic, biocompatible, biodegradable and 

renewable and due to this it has received increasing attention in different fields. Among their 

potential use in food technology [3], biosensors [4], biocatalysis [5] and waste-water 

treatments [6], its physically stable, highly porose hydrogels formed  in the presence of 

calcium chloride have been widely used in biomedical applications  as support material or 

molecular carrier [2]. 

 

 Parallel to the increased knowledge on nanomaterials, the design of smart composite 

materials combining the basic features of functional nanoparticles and biopolymers have 

extended the potential of these matrixes for their use in the fields requiring stimuli-responsive 

materials [7]–[11]. Using hybrid polymer/nanoparticle systems one can achieve controlled 

release of the drug by external stimuli, for example, UV or IR triggered photorelease, 

hypothermia triggered or magnetically triggered systems. No different than other metals, iron 

oxide shows outstanding magnetic and thermal properties at sizes below 100 nm and there is 

an increasing trend of the development of new materials by incorporating magnetic nanobeads 

to biopolymers. For example, magnetically controlled water-soluble chitosan (WSC) particles 

which physical cross-linked with sodium alginate dipped into ferrous chloride has been used 

as an adsorbent for different dyes and hemoglobin [12]. In the same manner, 

polysaccharide/biopolymer based hydrogels encapsulating magnetic nanoparticles have been 

used fort he release of several bioactive molecules including insulin [13], dopamine [11], 

vitamins [3] and so on.  

 

 The anti-inflammatory drug Cefazolin sodium (Figure 1) is a broad spectrum antibiotic 

which often used to reduce inflammation in cartilage and mostly requires delivery together 

within  a polymer support. When incorporated within an a biodegradable hydrogel made up of 

P(FAD: SA, 50:50 w/w) polyanhydride,  Park. et al. demonstrated the slow release of 

cefazolin in situ [14]. In another study, cefazolin sodium and gentamicin sulfate has been 

grafted to biodegradable polymers (poly(dl-lactide):co-glycolide) and the long-term in vitro 

drug release have been monitored for over 30 days on S. aureus (ATCC65389) by using an 

antibiotic disk diffusion method which  revealed an enhanced bacterial inhibition compared 

favorably with no treatment and free cefazolin [15]. To the best of our knowledge, there is no 

report on a magnetically controlled drug delivery system for cefazolin for their use to prevent 

or heal the implant rejection driven inflammations.   
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Figure 1. Chemical structure of Cefazolin 

In this report, superparamagnetic nanoparticles (SPIONs) were incorporated inside alginate 

capsules, and a magnetically switchable system for controlled release of cefazolin as a model 

anti-inflammatory drug for the development of an on-site drug delivery system was achieved 

by an external magnetic field. Moreover, we have showed that use of metallic nanoparticles as 

filler can also slow biodegradation of alginate. 

2. MATERIALS AND METHODS 

2.1. Chemicals 

 All chemicals used were of analytical grade and used without further purification. 

Cefazolin (Sefazol) was obtained from a local pharmacy, sodium alginate was obtained from 

Sigma-Aldrich, Hydrogen peroxide (30%), and sulfuric acid, ferric chloride (FeCl3·6H2O), 

ferrous sulfate (FeCl2·7H2O), sodium hydroxide, ammonium hydroxide (30 %), calcium 

chloride were purchased from Sigma-Aldrich. 

2.2. Preparation of Magnetic Nanoparticles 

 Superparamagnetic nanoparticles Fe3O4 (SPIONs) were synthesized by a co-precipitation 

method using ammonia as precipitation agent. Magnetic nanoparticles were synthesized by 

co-precipitation method with slight changes. Basically, keeping 10 mL of NH4OH (Sigma-

Aldrich, 30-33% NH3 in H2O) was added dropwise to previously prepared iron chloride 

solutions (Iron(III) chloride hexahydrate/Iron(II) chloride (purchased from Sigma-Aldrich) 

mixture from prepared with  0.5 Fe2+/Fe3+ molar ratios. After the dark black solution was 

obtained, reaction temperatures increased to 90 C° and let for oxidation for over an hour. 

Magnetic particles formed were collected with a strong magnet and washed three times with 

pure water to eliminate unreacted salts. Further, particles were either washed with HCl (1M) 

to enhance their stability when not used and separate by a magnet and wash with distilled 

water. Particle size distribution was then analyzed with Malvern Zeta Sizer. Morphological 

analysis of the samples was performed with ZEISS Supra 55 model FE-SEM. Each sample 

was freeze-dried on a glass slide and further coated with 1 cycle of platinum. 

2.3. Synthesis of Magnetic Alginate Beads  

 Bare and magnetic alginate beads encapsulating cefazolin (10% w) were prepared 

following the standard procedure using calcium chloride as a cross-linking agent. Changing 

alginate concentrations 1.0 to 4.0 % w/v were prepared and mixed with superparamagnetic 

particles (SPIONs) (10 mg/mL alginate) of 12 nm in size (Figure 2). Once a homogenous 

mixture was obtained, macroparticles were formed by adding this mixture to CaCl2 solution 

(%2.0) dropwise by a 10 mL syringe. Particles were then washed three times with CaCl2 

solution and further dried at room temperature for overnight.  
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2.4. Determination of Swelling Value at Equilibrium (%) 

 Dried samples were weighed and soaked in water and in different periods, beads were 

taken, further dried with a tissue paper and weighed until a steady state swelling value (S) 

reached. S value was calculated from Equation 1. 

 S= 
𝑤∞−𝑤𝑜

𝑤𝑜
× 100            (1) 

where; S is defined as swelling value at at equilibrium, 𝑤𝑜 is the weight of the hydrogel in the 

begining and 𝑤∞is the weight of the hydrogel at equilibrium swelling obtained after a long 

period of swelling. 

2.5. Encapsulation of Cefazolin into Alginate Magnetic Beads 

 After macrobeads were prepared, the beads were taken out and the remaining solution was 

analyzed by UV spectroscopy at 280 nm. Cefazolin concentration was calculated using 

previously obtained a calibration curve.  The encapsulated amount of cefazolin (%) was 

determined by Equation 2. 

 Encapsulated Cefazolin (%) 
𝐶𝑜−𝐶𝑡

𝐶𝑜
× 100         (2) 

where; 𝐶𝑜 stands for initial cefazolin concentration and 𝐶𝑡 is the cafeazolin concentration at 

washing collected at washing step.  

2.6. Cefazolin Release from Magnetic Beads 

 0.2 g/mL of macrobeads were prepared in PBS solutions (10x) at pre-decided pHs. 

Experiments conducting magnetic field was generated inducing an oscillating magnetic field  

that results in 1800 G for a sample located in 0.5 cm distance. At predetermined time 

intervals, the magnetic field was stopped and the liquid sample was  withdrawn and replaced 

with fresh PBS (10x). The cefazolin content of the withdrawn sample was determined 

spectrophotometrically at 280 nm. UV–vis measurements were performed using a with 

Analytic Jena, Secord 210 Plus model. The temperature was controlled by placing the samples 

in a water jacket.  

3. RESULTS AND DISCUSSIONS 

 In this study, cefazolin (Scheme 2) as the model anti-inflammatory drug was incorporated 

in macrobeads prepared from sodium alginate/magnetic nanoparticles and under external 

stimuli, temperature, pH and magnetic field, magnetic particle based changes in drug release 

profile was reported as compared with bare alginate beads. To do so, bare and magnetic 

alginate beads encapsulating cefazolin (10% w) were prepared following the standard 

procedure [5]. Changing alginate concentrations 1.0 to 4.0 % w/v were prepared and mixed 

with superparamagnetic particles (SPIONs) (10 mg/mL alginate) of 12 nm in size (Figure 2). 

Once a homogenous mixture was obtained, macroparticles were formed by adding this 

mixture to CaCl2 solution (%2.0) dropwise using a 10 mL syringe. Particles were then washed 

three times with CaCl2 solution and further dried at room temperature for overnight. As 

depicted in Figure 1a and b, homogenous particulates were achieved for both cases where for 

2.0% alginate concentration, mean size of the magnetic alginate beads decreases in the 

presence of magnetic nanoparticles which is expected since magnetic nanoparticle surface 

with acidic groups alters the electrostatic interaction between each component which results 

in tighter macrobeads (Alginate-SPION) (Figure 3a). However, at lower alginate 
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concentrations, macrobeads were found to be agglomerated and degraded so we continued our 

studies with 2.0 % and 4.0 % w/v of alginate. Figure 3b, shows the magnetic property of the 

prepared beads in the presence of a magnet and the SEM image of the magnetic nanoparticles 

located as clusters on the porous structure of the alginate beads.  

 

 Encapsulated amount of the cefazolin was measured indirectly by collecting the samples 

from washing step and measuring the absorbance at 285 nm at spectrophotometer. As 

depicted in Figure 2b, encapsulation capacities were enhanced when SPIONs were 

incorporated in both alginate concentrations where 4.0 % alginate has 50% higher 

encapsulation capacity compared to 2%.  Loading cefazolin into Alg and Alg-SPON beads at 

pH 7.4 were 51.32±2.05 % and 68.49±2.37 % for 2% Alginate and 72.35±4.34 % and 

85.56±3.02% for 4% Alginate which is highly satisfactory compared to the reported values 

for other compounds [11,13].  

Figure 2. Photograph of Cefazolin encapsulating a) alginate macrobeads (2%) and superparamagnetic 

nanoparticle (SPION) embedded alginate macrobeads. FE-SEM image of SPION clustered on alginate bead 

surface and image demonstrating the magnetic properties of the resulting macrobeads 

 

 
 
Figure 3. a) Size distribution and b) Cefazolin encapsulation efficiency of as prepared alginate macrobeads (2%) 

w/two superparamagnetic nanoparticles  

 

 

 Swelling is another important parameter that changes the biodegradation and drug release 

character of the polymer matrix when it faced to biological environment. Effects of three main 
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parameters, pH, temperature and magnetic field on the swelling value of magnetic beads at 

equilibrium are shown in Figure 4. Regardless of magnetic field, there is a slight increase in 

swelling for all types of particles due to the increased temperature of 25 °C to 37 °C. ALG-

SPION magnetic beads prepared at 2% of alginate were not stable at pH 7.4 as they degraded 

after 24 hours which needed for calculating the swelling value of the hydrogels at equilibrium. 

Overly swelled beads can also be seen in figure 4b that framed with red color. However, for 

the magnetic particles prepared with 4% alginate, the effect of magnetic field is more 

significant at pH 7.4 where the swelling increased 1/3 to ½ depending on the temperature 

(Figure 4a and Figure 4b). At pH 5.5 swelling is lower and beads are more stable in both 

alginate concentrations. Although, pH and temperature tailored release of the alginate content 

is known phenomenon, altered release in the presence of the magnetic field could initiate the 

development of new filler materials.  

 

 The release performances of hydrogels in varying polymer concentrations are 

characterized in vitro at varying conditions such as pH, temperature, and magnetic field. In 

order to probe temperature effect, the experiments are held with particles in 2% and 4% 

concentrations and experiments were run for 5 hours. Figure 5 summarizes the effect of three 

environmental parameters and shows whether those parameters have a synergetic effect or 

not. Considering the cumulative (%) cefazolin releases from magnetic alginate beads at 25 °C 

and 37 °C without a magnetic field, we can see the similar pattern shown in swelling values 

that Alg-SPION (%2) particles show higher release rate at pH 7.4 at both temperatures. 

Increased temperature effects Alg-SPION (%4) at this temperature. Under applied magnetic 

field, it is observed that 4 % Alg-SPION complex has the lower release performance at both 

25 °C and 37 °C while no additional pH effect perceived at these temperatures compared to 

non-magnetic conditions. However, for Alg-SPION (%2) particles, the release rate increases 

at both pHs, and cefazolin release at pH 5.5 reaches to release rate at pH 7.4 at both 

temperatures. This means that magnetic beads have the capacity to heat up and vibrate even at 

room temperature, which as a result disturb the polymeric infrastructure and results in a faster 

drug release compared to the bare alginate macrobeads which showed in all conditions as low 

as 20 % release of the drug. 

 

Figure 4. a) Effect of pH, temperature and magnetic field on the swelling value of the hydrogel at equilibrium 

depending on the initial alginate concentration of the ALG- SPION macrobeads and b) images depicting the 

effect of swelling  after 24 hours at 37 °C (Frame colour of each image corresponds to legend color of the 

samples depicted in the graph. Experiments were carried out with 0.2 g/1 mL hyrdogel 
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Figure 5. Cefazolin release profile of the ALG-SPION magnetic beads at changing environmental parameters 

(pH, temperature, and magnetic field) 

4. CONCLUSIONS 

 In this report, superparamagnetic nanoparticles (SPIONs) were incorporated inside 

alginate capsules, and a magnetically switchable system for controlled release of cefazolin as 

a model anti-inflammatory drug for the development of an on-site drug delivery system was 

achieved by an external magnetic field. Moreover, we observed and reported a synergetic 

effect of the magnetic field with temperature and the pH of the environment where 2% 

alginate macrobeads with SPIOs showed a higher response to the environmental stumili. 

Considering the results, magnetic alginate beads could have potential as on-site drug delivery 

system for an anti-inflammatory drug that designed to be controllable by an external magnetic 

field and can be used as drug loaded filler to prevent or heal the knee replacement driven 

inflammations. 
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